Seesaw enhancement of bi-large mixing in two-zero textures

Mizue Honda, Satoru Kaneko, Morimitsu Tanimoto
Department of Physics, Niigata University, Ikarashi 2-8050, 950-2181 Niigata, Japan
Received 10 January 2004; received in revised form 29 February 2004; accepted 25 March 2004
Available online 28 May 2004
Editor: T. Yanagida

Abstract

The seesaw enhancement of the bi-large mixings are discussed for the two-zero textures of the neutrino mass matrix. There are no large mixings in both Dirac neutrino mass matrix m_{D} and right-handed Majorana neutrino mass matrix M_{R}, however, the bi-large mixing is realized via the seesaw mechanism. We present twelve sets of m_{D} and M_{R} for the seesaw enhancement and discuss the related phenomena, the $\mu \rightarrow e+\gamma$ process and the leptogenesis. The decay rate of $\mu \rightarrow e+\gamma$ is enough suppressed due to zeros in the Dirac neutrino mass matrix. Six m_{D} lead to the lepton asymmetry, which can explain the baryon number in the universe. Other six m_{D} are the real matrices, which give no CP asymmetry. Modified Dirac neutrino mass matrices are also discussed. © 2004 Elsevier B.V. Open access under CC BY_license.

The texture with zeros of the neutrino mass matrix have been discussed [1-4] to explain neutrino masses and mixings [5], which have been presented by the recent neutrino experiments [6-9]. It was found that the two-zero textures are consistent with the experimental data in the basis of the diagonal charged lepton mass matrix [10]. Consequently, the neutrino mass matrix does not display the hierarchical structure as seen in the quark mass matrix [11-17].

Since the two-zero textures of Ref. [10] are given for the light effective neutrino mass matrix M_{ν}, one needs to find the seesaw realization [18] of these textures from the standpoint of the model building. We have examined the seesaw realization of the neutrino mass matrix with two zeros [19]. Without fine tunings between parameters of the Dirac neutrino mass matrix m_{D} and the right-handed Majorana neutrino one M_{R}, we obtained several textures of m_{D} for the fixed M_{R} [19]. Among them, there are textures of m_{D} and M_{R} which have hierarchical masses without large mixings. These present the seesaw enhancement of mixings, because there is no large mixings in m_{D} and M_{R}, but the bi-large mixing is realized via the seesaw mechanism. The seesaw enhancement are important in the standpoint of the quark-lepton unification, in which quark masses are hierarchical and quark mixings are very small. ${ }^{1}$

[^0]The general discussions of the seesaw enhancement were given in the case of two flavors [20,21]. Specific cases were discussed in the case of three flavors [22,23] because it is very difficult to get general conditions for the seesaw enhancement of the bi-large mixing.

However, the two-zero texture of the neutrino mass matrix M_{ν} are helpful to study the seesaw enhancement of the bi-large mixing. In this Letter, we present sets of m_{D} and M_{R} to give the seesaw enhancement in the two-zero textures of M_{ν} and discuss the related phenomena, the $\mu \rightarrow e+\gamma$ process and the leptogenesis [24].

There are fifteen two-zero textures for the neutrino mass matrix M_{ν}, which have five independent parameters. Among these textures, seven acceptable textures with two independent zeros were found for the neutrino mass matrix [10], and they have been studied in detail [12,13,16,17]. Especially, the textures A_{1} and A_{2} of Ref. [10], which correspond to the hierarchical neutrino mass spectrum, are strongly favored by the recent phenomenological analyses $[11,12,17]$. Therefore, the two textures are taken in order to discuss the seesaw enhancement.

Putting data of neutrino masses and mixings [25],

$$
\begin{array}{lll}
0.35 \leqslant \tan ^{2} \theta_{\text {sun }} \leqslant 0.54, & 6.1 \times 10^{-5} \leqslant \Delta m_{\text {sun }}^{2} \leqslant 8.3 \times 10^{-5} \mathrm{eV}^{2}, & 90 \% \text { C.L. } \\
0.90 \leqslant \sin ^{2} 2 \theta_{\mathrm{atm}}, & 1.3 \times 10^{-3} \leqslant \Delta m_{\mathrm{atm}}^{2} \leqslant 3.0 \times 10^{-3} \mathrm{eV}^{2}, & 90 \% \text { C.L. } \tag{1}
\end{array}
$$

the relative magnitude of each entry of the neutrino mass matrix is roughly given for the textures A_{1} and A_{2} as follows:

$$
M_{\nu} \simeq m_{0}\left(\begin{array}{ccc}
0 & 0 & \lambda \tag{2}\\
0 & 1 & 1 \\
\lambda & 1 & 1
\end{array}\right) \quad \text { for } A_{1}, \quad m_{0}\left(\begin{array}{ccc}
0 & \lambda & 0 \\
\lambda & 1 & 1 \\
0 & 1 & 1
\end{array}\right) \quad \text { for } A_{2},
$$

where m_{0} denotes a constant mass and $\lambda \simeq 0.2$. These matrix is given in terms of the Dirac neutrino mass matrix m_{D} and the right-handed Majorana neutrino mass matrix M_{R} by the seesaw mechanism as

$$
\begin{equation*}
M_{\nu}=m_{D} M_{R}^{-1} m_{D}^{\mathrm{T}} \tag{3}
\end{equation*}
$$

Zeros in m_{D} and M_{R} provide zeros in the neutrino mass matrix M_{v} of Eq. (2) as far as we exclude the possibility that zeros are originated from accidental cancellations among matrix elements. In other words, we take a standpoint that the two-zero texture should come from zeros of the Dirac neutrino mass matrix and the right-handed Majorana mass matrix. Possible textures of m_{D} and M_{R} were given in Ref. [19]. Among them, we select the set of m_{D} and M_{R}, which reproduce the seesaw enhancement of the bi-large mixing.

Let us fix the right-handed Majorana neutrino mass matrix without large mixings. We take simple right-handed Majorana neutrino mass matrix with only three independent parameters. Then, there are ${ }_{6} \mathrm{C}_{3}=20$ textures. Among them, six textures are excluded because they have a zero eigenvalue, which corresponds to a massless right-handed Majorana neutrino. Other two textures are also excluded because the two-zero textures A_{1} and A_{2} cannot be reproduced without accidental cancellations. One of the two textures is the diagonal matrix, and another one is the matrix with three zeros in the diagonal elements.

We show twelve real mass matrices with three independent parameters ${ }^{2}$ with mass eigenvalues $\left|M_{1}\right|=\lambda^{m} M_{3}$ and $\left|M_{2}\right|=\lambda^{n} M_{3}$, where M_{3} is the mass of the third generation, and m and n are integers with $m>n>1$:

$$
a_{i} \text { type } \quad M_{R} \simeq M_{3}\left(\begin{array}{ccc}
-1 & 0 & \lambda^{\frac{m}{2}} \\
0 & \lambda^{n} & 0 \\
\lambda^{\frac{m}{2}} & 0 & 0
\end{array}\right)_{a_{1}}, \quad M_{3}\left(\begin{array}{ccc}
0 & -\lambda^{\frac{n}{2}} & \lambda^{\frac{m+n}{2}} \\
-\lambda^{\frac{n}{2}} & 1 & 0 \\
\lambda^{\frac{m+n}{2}} & 0 & 0
\end{array}\right)_{a_{2}},
$$

[^1]\[

$$
\begin{align*}
& M_{3}\left(\begin{array}{ccc}
0 & 0 & \lambda^{\frac{m}{2}} \\
0 & \lambda^{n} & 0 \\
\lambda^{\frac{m}{2}} & 0 & -1
\end{array}\right)_{a_{3}}, \quad M_{3}\left(\begin{array}{ccc}
0 & 0 & \lambda^{\frac{m+n}{2}} \\
0 & 1 & -\lambda^{\frac{n}{2}} \\
\lambda^{\frac{m+n}{2}} & -\lambda^{\frac{n}{2}} & 0
\end{array}\right)_{a_{4}} ; \tag{4}\\
& b_{i} \text { type } \quad M_{R} \simeq M_{3}\left(\begin{array}{ccc}
-\lambda^{n} & \lambda^{\frac{m+n}{2}} & 0 \\
\lambda^{\frac{m+n}{2}} & 0 & 0 \\
0 & 0 & 1
\end{array}\right)_{b_{1}}, \quad M_{3}\left(\begin{array}{ccc}
0 & \lambda^{\frac{m+n}{2}} & -\lambda^{\frac{n}{2}} \\
\lambda^{\frac{m+n}{2}} & 0 & 0 \\
-\lambda^{\frac{n}{2}} & 0 & 1
\end{array}\right)_{b_{2}}, \\
& M_{3}\left(\begin{array}{ccc}
0 & \lambda^{\frac{m+n}{2}} & 0 \\
\lambda^{\frac{m+n}{2}} & -\lambda^{n} & 0 \\
0 & 0 & 1
\end{array}\right)_{b_{3}}, \quad M_{3}\left(\begin{array}{ccc}
0 & \lambda^{\frac{m+n}{2}} & 0 \\
\lambda^{\frac{m+n}{2}} & 0 & -\lambda^{\frac{n}{2}} \\
0 & -\lambda^{\frac{n}{2}} & 1
\end{array}\right)_{b_{4}} ; \tag{5}\\
& c_{i} \text { type } \quad M_{R} \simeq M_{3}\left(\begin{array}{ccc}
\lambda^{m} & 0 & 0 \\
0 & -1 & \lambda^{\frac{n}{2}} \\
0 & \lambda^{\frac{n}{2}} & 0
\end{array}\right)_{c_{1}}, \quad M_{3}\left(\begin{array}{ccc}
1 & -\lambda^{\frac{n}{2}} & 0 \\
-\lambda^{\frac{n}{2}} & 0 & \lambda^{\frac{m+n}{2}} \\
0 & \lambda^{\frac{m+n}{2}} & 0
\end{array}\right)_{c_{2}}, \\
& M_{3}\left(\begin{array}{ccc}
\lambda^{m} & 0 & 0 \\
0 & 0 & \lambda^{\frac{n}{2}} \\
0 & \lambda^{\frac{n}{2}} & -1
\end{array}\right)_{c_{3}}, \quad M_{3}\left(\begin{array}{ccc}
1 & 0 & -\lambda^{\frac{n}{2}} \\
0 & 0 & \lambda^{\frac{m+n}{2}} \\
-\lambda^{\frac{n}{2}} & \lambda^{\frac{m+n}{2}} & 0
\end{array}\right)_{c_{4}}, \tag{6}
\end{align*}
$$
\]

where there are no large mixings in twelve matrices since the mass eigenvalues are supposed to be hierarchical. The minus signs in the matrix elements are taken to reproduce signs in the texture A_{1} and A_{2} of Eq. (2).

There are several Dirac neutrino mass matrices to give the textures A_{1} and A_{2} in Eq. (2) [19]. We show Dirac neutrino mass matrices $\left(m_{D}\right)_{a_{i}},\left(m_{D}\right)_{b_{i}},\left(m_{D}\right)_{c_{i}}(i=1 \sim 4)$ with maximal number of zeros, which have no large mixings, to give the texture $A_{2} .{ }^{3}$ For each matrix of $\left(M_{R}\right)_{a_{i}},\left(M_{R}\right)_{b_{i}},\left(M_{R}\right)_{c_{i}}$ those are given as follows:

$$
\begin{align*}
& a_{i} \text { type } \quad m_{D} \simeq m_{\mathrm{D} 0}\left(\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & 0 & \lambda^{\frac{m}{2}} \\
1 & \lambda^{\frac{n}{2}} & 0
\end{array}\right)_{a_{1}}, \quad m_{\mathrm{D} 0}\left(\begin{array}{ccc}
\lambda^{\frac{n}{2}+1} & 0 & 0 \\
0 & 0 & \lambda^{\frac{m}{2}} \\
0 & 1 & 0
\end{array}\right)_{a_{2}}, \\
& m_{\mathrm{D} 0}\left(\begin{array}{ccc}
0 & 0 & \lambda \\
\lambda^{\frac{m}{2}} & 0 & 0 \\
0 & \lambda^{\frac{n}{2}} & 1
\end{array}\right)_{a_{3}}, \quad m_{\mathrm{D} 0}\left(\begin{array}{ccc}
0 & 0 & \lambda^{\frac{n}{2}+1} \\
\lambda^{\frac{m}{2}} & 0 & 0 \\
0 & 1 & 0
\end{array}\right)_{a_{4}} ; \tag{7}\\
& b_{i} \text { type } \quad m_{D} \simeq m_{\mathrm{D} 0}\left(\begin{array}{ccc}
\lambda^{\frac{n}{2}+1} & 0 & 0 \\
0 & \lambda^{\frac{m}{2}} & 0 \\
\lambda^{\frac{n}{2}} & 0 & 1
\end{array}\right)_{b_{1}}, \quad m_{\mathrm{D} 0}\left(\begin{array}{ccc}
\lambda^{\frac{n}{2}+1} & 0 & 0 \\
0 & \lambda^{\frac{m}{2}} & 0 \\
0 & 0 & 1
\end{array}\right)_{b_{2}} \text {, } \\
& m_{\mathrm{D} 0}\left(\begin{array}{ccc}
0 & \lambda^{\frac{n}{2}+1} & 0 \\
\lambda^{\frac{m}{2}} & 0 & 0 \\
0 & \lambda^{\frac{n}{2}} & 1
\end{array}\right)_{b_{3}}, \quad m_{\mathrm{D} 0}\left(\begin{array}{ccc}
0 & \lambda^{\frac{n}{2}+1} & 0 \\
\lambda^{\frac{m}{2}} & 0 & 0 \\
0 & 0 & 1
\end{array}\right)_{b_{4}} ; \tag{8}\\
& c_{i} \text { type } \quad m_{D} \simeq m_{\mathrm{D} 0}\left(\begin{array}{ccc}
0 & \lambda & 0 \\
0 & 0 & \lambda^{\frac{n}{2}} \\
\lambda^{\frac{m}{2}} & 1 & 0
\end{array}\right)_{c_{1}}, \quad m_{\mathrm{D} 0}\left(\begin{array}{ccc}
0 & \lambda^{\frac{n}{2}+1} & 0 \\
0 & 0 & \lambda^{\frac{m}{2}} \\
1 & 0 & 0
\end{array}\right)_{c_{2}}, \\
& m_{\mathrm{D} 0}\left(\begin{array}{ccc}
0 & 0 & \lambda \\
0 & \lambda^{\frac{n}{2}} & 0 \\
\lambda^{\frac{m}{2}} & 0 & 1
\end{array}\right)_{c_{3}}, \quad m_{\mathrm{D} 0}\left(\begin{array}{ccc}
0 & 0 & \lambda^{\frac{n}{2}+1} \\
0 & \lambda^{\frac{m}{2}} & 0 \\
1 & 0 & 0
\end{array}\right)_{c_{4}}, \tag{9}
\end{align*}
$$

[^2]where $m_{\mathrm{D} 0}$ denotes the magnitude of the Dirac neutrino mass and complex coefficients of order one are omitted. Although these matrices have no large mixing among three families, the neutrino mass matrix M_{ν} has the bi-large mixing through the seesaw mechanism. These are so-called seesaw enhancement of the bi-large mixing.

These Dirac matrices are ones with maximal number of zeros. Without changing the mixings and the mass eigenvalues in the leading order, some zeros can be replaced with small non-zero entries as follows:

$$
\begin{align*}
& a_{i} \text { type } \quad m_{D} \simeq m_{\mathrm{D} 0}\left(\begin{array}{ccc}
\lambda & 0 & 0 \\
\lambda^{x} & \lambda^{y} & \lambda^{\frac{m}{2}} \\
1 & \lambda^{\frac{n}{2}} & 0
\end{array}\right)_{a_{1}},\left\{\begin{array}{l}
x>0, \\
y>n / 2,
\end{array} \quad m_{\mathrm{D} 0}\left(\begin{array}{ccc}
\lambda^{\frac{n}{2}+1} & 0 & 0 \\
\lambda^{x} & \lambda^{z} & \lambda^{\frac{m}{2}} \\
\lambda^{y} & 1 & 0
\end{array}\right)_{a_{2}},\left\{\begin{array}{l}
x>n / 2, \\
y>n / 2, \\
z>0,
\end{array}\right.\right. \\
& m_{\mathrm{D} 0}\left(\begin{array}{ccc}
0 & 0 & \lambda \\
\lambda^{\frac{m}{2}} & \lambda^{x} & \lambda^{y} \\
0 & \lambda^{\frac{n}{2}} & 1
\end{array}\right)_{a_{3}},\left\{\begin{array}{l}
x>n / 2, \\
y>0,
\end{array} m_{\mathrm{D} 0}\left(\begin{array}{ccc}
0 & 0 & \lambda^{\frac{n}{2}+1} \\
\lambda^{\frac{m}{2}} & \lambda^{z} & \lambda^{x} \\
0 & 1 & \lambda^{y}
\end{array}\right)_{a_{4}},\left\{\begin{array}{l}
x>n / 2, \\
y>n / 2, \\
z>0 ;
\end{array}\right.\right. \tag{10}\\
& b_{i} \text { type } \quad m_{D} \simeq m_{\mathrm{D} 0}\left(\begin{array}{ccc}
\lambda^{\frac{n}{2}+1} & 0 & 0 \\
\lambda^{x} & \lambda^{\frac{m}{2}} & \lambda^{y} \\
\lambda^{\frac{n}{2}} & 0 & 1
\end{array}\right)_{b_{1}},\left\{\begin{array}{l}
x>n / 2, \\
y>0,
\end{array} \quad m_{\mathrm{D} 0}\left(\begin{array}{ccc}
\lambda^{\frac{n}{2}+1} & 0 & 0 \\
\lambda^{x} & \lambda^{\frac{m}{2}} & \lambda^{z} \\
\lambda^{y} & 0 & 1
\end{array}\right)_{b_{2}},\left\{\begin{array}{l}
x>n / 2, \\
y>n / 2, \\
z>0,
\end{array}\right.\right. \\
& m_{\mathrm{D} 0}\left(\begin{array}{ccc}
0 & \lambda^{\frac{n}{2}+1} & 0 \\
\lambda^{\frac{m}{2}} & \lambda^{x} & \lambda^{y} \\
0 & \lambda^{\frac{n}{2}} & 1
\end{array}\right)_{b_{3}},\left\{\begin{array}{l}
x>n / 2, \\
y>0,
\end{array} \quad m_{\mathrm{D} 0}\left(\begin{array}{ccc}
0 & \lambda^{\frac{n}{2}+1} & 0 \\
\lambda^{\frac{m}{2}} & \lambda^{x} & \lambda^{z} \\
0 & \lambda^{y} & 1
\end{array}\right)_{b_{4}},\left\{\begin{array}{l}
x>n / 2, \\
y>n / 2, \\
z>0 ;
\end{array}\right.\right. \tag{11}\\
& c_{i} \text { type } \quad m_{D} \simeq m_{\mathrm{D} 0}\left(\begin{array}{ccc}
0 & \lambda & 0 \\
\lambda^{x} & \lambda^{y} & \lambda^{\frac{n}{2}} \\
\lambda^{\frac{m}{2}} & 1 & 0
\end{array}\right)_{c_{1}},\left\{\begin{array}{l}
x>m / 2, \\
y>0,
\end{array} m_{\mathrm{D} 0}\left(\begin{array}{ccc}
0 & \lambda^{\frac{n}{2}+1} & 0 \\
\lambda^{x} & \lambda^{y} & \lambda^{\frac{m}{2}} \\
1 & \lambda^{z} & 0
\end{array}\right)_{c_{2}},\left\{\begin{array}{l}
x>0, \\
y>n / 2, \\
z>n / 2,
\end{array}\right.\right. \\
& m_{\mathrm{D} 0}\left(\begin{array}{ccc}
0 & 0 & \lambda \\
\lambda^{x} & \lambda^{\frac{n}{2}} & \lambda^{y} \\
\lambda^{\frac{m}{2}} & 0 & 1
\end{array}\right)_{c_{3}},\left\{\begin{array}{l}
x>m / 2, \\
y>0,
\end{array} \quad m_{\mathrm{D} 0}\left(\begin{array}{ccc}
0 & 0 & \lambda^{\frac{n}{2}+1} \\
\lambda^{x} & \lambda^{\frac{m}{2}} & \lambda^{y} \\
1 & 0 & \lambda^{z}
\end{array}\right)_{c_{4}},\left\{\begin{array}{l}
x>0, \\
y>n / 2, \\
z>n / 2,
\end{array}\right.\right. \tag{12}
\end{align*}
$$

where x, y and z are positive integers. These Dirac neutrino mass matrices are asymmetric ones. However, only the b_{3} and b_{4} textures in Eq. (11) are adapted to the symmetric texture in the $S O$ (10)-like GUT if y, m and n are relevantly chosen [14,15]. For example, in the b_{3} case, taking $y=n / 2$ and $m=n+2$, the symmetric mass matrix is given, especially, putting $n=8$, we have the hierarchical mass matrix such like the up-quark mass matrix.

Let us discuss these obtained textures of m_{D} in the $\mu \rightarrow e+\gamma$ decay and the leptogenesis. It is well known that the Yukawa coupling of the neutrino contributes to the lepton flavor violation (LFV). Many authors have studied the LFV in the minimal supersymmetric standard model (MSSM) with right-handed neutrinos assuming the relevant neutrino mass matrix [26-31]. In the MSSM with soft breaking terms, there exist lepton flavor violating terms such as off-diagonal elements of slepton mass matrices and trilinear couplings (A-term). It is noticed that large neutrino Yukawa couplings and large lepton mixings generate the large LFV in the left-handed slepton masses. For example, the decay rate of $\mu \rightarrow e+\gamma$ can be approximated as follows:

$$
\begin{equation*}
\Gamma(\mu \rightarrow e+\gamma) \simeq \frac{e^{2}}{16 \pi} m_{\mu}^{5} F\left|\frac{\left(6+2 a_{0}^{2}\right) m_{\mathrm{S} 0}^{2}}{16 \pi^{2}}\left(Y_{\nu} Y_{v}^{\dagger}\right)_{21} \ln \frac{M_{X}}{M_{R}}\right|^{2}, \tag{13}
\end{equation*}
$$

where the neutrino Yukawa coupling matrix Y_{v} is given as $Y_{v}=m_{D} / v_{2}\left(v_{2}\right.$ is a VEV of Higgs) at the right-handed mass scale M_{R}, and F is a function of masses and mixings for SUSY particles. In Eq. (13), we assume the universal scalar mass ($m_{S 0}$) for all scalars and the universal A-term $\left(A_{f}=a_{0} m_{S 0} Y_{f}\right)$ at the GUT scale M_{X}. Therefore, the branching ratio $\mu \rightarrow e+\gamma$ depends considerably on the texture m_{D} [29-31].

The magnitude of $\left(m_{D} m_{D}^{\dagger}\right)_{21}$ is a key ingredient to predict the branching ratio of the $\mu \rightarrow e+\gamma$ process. ${ }^{4}$ Many works have shown that this branching ratio is too large [29,30]. The conditions for $\left(m_{D} m_{D}^{\dagger}\right)_{21}$ were given in Ref. [32] as follows:

$$
\begin{align*}
& H_{21} \leqslant 10^{-2} \tan ^{-1 / 2} \beta\left(\frac{m_{\mathrm{S} 0}}{100 \mathrm{GeV}}\right)^{2}\left(\frac{B r(\mu \rightarrow e \gamma)}{1.2 \times 10^{-11}}\right)^{-1 / 2}, \\
& H_{31} H_{23} \leqslant 10^{-1} \tan ^{-1 / 2} \beta\left(\frac{m_{\mathrm{S} 0}}{100 \mathrm{GeV}}\right)^{2}\left(\frac{B r(\mu \rightarrow e \gamma)}{1.2 \times 10^{-11}}\right)^{-1 / 2}, \tag{14}
\end{align*}
$$

where

$$
\begin{equation*}
H_{i j}=\sum_{k}\left(m_{D}\right)_{i k}\left(m_{D}^{\dagger}\right)_{k j} \ln \frac{M_{X}}{M_{R k}} . \tag{15}
\end{equation*}
$$

These conditions give constraints for the magnitude of $\left(m_{D} m_{D}^{\dagger}\right)_{i j}$ and M_{3}. Zeros in Dirac mass matrices m_{D} may lead to $\left(m_{D} m_{D}^{\dagger}\right)_{i j}=0$ and then it suppress the $\mu \rightarrow e+\gamma$ decay. Actually, all m_{D} in Eqs. (7), (8) and (9) give $\left(m_{D} m_{D}^{\dagger}\right)_{21}=0$ and $\left(m_{D} m_{D}^{\dagger}\right)_{31}\left(m_{D} m_{D}^{\dagger}\right)_{23}=0 .{ }^{5}$ Even if non-zero terms $\lambda^{x}, \lambda^{y}, \lambda^{z}$ are taken as seen in Eqs. (10), (11) and (12), $\left(m_{D} m_{D}^{\dagger}\right)_{21}$ and $\left(m_{D} m_{D}^{\dagger}\right)_{31}\left(m_{D} m_{D}^{\dagger}\right)_{23}$ are suppressed as far as $x, y, z \gg 1$. Then, the branching ratio is safely predicted to be below the present experimental upper bound 1.2×10^{-11} [33] due to zeros.

Let us examine our textures in the leptogenesis [34-36], which is based on the Fukugita-Yanagida mechanism [24]. The CP -violating phases in the Dirac neutrino mass matrix are key ingredients for the leptogenesis while the right-handed Majorana neutrino mass matrix are taken to be real in Eqs. (4), (5) and (6). Although the non-zero entries in the Dirac neutrino mass matrix are complex, three phases are removed by the redefinition of the left-handed neutrino fields. There is no freedom of redefinition for the right-handed ones in the basis with the real M_{R}. We should move to the diagonal basis of the right-handed Majorana neutrino mass matrix in order to calculate the magnitude of the leptogenesis. Then, the Dirac neutrino mass matrices \bar{m}_{D} in the new basis is given as follows:

$$
\begin{equation*}
\bar{m}_{D}=P_{L} m_{D} O_{R}, \tag{16}
\end{equation*}
$$

where P_{L} is a diagonal phase matrix and O_{R} is the orthogonal matrix which diagonalizes M_{R} as $O_{R}^{\mathrm{T}} M_{R} O_{R}$ in Eqs. (4), (5) and (6). Since the phase matrix P_{L} can remove one phase in each row of m_{D}, three phases disappear in \bar{m}_{D}.

As a typical example, we show the case of the b_{3} texture in Eq. (5). By taking three eigenvalues of M_{R} as follows: ${ }^{6}$

$$
\begin{equation*}
M_{1}=\lambda^{m} M_{3}, \quad M_{2}=-\lambda^{n} M_{3} . \tag{17}
\end{equation*}
$$

We obtain the orthogonal matrix O_{R} as

$$
O_{R}=\left(\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \tag{18}\\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right), \quad \tan ^{2} \theta=\lambda^{m-n} .
$$

[^3]Then the Dirac mass matrices m_{D} of b_{3} in Eq. (8) can be parameterized in the new basis as follows:

$$
\bar{m}_{D}=m_{\mathrm{D} 0}\left(\begin{array}{ccc}
0 & \lambda^{\frac{n}{2}+1} & 0 \tag{19}\\
\lambda^{\frac{m}{2}} & 0 & 0 \\
0 & \lambda^{\frac{n}{2}} e^{i \rho} & 1
\end{array}\right) O_{R}
$$

where only one phase ρ remains. The magnitude of $m_{\mathrm{D} 0}$ is determined by the relation $m_{\mathrm{D} 0}^{2} \simeq m_{0} M_{3}$, where $m_{0} \simeq \sqrt{\Delta m_{\mathrm{atm}}^{2}} / 2$.

We examine the lepton number asymmetry in the minimal SUSY model with the right-handed neutrinos. In the limit $M_{1} \ll M_{2}, M_{3}$, the lepton number asymmetry ϵ_{1} (CP asymmetry) for the lightest heavy Majorana neutrino $\left(N_{1}\right)$ decays into $l^{\mp} \phi^{ \pm}$[37] is given by

$$
\begin{equation*}
\epsilon_{1}=\frac{\Gamma_{1}-\bar{\Gamma}_{1}}{\Gamma_{1}+\bar{\Gamma}_{1}} \simeq-\frac{3}{8 \pi v_{2}^{2}}\left(\frac{\operatorname{Im}\left[\left\{\left(\bar{m}_{D}^{\dagger} \bar{m}_{D}\right)_{12}\right\}^{2}\right]}{\left(\bar{m}_{D}^{\dagger} \bar{m}_{D}\right)_{11}} \frac{M_{1}}{M_{2}}+\frac{\operatorname{Im}\left[\left\{\left(\bar{m}_{D}^{\dagger} \bar{m}_{D}\right)_{13}\right\}^{2}\right]}{\left(\bar{m}_{D}^{\dagger} \bar{m}_{D}\right)_{11}} \frac{M_{1}}{M_{3}}\right), \tag{20}
\end{equation*}
$$

where $v_{2}=v \sin \beta$ with $v=174 \mathrm{GeV}$. The lepton asymmetry Y_{L} is related to the CP asymmetry through the relation

$$
\begin{equation*}
Y_{L}=\frac{n_{L}-n_{\bar{L}}}{s}=\kappa \frac{\epsilon_{1}}{g_{*}}, \tag{21}
\end{equation*}
$$

where s denotes the entropy density, g_{*} is the effective number of relativistic degrees of freedom contributing to the entropy and κ is the so-called dilution factor which accounts for the washout processes (inverse decay and lepton number violating scattering). In the MSSM with right-handed neutrinos, one gets $g_{*}=232.5$.

The produced lepton asymmetry Y_{L} is converted into a net baryon asymmetry Y_{B} through the ($B+L$)-violating sphaleron processes. One finds the relation [38]

$$
\begin{equation*}
Y_{B}=\xi Y_{B-L}=\frac{\xi}{\xi-1} Y_{L}, \quad \xi=\frac{8 N_{f}+4 N_{H}}{22 N_{f}+13 N_{H}} \tag{22}
\end{equation*}
$$

where N_{f} and N_{H} are the number of fermion families and Higgs doublets, respectively. Taking into account $N_{f}=3$ and $N_{H}=2$ in the MSSM, we get

$$
\begin{equation*}
Y_{B}=-\frac{8}{15} Y_{L} . \tag{23}
\end{equation*}
$$

On the other hand, the low energy CP violation, which is a measurable quantity in the long baseline neutrino oscillations [39], is given by the Jarlskog determinant J_{CP} [40], which is calculated by

$$
\begin{equation*}
\operatorname{det}\left[M_{\ell} M_{\ell}^{\dagger}, M_{\nu} M_{v}^{\dagger}\right]=-2 i J_{\mathrm{CP}}\left(m_{\tau}^{2}-m_{\mu}^{2}\right)\left(m_{\mu}^{2}-m_{e}^{2}\right)\left(m_{e}^{2}-m_{\tau}^{2}\right)\left(m_{3}^{2}-m_{2}^{2}\right)\left(m_{2}^{2}-m_{1}^{2}\right)\left(m_{1}^{2}-m_{3}^{2}\right), \tag{24}
\end{equation*}
$$

where M_{ℓ} is the diagonal charged lepton mass matrix, and m_{1}, m_{2}, m_{3} are neutrino masses.
Since the CP-violating phase is only ρ, we can find a link between the leptogenesis $\left(\epsilon_{1}\right)$ and the low energy CP violation (J_{CP}) in our textures of the Dirac neutrinos. By using the Dirac neutrino mass matrix in Eq. (19), we get

$$
\begin{equation*}
\epsilon_{1} \simeq-\frac{3 m_{\mathrm{D} 0}^{2}}{8 \pi v_{2}^{2}} \lambda^{m} \sin 2 \rho \simeq-8.8 \times 10^{-17} M_{1} \sin 2 \rho, \quad J_{\mathrm{CP}} \simeq \frac{1}{64} \lambda^{2} \frac{\Delta m_{\mathrm{atm}}^{2}}{\Delta m_{\mathrm{sol}}^{2}} \sin 2 \rho, \tag{25}
\end{equation*}
$$

where M_{1} is given in the GeV unit and $\tan \beta \geqslant 10$ is taken. It is remarked that ϵ_{1} only depends on M_{1} and the phase ρ, and the relative sign of ϵ_{1} and J_{CP} is opposite. Taking the experimental data $\Delta m_{\mathrm{sol}}^{2} / \Delta m_{\mathrm{atm}}^{2} \simeq \lambda^{2}$ and $\sin 2 \rho \simeq 1$, we predict $J_{\mathrm{CP}} \simeq 0.01$, which is rather large and then is favored for the future experimental measurement.

The five cases of the Dirac neutrino mass matrix $\left(a_{1}, a_{3}, b_{1}, c_{1}, c_{3}\right)$ in Eqs. (7), (8) and (9) lead to same results in Eq. (25). In other six cases of the Dirac neutrino mass matrix ($a_{2}, a_{4}, b_{2}, b_{4}, c_{2}, c_{4}$), the CP-violating phases are removed because of only three non-zero entries. Then, we get $\epsilon_{1}=0$, but the same result in Eq. (25) for J_{CP}.

If we use the modified Dirac neutrino mass matrices in Eqs. (10), (11) and (12), new CP-violating phases appear. However, the contribution to ϵ_{1} is a next-leading one as far as $x \gg 1, y \gg 1, z \gg 1$.

In order to calculate the baryon asymmetry, we need the dilution factor involves the integration of the full set of Boltzmann equations [41]. A simple approximated solution which has been frequently used is given by [42]

$$
\begin{equation*}
\kappa=0.3\left(\frac{10^{-3} \mathrm{eV}}{\tilde{m}_{1}}\right)\left(\ln \frac{\tilde{m}_{1}}{10^{-3} \mathrm{eV}}\right)^{-0.6} \quad\left(10^{-2} \mathrm{eV} \leqslant \tilde{m}_{1} \leqslant 10^{3} \mathrm{eV}\right) \tag{26}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{m}_{1}=\frac{\left(\bar{m}_{D}^{\dagger} \bar{m}_{D}\right)_{11}}{M_{1}} \tag{27}
\end{equation*}
$$

By using this approximate dilution factor and Eqs. (21) and (22), we can estimate Y_{B} in our textures as follows:

$$
\begin{equation*}
Y_{B} \simeq-2.3 \times 10^{-3} \epsilon_{1} \kappa \tag{28}
\end{equation*}
$$

It is noticed that Y_{B} and J_{CP} are same sign since ϵ_{1} has minus sign.
The WMAP has given the new result [43]

$$
\begin{equation*}
\eta_{B}=6.5_{-0.3}^{+0.4} \times 10^{-10}(1 \sigma) \tag{29}
\end{equation*}
$$

which leads to

$$
\begin{equation*}
Y_{B} \simeq \frac{1}{7} \eta_{B} \tag{30}
\end{equation*}
$$

In our textures, we have $\left(\bar{m}_{D}^{\dagger} \bar{m}_{D}\right)_{11}=m_{\mathrm{D} 0}^{2} \lambda^{m}$, which gives $\tilde{m}_{1}=\frac{1}{2} \sqrt{\Delta m_{\mathrm{atm}}^{2}} \simeq 0.022$. Then we get the dilution factor $\kappa \simeq 7 \times 10^{-3}$. Putting the observed value into Eq. (28), we get

$$
\begin{equation*}
M_{1} \sin 2 \rho \simeq 6 \times 10^{10} \mathrm{GeV} \tag{31}
\end{equation*}
$$

This result means that M_{1} is should be larger than $6 \times 10^{10} \mathrm{GeV}$ in order to explain the baryon number in the universe. This value is consistent with previous works [34-36].

It is important to present the discussion from the standpoint of the GUT, which is given after Eq. (11). Taking $n=8$ and $m=6$ in the b_{3} case of Eq. (11) as in the previous discussion, one obtains $M_{3} \sim 10^{15} \mathrm{GeV}$ and $M_{1} \sim 10^{8} \mathrm{GeV}$ taking account of $\Delta m_{\mathrm{atm}}^{2} \simeq 2 \times 10^{-3} \mathrm{eV}^{2}$. This result does not satisfy the condition of Eq. (31). However, the simple $S O(10)$ fermion mass relation may be consistent with the leptogenesis in the case of the more complicated texture of M_{R}, which leads to the two-zero texture A_{2}, as seen in the work of [44]. Details are presented in the preparing paper including the degenerate case of M_{R} in the simple $S O(10)$ approach [45].

We add the discussion of another important problem. In the framework of supersymmetric thermal leptogenesis, there is cosmological gravitino problems. The gravitino with a few TeV mass does not favor $M_{1} \geqslant 10^{10} \mathrm{GeV}$ [46], because M_{1} should be lower than the maximum reheating temperature of the universe after inflation. In order to keep the thermal leptogenesis in the SUSY model, we may consider the gravitino with $O(100) \mathrm{TeV}$ mass, which is derived from the anomaly mediated SUSY breaking mechanism [47].

Summary is given as follows. We have discussed the textures with the seesaw enhancement. These textures are important in the standpoint of the quark-lepton unification, in which quark masses are hierarchical and quark mixings are very small. It is very difficult to get general conditions for the seesaw enhancement of the bi-large mixing, however, the two-zero texture of the left-handed neutrino mass matrix M_{v} are helpful to study the seesaw enhancement of the bi-large mixing. Once the basis of the right-handed Majorana neutrino mass matrix is fixed, one can find some sets of m_{D} and M_{R}, which have hierarchical masses without large mixings, to give the twozero textures A_{1} and A_{2} without fine tuning among parameters of these matrices. These sets present the seesaw enhancement of the bi-large mixing, because there is no large mixings in m_{D} and M_{R}, but bi-large mixing is
realized via the seesaw mechanism. We present twelve sets of m_{D} and M_{R} for the seesaw enhancement. Then, the decay rate of $\mu \rightarrow e+\gamma$ is enough suppressed due to zeros in the Dirac neutrino mass matrix. Six sets lead to the lepton asymmetry, which depends on only M_{1} and the phase ρ. Putting the observed value of baryon number in the universe, $M_{1} \simeq 6 \times 10^{10} \mathrm{GeV}$ is obtained. It is remarked that J_{CP} is the same sign as the Y_{B}, and its magnitude is predicted to be $\simeq 0.01$. Other six ones provide the real Dirac neutrino mass matrices, which give no CP asymmetry. Study of modified right-handed Majorana neutrino mass matrices is important for realistic model buildings based on the quark-lepton unification.

Acknowledgements

This research was supported in part by the National Science Foundation in the Grant-in-Aid for Science Research, Ministry of Education, Science and Culture, Japan (No. 12047220).

References

[1] H. Nishiura, K. Matsuda, T. Fukuyama, Phys. Rev. D 60 (1999) 013006.
[2] E.K. Akhmedov, G.C. Branco, M.N. Rebelo, Phys. Rev. Lett. 84 (2000) 3535.
[3] S.K. Kang, C.S. Kim, Phys. Rev. D 63 (2001) 113010.
[4] K.T. Mahanthappa, M.-C. Chen, Phys. Rev. D 62 (2000) 113007.
[5] Z. Maki, M. Nakagawa, S. Sakata, Prog. Theor. Phys. 28 (1962) 870.
[6] Super-Kamiokande Collaboration, Y. Fukuda, et al., Phys. Rev. Lett. 81 (1998) 1562; Super-Kamiokande Collaboration, Y. Fukuda, et al., Phys. Rev. Lett. 82 (1999) 2644; Super-Kamiokande Collaboration, Y. Fukuda, et al., Phys. Rev. Lett. 82 (1999) 5194.
[7] Super-Kamiokande Collaboration, S. Fukuda, et al., Phys. Rev. Lett. 86 (2001) 5651; Super-Kamiokande Collaboration, S. Fukuda, et al., Phys. Rev. Lett. 86 (2001) 5656.
[8] SNO Collaboration, Q.R. Ahmad, et al., Phys. Rev. Lett. 87 (2001) 071301;
SNO Collaboration, Q.R. Ahmad, et al., Phys. Rev. Lett. 89 (2002) 011301; SNO Collaboration, Q.R. Ahmad, et al., Phys. Rev. Lett. 89 (2002) 011302, nucl-ex/0309004.
[9] KamLAND Collaboration, K. Eguchi, et al., Phys. Rev. Lett. 90 (2003) 0212021.
[10] P.H. Frampton, S.L. Glashow, D. Marfatia, Phys. Lett. B 536 (2002) 79.
[11] Z. Xing, Phys. Lett. B 530 (2002) 159.
[12] W. Guo, Z. Xing, Phys. Rev. D 67 (2003) 053002.
[13] R. Barbieri, T. Hambye, A. Romanino, JHEP 0303 (2003) 017.
[14] K.T. Mahanthappa, M.-C. Chen, Phys. Rev. D 65 (2002) 053010; K.T. Mahanthappa, M.-C. Chen, Phys. Rev. D 68 (2003) 017301.
[15] M. Bando, M. Obara, Prog. Theor. Phys. 109 (2003) 995; M. Bando, M. Obara, hep-ph/0212242;
M. Bando, S. Kaneko, M. Obara, M. Tanimoto, hep-ph/0309310.
[16] A. Ibara, G.G. Ross, Phys. Lett. B 575 (2003) 279.
[17] M. Honda, S. Kaneko, M. Tanimoto, JHEP 0309 (2003) 028.
[18] M. Gell-Mann, P. Ramond, R. Slansky, in: P. van Nieuwenhuizen, D. Freedmann (Eds.), Supergravity, Proceedings of the Workshop, Stony Brook, NY, 1979, North-Holland, Amsterdam, 1979, p. 315;
T. Yanagida, in: O. Sawada, A. Sugamoto (Eds.), Proceedings of the Workshop on the Unified Theories and Baryon Number in the Universe, Tsukuba, Japan, 1979, KEK, Tsukuba, 1979, p. 95, KEK Report No. 79-18.
[19] A. Kageyama, S. Kaneko, N. Shimoyama, M. Tanimoto, Phys. Lett. B 538 (2002) 96.
[20] A.Yu. Smirnov, Phys. Rev. D 48 (1993) 3264.
[21] M. Tanimoto, Phys. Lett. B 345 (1995) 477.
[22] M. Bando, T. Kugo, K. Yoshioka, Phys. Rev. Lett. 80 (1998) 3004; M. Jeżabek, Y. Sumino, Phys. Lett. B 440 (1998) 327;
M. Jeżabek, Y. Sumino, Phys. Lett. B 457 (1999) 139.
[23] G. Altarelli, F. Ferruglio, I. Masina, Phys. Lett. B 472 (2000) 382; E.K. Akhmedov, G.C. Branco, M.N. Rebelo, Phys. Lett. B 478 (2000) 215;
A. Datta, F.-S. Ling, P. Ramond, Nucl. Phys. B 671 (2003) 383;
S. Lavignac, I. Masina, C.A. Savoy, Nucl. Phys. B 633 (2002) 139;
W. Rodejohann, hep-ph/0311142.
[24] M. Fukugita, T. Yanagida, Phys. Lett. B 175 (1986) 45.
[25] G.L. Fogli, E. Lisi, M. Marrone, D. Montanino, A. Palazzo, A.M. Rotunno, Phys. Rev. D 67 (2003) 073002;
J.N. Bahcall, M.C. Gonzalez-Garcia, C. Peña-Garay, JHEP 0302 (2003) 009;
M. Maltoni, T. Schwetz, J.W.F. Valle, Phys. Rev. D 67 (2003) 093003;
P.C. Holanda, A. Yu. Smirnov, JCAP 0302 (2003) 001;
V. Barger, D. Marfatia, Phys. Lett. B 555 (2003) 144;
M. Maltoni, T. Schwetz, M. Tórtola, J.W.F. Valle, hep-ph/0309130.
[26] F. Borzumati, A. Masiero, Phys. Rev. Lett. 57 (1986) 961.
[27] J. Hisano, T. Moroi, K. Tobe, M. Yamaguchi, T. Yanagida, Phys. Lett. B 357 (1995) 579;
J. Hisano, T. Moroi, K. Tobe, M. Yamaguchi, Phys. Rev. D 53 (1996) 2442.
[28] J. Hisano, D. Nomura, T. Yanagida, Phys. Lett. B 437 (1998) 351; J. Hisano, D. Nomura, Phys. Rev. D 59 (1999) 116005;
M.E. Gomez, G.K. Leontaris, S. Lola, J.D. Vergados, Phys. Rev. D 59 (1999) 116009;
W. Buchmüller, D. Delepine, F. Vissani, Phys. Lett. B 459 (1999) 171;
W. Buchmüller, D. Delepine, L.T. Handoko, Nucl. Phys. B 576 (2000) 445;
J. Ellis, M.E. Gomez, G.K. Leontaris, S. Lola, D.V. Nanopoulos, Eur. Phys. J. C 14 (2000) 319;
J.L. Feng, Y. Nir, Y. Shadmi, Phys. Rev. D 61 (2000) 113005;
S. Baek, T. Goto, Y. Okada, K. Okumura, Phys. Rev. D 63 (2001) 051701.
[29] J. Sato, K. Tobe, T. Yanagida, Phys. Lett. B 498 (2001) 189;
J. Sato, K. Tobe, Phys. Rev. D 63 (2001) 116010;
S. Lavignac, I. Masina, C.A. Savoy, Phys. Lett. B 520 (2001) 269.
[30] J.A. Casas, A. Ibarra, Nucl. Phys. B 618 (2001) 171.
[31] A. Kageyama, S. Kaneko, N. Simoyama, M. Tanimoto, Phys. Lett. B 527 (2002) 206;
A. Kageyama, S. Kaneko, N. Simoyama, M. Tanimoto, Phys. Rev. D 65 (2002) 096010.
[32] J. Ellis, J. Hisano, M. Raidal, Y. Shimizu, Phys. Rev. D 66 (2002) 115013.
[33] MEGA Collaboration, M.L. Brooks, et al., Phys. Rev. Lett. 83 (1999) 1521.
[34] M. Flanz, E.A. Paschos, U. Sarkar, Phys. Lett. B 345 (1995) 248;
W. Buchmüller, M. Plümacher, Phys. Lett. B 389 (1996) 73;
W. Buchmüller, M. Plümacher, Phys. Lett. B 431 (1998) 354;
W. Buchmüller, M. Plümacher, Int. J. Mod. Phys. A 15 (2000) 5047;
A. Pilaftsis, Phys. Rev. D 56 (1997) 5431.
[35] A.S. Joshipura, E.A. Paschos, W. Rodejohann, JHEP 0108 (2001) 029; W. Buchmüller, D. Wyler, Phys. Lett. B 521 (2001) 291;
J. Ellis, M. Raidal, Nucl. Phys. B 643 (2002) 229;
S. Davidson, A. Ibarra, Nucl. Phys. B 648 (2003) 345;
G. Branco, T. Morozumi, B. Nobre, M.N. Rebelo, Nucl. Phys. B 617 (2001) 475;
G. Branco, R. González Felipe, F.R. Joaquim, M.N. Rebelo, Nucl. Phys. B 640 (2002) 202;
P. Frampton, S. Glashow, T. Yanagida, Phys. Lett. B 548 (2002) 119;
T. Endoh, S. Kaneko, S.K. Kang, T. Morozumi, M. Tanimoto, Phys. Rev. Lett. 89 (2002) 231601;
S. Kaneko, M. Katsumata, M. Tanimoto, JHEP 0307 (2003) 025.
[36] D. Falcone, Phys. Rev. D 66 (2002) 053001;
Z. Xing, Phys. Lett. B 545 (2002) 352;
W. Rodejohann, Phys. Lett. B 542 (2002) 100;
M. Fujii, K. Hamaguti, T. Yanagida, Phys. Rev. D 65 (2002) 115012.
[37] L. Covi, E. Roulet, F. Vissani, Phys. Lett. B 384 (1996) 169.
[38] J.A. Harvey, M.S. Turner, Phys. Rev. D 42 (1990) 3344;
S.Y. Khlebnikov, S.E. Shaposhnikov, Nucl. Phys. B 308 (1998) 169.
[39] M. Tanimoto, Phys. Rev. D 55 (1997) 322;
M. Tanimoto, Prog. Theor. Phys. 97 (1997) 901;
M. Tanimoto, Phys. Lett. B 435 (1998) 373;
M. Tanimoto, Phys. Lett. B 462 (1999) 115;
J. Arafune, J. Sato, Phys. Rev. D 55 (1997) 1653;
J. Arafune, M. Koike, J. Sato, Phys. Rev. D 56 (1997) 3093;
H. Minakata, H. Nunokawa, Phys. Lett. B 413 (1997) 369;
H. Minakata, H. Nunokawa, Phys. Rev. D 57 (1998) 4403;

For recent proposal of the search for CP violation in neutrino oscillation, see: Y. Itow, et al., hep-ex/0106019.
[40] C. Jarlskog, Phys. Rev. Lett. 55 (1985) 1039.
[41] M. Luty, Phys. Rev. D 45 (1992) 455;
M. Plümacher, Z. Phys. C 74 (1997) 549.
[42] E.W. Kolb, M.S. Turner, The Early Universe, in: Frontiers in Physics, vol. 69, Addison-Wesley, Redwood City, CA, 1990; M. Flanz, E.A. Paschos, Phys. Rev. D 58 (1998) 113009;
A. Pilaftsis, Int. J. Mod. Phys. A 14 (1999) 1811;
H.B. Nielsen, Y. Takanishi, Phys. Lett. B 507 (2001) 241.
[43] C.L. Bennett, et al., Astrophys. J. Suppl. 148 (2003) 1;
D.N. Spergel, et al., Astrophys. J. Suppl. 148 (2003) 175;
H.V. Peiris, et al., Astrophys. J. Suppl. 148 (2003) 213.
[44] W. Buchmüller, M. Plümacher, Phys. Lett. B 521 (2001) 291.
[45] M. Bando, S. Kaneko, M. Obara, M. Tanimoto, in preparation.
[46] M. Kawasaki, K. Kohri, T. Moroi, Phys. Rev. D 63 (2001) 103502;
M. Kawasaki, K. Kohri, T. Moroi, astro-ph/0402490.
[47] L. Randall, R. Sundrum, Nucl. Phys. B 557 (1999) 79;
G.F. Giudice, M.A. Luty, H. Murayama, R. Rattazzi, JHEP 9812 (1998) 027.

[^0]: E-mail addresses: mizue@muse.sc.niigata-u.ac.jp (M. Honda), kaneko@muse.sc.niigata-u.ac.jp (S. Kaneko), tanimoto@muse.sc.niigata-u.ac.jp (M. Tanimoto).

[^1]: ${ }^{1}$ Although phenomenological analyses of the two-zero textures were given in the diagonal basis of the charged lepton, some authors [15-17] have also studied the two-zero textures of neutrinos in the basis of charged lepton mass matrix with small off-diagonal components.
 ${ }^{2}$ The classification of M_{R}, types $a_{i}, b_{i}, c_{i}(i=1,2,3,4)$, follows from Ref. [19].

[^2]: ${ }^{3}$ For the texture A_{1}, we easily obtain the Dirac neutrino mass matrices by exchanging the second and third rows.

[^3]: ${ }^{4} m_{D} m_{D}^{\dagger}$ does not depend on the basis of the right-handed sector.
 ${ }^{5}$ For the texture A_{1} case, the some Dirac mass matrices give non-zero $\left(m_{D} m_{D}^{\dagger}\right){ }_{21}$, which leads to the constraint for M_{3}.
 ${ }^{6}$ The minus sign of M_{2} is necessary to reproduce M_{R} in Eq. (5). This minus sign is transfered to m_{D} by the right-handed diagonal phase matrix $\operatorname{diag}(1, i, 1)$.

