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Root Mean Square Errors (RMSEs) in the soil moisture anomaly time series obtained from the Advanced
Scatterometer (ASCAT) and the AdvancedMicrowave Scanning Radiometer (AMSR-E; using the Land Parameter
Retrieval Model) are estimated over a continental scale domain centered on North America, using twomethods:
triple colocation (RMSETC) and error propagation through the soil moisture retrieval models (RMSEEP). In the ab-
sence of an established consensus for the climatology of soil moisture over large domains, presenting a RMSE in
soilmoisture units requires that it be specified relative to a selected reference data set. To avoid the complications
that arise from the use of a reference, the RMSE is presented as a fraction of the local time series standard devi-
ation (fRMSE). For both sensors, the fRMSETC and fRMSEEP show similar spatial patterns of relatively high/low
errors, and the mean fRMSE for each land cover class is consistent with expectations. Triple colocation is also
shown to be surprisingly robust to representativity differences between the soil moisture data sets used, and it
is believed to accurately estimate the fRMSE in the remotely sensed soil moisture anomaly time series. Compar-
ing the ASCAT and AMSR-E fRMSETC shows that in general both data sets have good skill over low to moderate
vegetation cover. Additionally, they have similar accuracy even when considered by land cover class, although
the AMSR-E fRMSEs show a stronger signal of the vegetation cover.

© 2013 The Authors. Published by Elsevier Inc. Open access under CC BY-NC-SA license.
1. Introduction

Soil moisture is an important control over hydrological andmeteoro-
logical processes, since it can determine the partitioning of energy and
moisture incident at the land surface. Increasing recognition of the role
of soil moisture has motivated recent developments in globally observ-
ing near-surface soil moisture from satellites. These developments have
included retrieving soil moisture from already orbiting sensors, such as
the Advanced Scatterometer (Bartalis et al., 2007; Wagner, Lemoine,
& Rott, 1999) and the Advanced Microwave Scanning Radiometer —

Earth Observing System (AMSR-E) (Njoku, 1999; Owe, de Jeu, &
Walker, 2001). Additionally, several remote sensors have recently been
designed specifically to sense soil moisture, including the European
Space Agency's Soil Moisture Ocean Salinity (SMOS) mission, launched
nc. Open access under CC BY-NC-SA li
in 2009 (Kerr et al., 2001), and NASA's Soil Moisture Active Passive mis-
sion, scheduled for launch in 2014 (Entekhabi, Njoku, et al., 2010).

The performance of new remotely sensed soil moisture data sets is
bench-marked against predetermined root mean square error (RMSE)
target accuracies (Entekhabi, Njoku, et al., 2010; Kerr et al., 2001)
based on comparison to pixel scale near-surface soil moisture observa-
tions obtained from either dense networks of in situ sensors (Jackson
et al., 2012) or low-level ground-based/airborne microwave sensors
(Gherboudj et al., 2012). However, these pixel scale observations are
available at only a handful of locations, and further development and ap-
plication of remotely sensed soil moisture data sets will require a better
understanding of their accuracy across the globe.

Evaluating soil moisture over continental scale domains is not
straight forward, since the true global soil moisture is unknown due
to the systematic differences between soil moisture estimates
obtained from different remote sensors and numerical models
(Reichle, Koster, Dong, & Berg, 2004). These systematic differences
can arise from i) differences in the soil and vegetation parameters
assumed, or ii) representativity differences, for example due to differ-
ences in horizontal, vertical, and temporal support (Reichle et al.,
2004; Vinnikov, Robock, Qiu, & Entin, 1999) or differences in the
soil moisture processes resolved by each soil moisture estimate
cense.
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(Koster et al., 2009). In the literature a common approach to evaluating
soil moisture over continental scales has been to use the Root Mean
Square Difference (RMSD) with an alternative soil moisture estimate,
for example from a model (dall'Amico, Schlenz, Loew, & Mauser,
2012), or from networks of sparse in situ soil moisture sensors
(Draper, Walker, Steinle, de Jeu, & Holmes, 2009; Reichle et al., 2007;
Wagner et al., 1999). However, this approach generates misleading
results, since the errors in the alternative data set are included in
the RMSD (hence, the use of root mean square difference, rather
than error).

Consequently, this study investigates recently developed methods
to estimate distributed RMSEs in remotely sensed soil moisture over
continental scale domains. The focus is on the RMSE for consistency
with the metric specified for remote sensing target accuracies. Also,
the RMSE is useful for specifying observation error variances for
data assimilation. RMSEs are estimated for two remotely sensed soil
moisture products: the Surface Degree of Saturation (SDS) retrieved
from active microwave ASCAT observations (Bartalis et al., 2007;
Wagner et al., 1999), and the X-band passive microwave AMSR-E
soil moisture retrieved with the Land Parameter Retrieval Model
(LPRM; de Jeu and Owe (2003); Owe et al. (2001)). While neither
of these missions were designed to sense soil moisture, both have
been providing useful soil moisture observations (Draper, Reichle,
De Lannoy, & Liu, 2012), with the advantage of a relatively long
data record.

Twomethods for estimating the RMSEof the ASCAT andAMSR-E soil
moisture data are investigated. The first method is triple colocation
(Scipal, Holmes, de Jeu, Naeimi, & Wagner, 2008; Stoffelen, 1998),
which combines three independent estimates of a state variable to cal-
culate the errors in each assuming an additive error model. The second
method is error propagation through the models used to retrieve soil
moisture from the microwave observations, as developed by Naeimi,
Scipal, Bartalis, Hasenauer, and Wagner (2009) for the ASCAT SDS and
Parinussa, Meesters, et al. (2011) for the AMSR-E LPRM retrievals. The
error estimates are investigated over a continental scale domain, be-
tween 25 and 50°N in North America.

Due to the systematic differences between large scale soil moisture
estimates, different soil moisture data sets describe different climates
as measured by their mean and variance. Without knowledge of the
true soil moisture climate, these differences cannot be attributed to
errors in a particular data set. Consequently, when comparing soil mois-
ture data sets over large domains, the systematic differences between
their mean and variance (and often higher-order central moments)
are typically eliminated by rescaling all data sets to have statistics con-
sistent with an arbitrarily selected ‘reference’ data set (Reichle & Koster,
2004; Scipal, Drusch, & Wagner, 2008). Over large domains, soil mois-
ture RMSEs estimated by comparing different data sets must then be
based on rescaled data sets, and so are presented relative to the clima-
tology of the reference data set (e.g., dall'Amico et al. (2012);
Dorigo et al. (2010); Draper et al. (2009); Scipal, Holmes, et al.
(2008)). Hence, before investigating the triple colocation and error
propagation RMSE estimates, the consequences of this rescaling are ex-
amined in terms of the information contained in the resulting RMSE
estimates.

The remainder of this paper is structured as follows. The soil mois-
ture data sets and RMSE estimation methods are reviewed in
Sections 2 and 3, respectively. The latter includes the introduction
of statistical uncertainty estimates for the triple location RMSE, and
the development of a strategy to compare RMSE estimates calculated
over large domains from rescaled soil moisture data sets. The ASCAT
and AMSR-E triple colocation and error propagation RMSE estimates
are then examined in Section 4.1 to establish how useful the two
methods might be for evaluating remotely sensed soil moisture over
large domains. Also, the assumptions underlying triple colocation
are tested in Section 4.2, by examining the dependence of the esti-
mated RMSE on the three data sets used. Finally, a discussion of the
implications of the results, and the conclusions drawn from this
study are presented in Sections 5 and 6, respectively.
2. Data

2.1. Remotely sensed soil moisture data sets

ASCAT is a C-band scatterometer, orbiting in a sun-synchronous
orbit on EUMETSAT's MetOp satellite. The soil moisture data used
here were retrieved from ASCAT backscatter observations at the
ViennaUniversity of Technology (VUT), using the semiempirical change
detection approach of Wagner et al. (1999) and Bartalis et al. (2007)
(WARP 5.4 version). This yields an observation of the surface degree
of saturation, ranging between 0 and 100%, representing the driest
and wettest observations at each location, respectively. While the SDS
must be multiplied by the porosity to give a soil moisture value, it will
be referred to here as a soil moisture observation for convenience. The
ASCAT SDS relates to soil moisture over a ~1 cm deep surface layer,
with a spatial resolution of 25 km (reported on a 12.5 km grid).

The AMSR-E instrument, orbiting on NASA's Aqua satellite in a
sun-synchronous orbit, observed at six dual-polarized frequencies of
which the two lowest (C- and X-bands) are routinely used to infer soil
moisture. The AMSR-E soil moisture data used here were retrieved at
the VU University Amsterdam from X-band brightness temperatures
using the LPRM (de Jeu & Owe, 2003; Owe et al., 2001). At X-band,
AMSR-E observations relate to a surface layer depth slightly less than
1 cm with a horizontal resolution close to 40 km, although the swath
data (reported every 5–10 km) were used here.

The maximum available coincident data record, spanning
~4.75 years, from January 2007 (first ASCAT data) to October
2011 (failure of AMSR-E) has been used. To avoid complications from
the differing statistical moments of day- and nighttime observations,
only nighttime data have been used. On average the nighttime crossing
over North America occurs at 3 UTC (9 pm) for the (ascending) ASCAT
overpass, and at 9 UTC (1 am) for the (descending) AMSR-E overpass.
Both satellite overpasses were assumed to occur at 6 UTC, and have
been interpolated to a 25 km grid, before being cross-screened to retain
only locations and times for which both data sets are available.

For ASCAT, locations with dense vegetation were screened using the
error propagation RMSEs provided with the data (see Section 3.2),
following Mahfouf (2010) and Dharssi, Bovis, Macpherson, and Jones
(2011). An upper limit of 14% (in SDS units) was applied. For AMSR-E,
dense vegetation was screened using an upper threshold of 0.8 for the
vegetation optical depth,which is retrieved in parallel with the soilmois-
ture (Owe et al., 2001). Both soilmoisture data setswere also screened to
remove grid cells with awetland fraction above 10%, or where the Catch-
ment land surface model (Section 2.2) indicates frozen conditions, snow
cover, or precipitation. Additionally, the ASCAT soil moisture observa-
tions were discarded where the topographic complexity was above 10%
(Draper et al., 2012), and AMSR-E observations flagged as havingmoder-
ate or strong radio frequency interference were also discarded. Finally, a
lower cut-off of 100 coincident data was imposed at each grid cell.

Fig. 1 shows a map of the land cover classes for the regions where
remotely sensed data are available after the above quality control. On
average, there were 272 coincident data at each grid cell plotted. The
quality control has screened out most of the grid cells with densely veg-
etated classes, however small pockets remain of deciduous broadleaf,
evergreen needleleaf, and woody savanna remain, as well as large re-
gions of mixed forest, and crop/natural mix in the east. The ASCAT and
AMSR-E soil moisture data are not expected to have any skill over
these densely vegetated land cover classes, and these locations are usu-
ally screened from the soil moisture data sets using ancillary vegetation
data (e.g., Draper et al. (2012)). However, in this study these locations
have been retained to explicitly test whether the error estimation
methods can detect the larger errors expected over dense vegetation.
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Fig. 1. MODIS land cover classes (Friedl et al., 2002), plotted where remotely sensed
soil moisture data are available after quality control. The land cover classes are decid-
uous broadleaf (DBF), mixed forest (MXF), evergreen needleleaf (ENF), crop/natural
mix (CRN), woody savanna (WSV), cropland (CRP), grassland (GRS), open shrub
(OSH), and barren (BRN). Black circles indicate the location of the SCAN/SNOTEL
sites used in Section 4.2.
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2.2. Catchment model soil moisture

Soil moisture simulations from NASA's Catchment land surface
model (Koster, Suarez, Ducharne, Stieglitz, & Kumar, 2000) were used
as the third data set in the triple colocation calculations. Catchment
was run on a 25 km grid over the experiment domain, using the NASA
Modern-Era Retrospective analysis for Research and Applications
(MERRA)-Land model version and meteorological forcing (Reichle,
2012; Reichle et al., 2011). The near-surface soil moisture (0–2 cm)
simulated at 6 UTC each day was then extracted for comparison to the
remotely sensed data.

2.3. In situ soil moisture data

In situ soil moisture observations were used as an alternate data set
to test the assumptions underlying the triple colocation method at the
SCAN/SNOTEL (Schaefer, Cosh, & Jackson, 2007) sites shown in Fig. 1.
At each of these sites a daily time series of near-surface (0–5 cm) soil
moisture observations at 6 UTC was sampled from the hourly SCAN/
SNOTEL observations. After cross-screening the in situ observations
for the availability of ASCAT and AMSR-E observations and applying a
lower cut-off of 100 coincident observations, 57 SCAN/SNOTEL sites
were included in this study (Fig. 1), with an average of 261 coincident
observations at each site.

3. Methods

3.1. Triple colocation

Triple colocation is used here to estimate the errors (in terms of
the RMSE) in the soil moisture anomaly time series observed by
ASCAT (θA), AMSR-E (LPRM) (θL), and the Catchment model (θC).
The soil moisture anomaly time series were defined as the deviations
of the raw data from their multi-year, seasonally varying climatology.
For each data set, the seasonal climatology was computed as the
31 day moving average, with the moving averages based on data
from all years for the 31 day period surrounding each day of year.

Triple colocationwas developed by Stoffelen (1998) to calibrate and
evaluate noisy data sets with respect to each other (in the absence of a
single error-free data source). The method applied here follows that of
Stoffelen (1998). At each grid cell, the anomaly soilmoisture time series
for each data set are assumed to consist of the (unknown) true soil
moisture anomalies (θ) plus a zero-mean error, �:

θA ¼ α θþ �Að Þ ð1Þ

θL ¼ λ θþ �Lð Þ ð2Þ

θC ¼ γ θþ �Cð Þ ð3Þ
where α, λ, and γ are the triple colocation calibration constants, used
to rescale the data sets to eliminate the systematic differences in their
variability, and where the subscripts A, L, and C identify the ASCAT,
AMSR-E (LPRM), and Catchment data. Bias terms were not included in
Eqs. (1)–(3), since (zero-mean) anomaly time series have been used.

Eqs. (1)–(3) are underdetermined, and so one data set is selected
as the reference and the remaining two are calibrated to be consistent
with this reference in terms of the time series variability. For exam-
ple, if θA is the reference, α is set to one, and estimates of the
remaining calibration constants, bλ and bγ, can then be obtained from:

bθLθC N
bθAθC N

¼ λ b θ2 þ θ�L þ θ�C þ �L�C N

b θ2 þ θ�A þ θ�C þ �A�C N
≈ bλ ð4Þ

bθLθC N
bθAθLN

¼ γ b θ2 þ θ�L þ θ�C þ �L�C N

b θ2 þ θ�A þ θ�L þ �A�LN
≈ bγ ð5Þ

where b Ṅ represents the long-term mean. The final approximations
in Eqs. (4) and (5) apply only if the errors in each data set are not
cross-correlated with each other, nor with the true state variable
(e.g., b �L�C N = 0, b θ�L N = 0 and so on).

The square root of the estimated b �2 N are the triple colocation
RMSE estimates (RMSETC), and can be obtained from:

b θA−
θLbλ

� �
: θA−

θCbγ
� �

N ¼ b�
2
AN−b�A�LN−b�A�C N þ b�L�C N ≈ bb�A2N ð6Þ

b
θLbλ −θA

� �
:
θLbλ − θCbγ

� �
N ¼ b�

2
L N−b�A�LN−b�L�C N þ b�A�C N ≈ bb�L2N ð7Þ

b
θCbγ −θA

� �
:
θCbγ − θLbλ

� �
N ¼ b�

2
C N−b�A�C N−b�L�C N þ b�A�LN ≈ bb�C2N : ð8Þ

Again the final approximations apply only if the errors for each
data set are mutually uncorrelated.

Recall that the above equationswere derived after choosing θA as the
reference data set (i.e., α = 1). To highlight this, the reference data set
will be indicated in parentheses. For example, the triple colocation
RMSE of the AMSR-E (L) soil moisture anomalies with ASCAT (A) as
the reference data set is written RMSEL

TC(A). The results can be
converted to another reference data set by multiplication with the ap-
propriate calibration constant, or by repeating the calculation from
the beginning with an alternative calibration constant set to one.

In summary, the triple colocationmethod relies on the following as-
sumptions: i) Eqs. (1)–(3) provide an adequate error model, and ii) the
errors in each data set are not cross-correlatedwith each other, norwith
the truth. For soil moisture, the errors in different data sets can be
cross-correlated, for example due to the use of the same ancillary data
sets, or the same (imperfect) physics in the remote sensing retrieval al-
gorithms or land surface models. The three data sets used here were
carefully selected to minimize the chance of this occurring, however
their errors could still be cross-correlated due to the common impact
of problematic geophysical conditions (e.g., errors in both satellite esti-
mates due to the intermittent presence of standingwater). Additionally,
Eqs. (1)–(3) are based on the assumption that all three estimates relate
to the same geophysical variable, which may be problematic for soil
moisture, given the representativity differences that exist between
many soil moisture data sets (e.g., differences in the depth represented
by each). As demonstrated in Appendix A, significant representativity
differences between the data sets used in triple colocation will bias
the resulting RMSE estimates in favor of the twomost similarly defined
data sets. Consequently, in Section 4.2 the triple colocation assumptions
will be indirectly tested by examining the dependence of the results on
the three data sets used.

Since the triple colocation was based on soil moisture anomalies
(deviations from the mean seasonal cycle), the RMSETC estimates
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represent only the errors in the soil moisture anomaly time series, or
equivalently the anomalies in the soil moisture error time series.
Hence, the errors in the mean seasonal cycle and the long-term
mean error (bias) are not included in the RMSETC estimates defined
above. The choice to base the triple colocation on anomalies from
the mean seasonal cycle follows Miralles, Crow, and Cosh (2010),
who found anomalies to be more consistent with the triple colocation
assumptions than raw soil moisture time series are. The importance
of using anomalies from the mean seasonal cycle will be confirmed
in Section 4.2.

Finally, many soil moisture triple colocation studies have excluded
the calibration constants from Eqs. (1)–(3), and instead rescaled the
data sets with the ratio of their standard deviations prior to applying
the above error model (e.g., Dorigo et al. (2010); Miralles et al.
(2010)). However, as discussed by Stoffelen (1998) and Yilmaz and
Crow (2013), the latter approach results in biased calibration constants,
which will then lead to biased RMSE estimates. In this study, standard
deviation scaling would have resulted in many unphysically large
RMSE estimates (exceeding the soil moisture anomaly time series stan-
dard deviation by up to 50%).

3.2. Error propagation through the retrieval models

For remotely sensed soil moisture retrievals, the soil moisture error
associated with the uncertainty in the instrument measurements and
the retrieval model parameters can be estimated by propagating these
uncertainties through the retrieval model. For ASCAT, error estimates,
developed by Naeimi et al. (2009), are produced in parallel with the
SDS data using Gaussian error propagation. For AMSR-E, Parinussa,
Meesters, et al. (2011) propagates the input errors through the LPRM
model using the partial derivatives of the radiative transfer equation.
These error propagation techniques generate an expected RMSE for
each soil moisture observation, giving a time series of the expected
RMSEs. At each grid cell, the square root of the mean of the squared
RMSE time series has beenused as the error propagation RMSE estimate
(RMSEEP).

It is unclear whether the error propagation RMSEs better estimate
the errors in the rawsoilmoisture time series, or the errors in the anom-
alies from the mean seasonal cycle. The error propagation RMSE time
series have a clear seasonal cycle associated with the seasonal cycle in
the sensitivity of retrieval model parameters to various errors, indicat-
ing that at least some of the seasonal scale errors are included. However,
error propagation cannot measure other aspects of the longer-term
errors. For example, errors in the retrieval model structure, such as in
the separation of the vegetation and soil moisture signals, are a major
source of seasonal to annual scale errors, and cannot be detected by
error propagation. Nor does the error propagation include the
long-term (length of the full data record) bias. In the absence of clear
evidence either way, the error propagation results are assumed to
provide the errors in the anomalies from the mean seasonal cycle,
consistent with the � defined in Eqs. (1)–(3) for triple colocation.

3.3. Confidence intervals of the triple colocation RMSE

For the error propagation, only one realization of the RMSE time se-
ries is available and so RMSEEP confidence intervals cannot be estimated.
In contrast, for triple colocation RMSETC confidence intervals can be
estimated using bootstrapping, following Caires and Sterl (2003).
Bootstrapping is useful for estimating the uncertainty of statistics for
which the population distribution is unknown or complex. The sample
itself is used to approximate the population, and an empirical population
distribution of the test statistic is constructed by resampling the original
sample multiple times, with replacement to preserve the sample size. A
test of the impact of the number of resamples on the estimated confi-
dence intervals indicated stable results after approximately 500
resamples, and so a conservative count of 1000 resamples has been
used, consistent with Wilks (2006). The required percentiles for the
test statistic (the RMSETC) have then been estimated directly from the
bootstrapped distribution.

To estimate the confidence limits for themeanRMSETC overmultiple
grid cells, two different approaches have been used. When the mean is
estimated over contiguous spatial areas, such as over a land cover class
in Section 4.1, all of the contiguous grid cells are assumed not to be
independent, which conservatively overestimates the width of the
confidence limits. For a contiguous region covering n grid cells, the
mean RMSETC has then been estimated in the usual way, usingffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
nΣ

n
i¼1 RMSEið Þ2

q
. The 90% confidence intervals for the mean are then

calculated separately from the upper (95th percentile minus median)
and lower (median minus 5th percentile) intervals, and for both the
mean of the contributing intervals is used. In contrast, for calculating
the mean RMSETC and its confidence interval over the SCAN/SNOTEL
sites in Section 4.2, the results at the individual SCAN/SNOTEL sites
are assumed to be independent so long as they are sufficiently separat-
ed. Hence, the domainwas divided into 5° × 5° grid cells, and the SCAN/
SNOTEL sites within each of these grid cells were assumed to lack inde-
pendence, while the results for each 5° grid cell were assumed to be in-
dependent. Within each 5° grid cell, the mean RMSE (RMSE5°) and the
width of the upper and lower confidence intervals were estimated as
described above for contiguous areas. The domain-wide mean RMSETC

over the m 5° grid cells containing SCAN/SNOTEL sites was then esti-

mated as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
mΣ

m
i¼1 RMSE5∘ ;i

� �2q
. The width of the upper and lower confi-

dence intervals for the mean were each then calculated as the mean
of respective intervals for the m contributing 5° grid cells, divided by
the square root of m.

3.4. Fractional RMSE (fRMSE)

As outlined in Section 1, when two soil moisture data sets are com-
pared over large spatial domains the systematic differences between
their central moments are usually removed by rescaling each data set
to have statistics consistent with a chosen reference data set (e.g., by
using the calibration constants defined by Eqs. (1)–(3) to rescale each
data set to have consistent mean and variance). This has several conse-
quences for the interpretation of the resulting RMSE. Most obviously,
since the mean difference between the data sets has been removed,
the resultingRMSEdoes not include the bias. Additionally, the RMSD es-
timated by comparing two data sets, A and B,with equivalentmeans is a
function of the standard deviation of each data set (σA and σB) and the
correlation (R) between them:

RMSD A;Bð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b A−Bð Þ2N

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2

A þ σ2
B−2RσAσB

q
: ð9Þ

The RMSD between two rescaled soil moisture data will then de-
pend on the standard deviation of the reference data set and the cor-
relation between the two data sets: note that the signal of the
agreement between the data sets is derived from their correlation.

Hence, a RMSE calculated from rescaled data sets will have a strong
dependence on the standard deviation of the reference data set. This is
highlighted in Fig. 2, which compares the time series standard deviation
of the soil moisture anomalies for ASCAT, AMSR-E, and Catchment, to
the triple colocation ASCAT error estimates, represented using each of
these data sets as the reference. There are considerable differences in
the σ for each data set, with the mean varying between 14% SDS (or
0.07 m3 m−3 assuming a porosity of 0.5 m3 m−3) for ASCAT,
0.07 m3 m−3 for AMSR-E, and 0.03 m3 m−3 for Catchment. The spatial
patterns described by each are also very different. The magnitude of
the ASCAT RMSETC estimates also differs depending on which data set
is used as the reference, with the mean varying between 10%
SDS (0.05 m3 m−3), 0.07 m3 m−3, and 0.07 m3 m−3 when ASCAT,
AMSR-E, and Catchment are used, respectively. The spatial patterns in



Table 1
Domain-average RMSE obtained from triple colocation (RMSETC) for AMSR-E, ASCAT,
and Catchment model soil moisture, presented using each data set in turn as the
reference.
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the ASCAT RMSETC also differ depending on which reference was used,
and in each case there are clear features of the reference σ in the
RMSE maps.

At an individual location the ratio between the RMSEs for different
data sets does not depend on the selected reference data set. However,
since the relationship between the different σ maps in Fig. 2 is
nonlinear, the ratio and even the ranking of the domain-averaged
RMSE do depend on the reference data set. For example, Table 1 lists
the mean RMSETC across the domain for each data set, presented using
each data set as the reference. Most notably, with ASCAT as the refer-
ence Catchment has the highest mean RMSETC, and yet with Catchment
as the reference Catchment has the lowest mean RMSETC.

This study investigates the spatial variability in remotely sensed soil
moisture RMSEs. If the RMSE were presented in soil moisture units
(relative to an arbitrarily selected reference data set), the spatial
variability in each would be very similar, due to the common signal of
the reference standard deviation. Hence, the fractional RMSE (fRMSE)
is introduced for examining the RMSE:

fRMSEX ¼ RMSEX Xð Þ=σX Xð Þ: ð10Þ

The fRMSE is obtained by presenting the RMSE for data set X (RMSEX)
using itself as the reference (RMSEX(X)), and then dividing this by the
standard deviation of X (σX(X)).

By reducing the signal of the standard deviation in Eq. (9), the fRMSE
statistic becomes more consistent with the common use of correlation
statistics to evaluate soil moisture (e.g., de Jeu et al. (2008); Draper et
al. (2012); Parinussa, Holmes, and Crow (2011); Reichle et al. (2007);
Scipal, Drusch, et al. (2008)).
a) σ 
ASCAT

c) σ 
AMSR−E

e) σ 
CATCH

Fig. 2. Maps of (left) the standard deviation in the soil moisture anomaly time series from a
timates for ASCAT from triple colocation, presented using b) ASCAT (%), d) AMSR-E (m3 m
colocation results are not available.
The fRMSE has several advantages over presenting the RMSE
using an arbitrary reference. It is self contained, and has a well de-
fined range between 0 (perfect estimates) and 1 (noise, with no sig-
nal of the truth), with values greater than 1=

ffiffiffi
2

p
(∼ 0.7) indicating an

error variance that exceeds the variance of the true time series (since

RMSEX Xð Þ=σX Xð Þ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2X Xð Þ= σ2

T Xð Þ þ �2X Xð Þ� �q
, where σT is the standard

deviation of the true soil moisture). Additionally, users of a specific
data set need only multiply the fRMSE by the standard deviation of
that data set to obtain a RMSE in soil moisture units, rather than
requiring access to the arbitrary reference data set. The fRMSE
also allows more flexibility in comparing different error estimates,
as it does not rely on being able to convert all error estimates to a
common reference (which will allow the inter-comparison of the
triple colocation RMSE obtained with different data triplets in
Section 4.2).

A potential disadvantage of the fRMSE however, is that at an individ-
ual location the conversion of the RMSE to fRMSE does not preserve the
ratio between different error estimates, although it does preserve their
b) RMSE ASCAT (ASCAT)

d) RMSE ASCAT (AMSR-E)

f) RMSE ASCAT (CATCH)

) ASCAT (%), c) AMSR-E (m3 m−3), and e) Catchment (m3 m−3), and (right) RMSE es-
−3), and f) Catchment (m3 m−3) as the reference data set. White indicates that triple
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ranking. For example, converting RMSEX(Y) to the fRMSEX is achieved by
multiplication with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1= σ2

T Yð Þ þ �2X Yð Þ� �q
(since for example squaring

then rearranging Eq. (2) gives λ Að Þ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2

L Lð Þ= σ2
T Að Þ þ �2B Að Þ� �q

).
Because this operation is nonlinear yet monotonic, the ratio between
different errors estimates will not be conserved, although the ranking
between them will be.

While the RMSE ratio could be preserved by converting each RMSE
to a common reference (say data set Y), and then dividing by the stan-
dard deviation of that reference, this leads to the inclusion of the errors

in the reference data set in the statistic (since RMSEX Yð Þ=σY Yð Þ≈ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2X Yð Þ= σ2

T Yð Þ þ �2Y Yð Þ� �q
). The result is no longer self contained and

can generate unexpected results, due to the dependence on �Y
2(Y).

For the remainder of this paper, the RMSE estimates are presented
using the fRMSE. While the RMSEEP are not based on rescaled data
sets, they implicitly reflect the climatology of the data set to which
they apply, and a fRMSE has been calculated by dividing the error prop-
agation RMSE by the standard deviation of the relevant soil moisture
anomaly time series. Note that the change of units associated with
reporting the errors as a fRMSE magnifies differences in the error esti-
mates. Soilmoisture, and consequently the error in soilmoisture, is usu-
ally reported with a precision of 0.01 m3 m−3. Based on the (spatial)
mean standard deviation of 0.08 m3 m−3 for AMSR-E in Fig. 2b, a
RMSE of 0.01 m3 m−3 is equivalent to a fRMSE of 0.1.

4. Results

4.1. fRMSE over the domain

As discussed in Section 3.4 above, the error estimates are presented
here in terms of the fRMSE (Eq. 10). Fig. 3 shows maps of the ASCAT
and AMSR-E fRMSE calculated from triple colocation (fRMSETC) and
error propagation (fRMSEEP). The most obvious feature of the four
maps is that the AMSR-E fRMSEEP are unphysically large, with values
consistently above two (i.e., a RMSE more than double the time series
standard deviation). In contrast, the ASCAT fRMSEEP are within the
expected range, and tend to be slightly lower than the fRMSETC.

The error propagation methods were developed with a focus on
predicting the temporal and spatial variability in the RMSE of a specific
data set. Themagnitude of the error propagation output depends on the
magnitude of the uncertainties specified for the retrieval model input
a) ASCAT fRMSETC

c) ASCAT fRMSEEP

Fig. 3. fRMSE of (left) ASCAT and (right) AMSR-E, fRMSE estimated using the (upper) triple c
results are not available. Note the different color scale for the AMSR-E fRMSEEP in subfigure
and parameters. However the uncertainties in the retrieval model pa-
rameters are not well understood at scales relevant to remote sensing,
and so are specified somewhat arbitrarily. Hence, little weight should
be placed on the magnitude of the error propagation output, and the
unrealistic magnitudes obtained for the AMSR-E fRMSEEP are not
surprising.

Fig. 3 shows similar large scale patterns in the fRMSETC and fRMSEEP

for each data set, all of which are consistent with expectations. All four
maps show the expected increase in fRMSE toward themore vegetated
east of the domain, although for the ASCAT fRMSEEP (Fig. 3b) the east-
ward increase is weaker than for the other maps.

Given the uncertain magnitude of the error propagation output,
the ASCAT and AMSR-E errors can only be compared based on the tri-
ple colocation results. In Fig. 3 the ASCAT and AMSR-E fRMSETC ap-
pear to be very similar across the domain, except over the croplands
in the Mid-West of the US where the ASCAT fRMSETC are much
lower than the AMSR-E fRMSETC, and immediately to the east of the
Rocky Mountains where the reverse occurs.

To establishwhether these differences in the fRMSETC are significant,
Fig. 4 shows thewidth of the 90% confidence interval for the fRMSETC es-
timates (see Section 3.3), while Fig. 5 indicates regions where the (one
sided) differences between the ASCAT and AMSR-E fRMSETC are signif-
icant (at 5%). Fig. 4 shows that the width of the confidence intervals ex-
ceeds 0.5 for ASCAT in the Mid-West of the US and in the northeast of
the domain, and also for AMSR-E over a subregion of the Mid-West
(i.e., the 90% confidence interval spans N50% of the possible range).
Over the rest of the domain, the typical width of the confidence inter-
vals is between 0.1 and 0.3, with a tendency for the ASCAT and
AMSR-E intervals to offset each other (i.e., one is relatively high where
the other is relatively low). Fig. 5 clearly shows the tendency for the
AMSR-E fRMSETC to be lower than the ASCAT fRMSETC in the west of
the plotted domain, with the reverse occurring in the east of the do-
main. Despite the large uncertainties, Figs. 4 and 5 also shows that the
lower ASCAT fRMSETC (compared to the AMSR-E fRMSETC) is significant
across much of the Mid-West.

Fig. 6 shows the mean fRMSE by land cover, for each land cover
class with at least 100 grid cells with triple colocation results in
Fig. 3, along with 90% confidence intervals for the fRMSETC estimates
(Section 3.3). At the microwave frequencies observed by ASCAT and
AMSR-E, interference from vegetation is a major source of error in
soil moisture retrievals. Hence, the mean LAI over each land cover
b) AMSR-E fRMSETC

d) AMSR-E fRMSEEP

olocation and (lower) error propagation methods. White indicates that triple colocation
d.

image of Fig.�3


a) ASCAT b) AMSRE

Fig. 4. Width of the 90% confidence interval for the fRMSETC of the a) ASCAT and b) AMSR-E soil moisture anomalies. White indicates that triple colocation results are not available.

294 C. Draper et al. / Remote Sensing of Environment 137 (2013) 288–298
class is also included in Fig. 6 to provide a proxy for the vegetation in-
terference. As expected, there is a general pattern across the land
cover classes of increasing mean fRMSE with increasing LAI.

For ASCAT, there is good agreement between the variation in fRMSETC

and fRMSEEP between land cover types in Fig. 6, except that over the five
densely vegetated categories (woody savanna, crop/natural mix, ever-
green needleleaf, mixed forest, and deciduous broadleaf), the mean
fRMSEEP is lower than the mean fRMSETC, and is even below the 1=

ffiffiffi
2

p

line (this is the relatively low fRMSEEP in the east in Fig. 3b). The analysis
was repeated without discarding ASCAT data with high error propaga-
tion errors (see Section 2.1), and this separate analysis (not shown) con-
firmed that this quality control step was not the cause of the low ASCAT
fRMSEEP in densely vegetated regions.

For AMSR-E, there are also differences in the behavior of the fRMSETC

and fRMSEEP across the land cover classes. For triple colocation, the var-
iability between the mean AMSR-E fRMSETC for each land cover class
closely reflects the variability in the mean LAI. However, for error prop-
agation the mean AMSR-E fRMSEEP are effectively grouped into two
bins: the three land cover classes with the lowest LAI were assigned
similar and relatively low mean fRMSEEP, while the remaining five
land cover classes were assigned similar relatively high mean fRMSEEP.
This tendency to assign the errors to one of twomodes is also evident in
the lack of graduated colors in Fig. 3d.
Fig. 5. Comparison of ASCAT and AMSR-E fRMSETC. Blue (red) indicates AMSR-E
fRMSETC less (more) than ASCAT fRMSETC, with darker shades indicating a significant
difference at 5%. White indicates that triple colocation results are not available.
The ASCAT SDS retrieval model includes a semiempirical vegetation
correction that removes the climatological seasonal cycle of the vegeta-
tion signal from the observed backscatter. This correction is thought to
be reasonably effective over moderate vegetation conditions, and so
moderate vegetation is expected to be less detrimental to the accuracy
of the ASCAT SDS than to the accuracy of the passive microwave
AMSR-E soil moisture. This is consistent with Fig. 6 which shows that
the relationship between the mean LAI and the mean fRMSE is much
weaker for ASCAT than for AMSR-E. For ASCAT, factors other than veg-
etation can also be significant in determining the errors in the soil mois-
ture retrievals. For example, open shrubs have the lowest mean LAI in
Fig. 6, yet the mean ASCAT fRMSE estimates over the open shrubs are
very high (close to 1=

ffiffiffi
2

p
) for both methods. The open shrub grid cells

are in the arid southwest of the domain (Fig. 1), where the spatial sam-
pling in Fig. 3 is poor (229 out of the nearly 7000 grid cells plotted). The
poor performance of the ASCAT SDS in arid environments is an
established, although not well understood, limitation of the ASCAT
change-detectionmodel (Wagner et al., 2003). Additionally, over grass-
lands and croplands both fRMSETC and fRMSEEP indicate similar ASCAT
fRMSE, despite the croplands having much higher LAI. The reasons for
this difference are not known.

In terms of the relative performance of the ASCAT and AMSR-E soil
moisture, while there are some differences in their mean fRMSETC

over different land cover classes in Fig. 6, none of these differences are
significant. As was noted above, over the croplands the fRMSETC for
ASCAT is quite low, and much lower than the AMSR-E fRMSETC. While
this result is not statistically significant, the enhancedASCAT skill is sup-
ported by the mean fRMSEEP also being relatively low for croplands. For
the three least vegetated land cover classes (open shrubs, grassland,
and cropland), at least one of the ASCAT and AMSR-E fRMSETC is signif-
icantly less than 1=

ffiffiffi
2

p
, indicating an ability to accurately detect

near-surface soil moisture anomalies from satellites under low to mod-
erate vegetation cover (which cover 63% of the domain with fRMSE
values in Fig. 3). For the five densely vegetated land cover classes, the
fRMSETC is generally above or close to 1=

ffiffiffi
2

p
, indicating poor skill with

errors exceeding the true soil moisture variability, and confirming the
usual practice of screening the ASCAT and AMSR-E data at these loca-
tions (Section 2.1).

Finally, in Figs. 2 to 5 the plotted coverage is less than that of the
quality controlled data in Fig. 1, due to the triple colocation having pro-
duced negative mean square errors at 9% of the locations that passed
the quality control procedures described in Section 2.1. These locations
are generally adjacent to regionswhere data have been screened by the
quality control, or are in arid locations where the ASCAT errors are very
large. This suggests that triple colocation may require a minimum skill
from all three data sets, consistent with the assumption that all three
data sets observe the same geophysical variable.

4.2. Dependence of RMSETC on the data triplet

Triple colocation is based on the assumption that all three data
sets observe the same variable and have mutually uncorrelated errors
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(Section 3.1). However, for soil moisture non-negligible cross-
correlations between the errors and/or representativity differences
(extending beyond systematic differences in the central moments) are
common between global soil moisture data sets, potentially leading to vi-
olations of these assumptions. These assumptions are difficult to test di-
rectly, since time series of soil moisture RMSE for a given data set are
not generally available. Hence, the impact on the fRMSETC of any viola-
tions to the triple colocation assumptions is examined here by testing
how the fRMSETC estimates depend on the three data sets used in the tri-
ple colocation (on the assumption that violations to the assumptions will
be specific to certain combinations of data sets). In situ soilmoisture from
the 57 SCAN/SNOTEL sites has been used as an alternate data set.

Fig. 7 shows the mean fRMSETC averaged over the SCAN/SNOTEL
sites, calculated with different data triplets selected from the ASCAT,
AMSR-E, Catchment, and SCAN/SNOTEL soil moisture anomalies. For a
given data set the differences between the fRMSETC estimates are
small when different data triplets are used, although some of these dif-
ferences are statistically significant (even with the very conservative
method used to estimate the confidence intervals — see Section 3.3).
The maximum fRMSETC difference for a given data set due to the use
of different data triplets is ~0.1, much smaller than the 0.2–0.5 differ-
ences reported from Fig. 6, and close to the typical reporting precision
for soil moisture data.

The dependence of the fRMSETC estimates on the data triplet used
in the triple colocation is however consistent with the expected
representativity differences between the four data sets. For ASCAT
and AMSR-E, the fRMSETC estimates are lower when both remote sen-
sors are included in the triplet (left two triplets in Fig. 7) than when
only one of the remote sensors is included. Likewise, for both Catch-
ment and the SCAN/SNOTEL data, the fRMSETC is lower when only
one of the remote sensors is included (right two triplets) than when
both are included in the triplet. This tendency to favor the remote
sensors when both are included in the data triplet, and to favor the
other two data sets when only one remote sensor is included, sug-
gests a representativity difference between the two remote sensors
on one hand, and the Catchment and SCAN/SNOTEL data on the
other hand (see Appendix A).

If the results from Fig. 7 are generalized across the domain presented
in Section 4.1, then the representativity differences reported above will
have had little impact on the results reported here, most obviously

image of Fig.�6
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because the fRMSETC differences reported in Section 4.1 aremuch larger
than the b0.1 differences obtained in this Section. Also, the representa-
tivity differences discussed above will not influence the ASCAT and
AMSR-E fRMSETC in Section 4.1, so long as the fRMSETC is interpreted
as being relative to a soil moisture truth defined to resolve the same
features as the remote sensors. However, the Catchment fRMSETC calcu-
lated in Section 4.1 (but not shown) will have included a small
representativity error (of ~0.1), associatedwith the representativity dif-
ferences between themodeled soil moisture and the soil moisture truth
defined by the remote sensors.

The above result is dependent on the triple colocation having been
based on soil moisture anomalies defined as the deviations from the
mean seasonal cycle, rather than as the deviations from a single
long-term mean (or on raw soil moisture data). Repeating Fig. 7 with
the triple colocation based on anomalies from a single long-term mean
resulted in fRMSETC for a given data set that consistently differed by
more than 0.5 depending on which data triplet was used. This confirms
that for soil moisture the triple colocation assumptions require the use
of anomalies from the seasonal cycle (see also Miralles et al. (2010)).

Finally, Fig. 7 also highlights that RMSE estimates from triple
colocation are far more accurate than a RMSD based on comparison to
only one other data set. The lattermethod is most often based on obser-
vations from individual in situ soil moisture sensors, yet in Fig. 7 the
SCAN/SNOTEL fRMSE (when estimating coarse scale soil moisture) are
as large as the ASCAT and AMSR-E fRMSEs. Hence, the RMSD between
either remote sensor and the SCAN/SNOTEL data will significantly
over-estimate the errors in the remotely sensed data. To address this,
Miralles et al. (2010) correct the RMSD between modeled/remotely
sensed soil moisture and in situ data using a triple colocation estimate
of the RMSE of the in situ data. While this method is useful for highlight-
ing the substantial contribution of the in situ errors to the RMSD, it is
equivalent to directly estimating the modeled/remotely sensed RMSE
using triple colocation (see Appendix B), and so has not been applied
here.

5. Discussion

The root mean square errors in soil moisture anomaly time series
from AMSR-E and ASCAT have been estimated across a continental
scale domain in North America using twomethods: (i) triple colocation
with Catchment model near-surface soil moisture as the third data set,
and (ii) error propagation through the respective soil moisture retrieval
models. These methods have been investigated to determine their util-
ity for evaluating remotely sensed soil moisture over large domains, in-
cluding for the specification of the observation error variances needed
for data assimilation.

In the absence of a consensus soil moisture climatology over large do-
mains, presenting a RMSE in soil moisture units requires that it be speci-
fied relative to a selected reference data set. The magnitudes and spatial
patterns of the resulting RMSEwill then depend on the selected reference
data set, and specifically on its standard deviation (Fig. 2). This study pro-
poses to reduce this dependence by presenting the RMSE for each data set
as the fraction of the standard deviation of that data set (fRMSE, Eq. 10).

Comparing the triple colocation and error propagation fRMSE over a
continental scale domain indicates that both methods can accurately
detect the large scale variability in soil moisture errors. In Fig. 3 the re-
gions with relatively high and low fRMSETC and fRMSEEP agree very
well, and in Fig. 6 the variability in the mean fRMSETC and fRMSEEP

over each land cover class also agrees with expectations.
The error propagation methods are designed to determine the

spatial and temporal variability of the errors within a given data set,
and while not used here, the unique ability to produce time series
of the expected RMSE may be the most useful feature of error propa-
gation. Themagnitude of the RMSE output from the error propagation
depends on the magnitude of the uncertainties specified for the re-
trieval model parameters, and these uncertainties are not well
understood. Hence, the magnitude of the error propagation output is
not necessarily expected to be correct. In this study, the ASCAT fRMSEEP

appear to be approximately correct, while the AMSR-E fRMSEEP are un-
realistically large. For AMSR-E, the LPRM model parameter uncer-
tainties used in the error propagation were conservatively estimated
to be quite large (Parinussa,Meesters, et al., 2011), and reducing the un-
certainties specified for example in the roughness or single scattering
albedo would reduce the error propagation output to more realistic
values. More generally, to have any confidence in the magnitude of
the error propagation output would require an improved understand-
ing of the uncertainty in the retrieval model parameters. This could be
achieved during the calibration of the retrieval model parameters, by
usingmethods that generate both parameter values and the uncertainty
in those parameters (e.g., Vrugt et al. (2009)).

The uncertainty in the fRMSEEP suggested by comparison to fRMSETC

can also be useful for identifying shortcomings of the retrieval models.
For AMSR-E, the fRMSEEP were relatively low over sparsely vegetated
regions, and relatively high over densely vegetated regions, with little
graduation between these two modes (Figs. 3 and 6). In contrast, the
AMSR-E fRMSETC gradually increased with increasing vegetation
density, resulting in the expected strong correlation with LAI in Fig. 6.
This error propagation behavior can be traced to a limitation of the
tau-omega model used by the LPRM. The tau-omega model parameter-
izes the attenuation of the soil moisture signal by vegetation using an
exponential function of vegetation optical depth (Parinussa, Meesters,
et al. (2011), their Eq. 2), resulting in an exponential increase in the
tau-omega error propagation output with increasing vegetation optical
depth (Parinussa, Meesters, et al. (2011), their Fig. 2). The sudden and
steep increase in the AMSR-E fRMSEEP with increasing vegetation in
Figs. 3 and 6 of this study suggests that the tau-omega model is
over-estimating this nonlinear sensitivity to vegetation attenuation.
This highlights a potential area of improvement to the LPRM, and
other retrieval algorithms using the tau-omega model.

Likewise, for ASCAT the fRMSETC and fRMSEEP disagree over the
eastern US, where the fRMSETC is much higher than the fRMSEEP (by
N0.2). The cause of this discrepancy is unknown, however the combina-
tion of higher fRMSETC and lower fRMSEEP suggests errors in the ASCAT
SDS estimates in this region associated with a physical process that is
not properly accounted for in the SDS retrieval model.

For triple colocation there is no evidence that the magnitude of the
fRMSETC is not accurate, with the caveat that the errors are relative to
the soil moisture anomaly truth defined by the three data sets used.
When the dependence of the fRMSETC on the triplet of data sets used
was tested at 57 SCAN/SNOTEL sites, only small systematic differences
(below the typical reporting precision of soil moisture) were found be-
tween the fRMSETC for a given data set when different combinations of
the three data sets were used.

This robustness to the selection of data sets used is surprising, given
the substantial representativity differences expected between the
point-based in situ and coarse scale satellite or model soil moisture es-
timates. While the representativity differences and other causes of cor-
related errors between the soil moisture anomaly data setswere of little
consequence here, caution is still recommended when selecting the
data sets to be used in soil moisture triple colocation. Additionally,
this result requires that the triple colocation be based on soil moisture
anomalies from the mean seasonal cycle.

In contrast to error propagation, triple colocation provides a con-
sistent method for estimating the fRMSE of different remotely sensed
soil moisture data sets. In Section 4.1, the triple colocation results
showed that in general ASCAT and AMSR-E have similar accuracy
over a range of land cover conditions. Note that X-band AMSR-E data
were used here due to radio frequency interference in the C-band ob-
servations over North America, and slightly better AMSR-E accuracy is
expected in other regions where C-band observations can be used.
While the ASCAT and AMSR-E fRMSETC estimates were generally simi-
lar, there was some deviation in the dependence of the accuracy of
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each data set on the land cover. The AMSR-E fRMSETC had amuch stron-
ger dependence on vegetation cover,while the ASCAT fRMSETCdeviated
more from this dependence. Specifically, the ASCAT errors were very
high in arid (open shrubs) regions, and relatively low over the crop-
lands in the Mid-West of the US.

Similar patterns in the relative performance of passive and active soil
moisture retrievals havebeen reportedpreviously. Using triple colocation,
Scipal, Holmes, et al. (2008) observed a much stronger relationship be-
tween the anomaly RMSE in LPRM X-band TRMM Microwave Imager
(passive) retrievals than in TUWERS (active) soil moisture data, resulting
in a similar pattern of more accurate passive (active) microwave re-
trievals in the west (east) of North America. Also using triple colocation,
Dorigo et al. (2010) found the anomaly RMSE in LPRM C-band AMSR-E
data to have a stronger relationship with vegetation than the TUW
ASCAT RMSEs. Additionally, using a precipitation-driven correlationmet-
ric, Crow and Zhan (2007) showed that Single Channel Algorithm
(Jackson, 2003) X-band AMSR-E soil moisture errors had a stronger rela-
tionship to vegetation than the TUWASCAT soil moisture errors, produc-
ing the same east–west division over North America. The consistency of
these results, despite differences in the passive and active sensors, passive
microwave retrieval algorithms, and passive wavelengths used in these
studies suggests that the differing response to vegetation could be associ-
atedwith differences in the nature of the active and passive observations,
orwith the use of the change-detection retrievalmethod for activemicro-
wave, rather than the radiative transfer model-based passive microwave
approaches.

6. Conclusions and recommendations

The above findings have implications for the evaluation of remote-
ly sensed soil moisture data. Currently, novel remotely sensed soil
moisture data sets are validated against predetermined target accura-
cies specified in soil moisture units (relative to the true soil mois-
ture). This validation is typically based on a limited number of
well-observed pixels. In Figs. 2 and 3 there is substantial spatial vari-
ation in the soil moisture RMSE and fRMSE, highlighting that such an
evaluation based on a limited number of locations will not necessarily
be representative of a larger domain. Hence, the validation efforts at
well-observed pixels should be complemented with distributed
methods that can estimate soil moisture uncertainty globally.

Both triple colocation and error propagation can accurately detect
regions of relatively high and low fRMSE. While the definition of the
RMSE produced by triple colocation (RMSE of anomalies from the
mean seasonal cycle) and error propagation (errors associated with
model input and parameters only) differs from that currently defined
by remote sensing target accuracies, these methods could still be use-
ful for identifying regions where the accuracy from well-observed
pixels can be confidently extrapolated, and where the accuracy
might differ (particularly where it is unexpectedly reduced). For
most applications, triple colocation is more useful, since in addition
to predicting the spatial variability in the errors, it can accurately de-
tect the magnitude of the fRMSE.

However, it is unclear how current target accuracies (in soil mois-
ture units) should be interpreted in a truly global evaluation. Most
obviously, without knowledge of the true global soil moisture clima-
tology, an assessment in soil moisture units requires selecting a refer-
ence, and this arbitrary decision determines the magnitude of the
resulting errors. Also, as pointed out by Entekhabi, Reichle, Koster,
and Crow (2010), a uniform (or maximum) RMSE in soil moisture
units is difficult to interpret over a large domain, since the same
value can indicate very good skill in a region of high variability and
be trivially satisfied in a region with low variability. Alternatively,
interpreting a target accuracy as the mean RMSE over a large domain
is also problematic, since the choice of reference data set affects the
relative performance of different data sets (e.g., Table 1). Hence,
extending the evaluation (or specification of target accuracies) of
remotely sensed soil moisture to a near-global domain will require
the use of alternative metrics, such as the fRMSE.

Finally, for data assimilation, observation error variances are often
specified to be constant across the assimilation domain in the soil
moisture units of either the model or the observations (in the latter
case, the observation error variance is then scaled to be consistent
with the model climatology in the same manner as the observations
are). Again, as outlined by Entekhabi, Reichle, et al. (2010) the speci-
fication of a constant soil moisture RMSE over a large domain is not
sensible, and at a minimum it would be better to specify a constant
fRMSE. An even better solution would be to introduce the spatial var-
iability in the fRMSE, for example by using mean values for each land
cover class from either the triple colocation or error propagation
methods. Ideally, the temporal variability from the error propagation
estimates could also be used, after appropriate rescaling to correct the
magnitude.
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Appendix A. Dependence of triple colocation on features resolved
by the data triplet

For soil moisture data sets, representativity differences between
different data sets are common (beyond differences in the central
moments), for example due to differences in the spatial or temporal
support or in the soil moisture processes resolved by different data
sets. As outlined by Stoffelen (1998) the truth defined by triple
colocation, against which the RMSE are estimated, includes only the
features resolved by all three data sets. It is demonstrated here that
where there are representativity differences between the three data
sets, in that they do not all resolve the same features, the triple
colocation RMSE will favor the two most similar data sets.

In the instance where one data set differs from the other two data
sets in that it resolves additional variability that is not present in the
other two data sets (for example variability at a finer spatial scale),
the additional features will be attributed to errors in that data set, in-
creasing its triple colocation error estimate. However, in the instance
where one data set differs from the other two data sets in that it lacks
a source of additional variability that is present in the other two data
sets, the triple colocation RMSE estimates still favor the two more sim-
ilar data sets. For example, consider the triple colocation of data sets X1,
X2, and Y, where X1 and X2 both resolve an additional source of variabil-
ity not resolved by Y. This additional variability is assigned to represen-
tativity errors in X1 and X2, resulting in a non-negligible correlation
between the ‘errors’ for X1 and X2. If this is the only non-negligible co-
variance between the errors, then the triple colocation error estimates
obtained from Eqs. (6)–(8) are approximate by:

RMSETCX1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b�2X1N−b�X1:�X2N

2
q

ðA:1Þ

RMSETCX2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b�2X2N−b�X1:�X2N

2
q

ðA:2Þ

RMSETCY ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b�2Y N þ b�X1:�X2N

2
q

: ðA:3Þ
The additional features resolved by X1 and X2 are subtracted from

the X1 and X2 RMSE estimates, and added to the RMSE estimate for Y;
the triple colocation has effectively produced an RMSE relative to a
truth defined to include the additional features resolved by X1 and X2.
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In the above example the correlated errors between X1 and X2 will
also affect the calibration constants in Eqs. (4) and (5). However, this ef-
fect will be secondary to that described above since in Eqs. (4) and (5)
the error covariances appear next to the variance of the truth, while in
the equations above the error covariances appear next to the error
variances, against which they will constitute a much larger fraction.

Appendix B. Equivalence of Miralles et al. (2010) in situ RMSD
correction to triple colocation

Miralles et al. (2010) introduce amethod to estimate an in situ-based
RMSE for data setX (RMSE X

IS), by correcting the RMSDbetweenX and the
in situ data (RMSD X

IS)with a triple colocation estimate of the RMSE of the

in situ data (RMSE I
TC), using RMSE IS

X≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RMSDIS

X

� �2
− RMSETCI
� �2

r
. While

thismethod is useful for highlighting the contribution of the in situ errors
to the RMSD, it is equivalent to directly estimating the RMSE of data set X
using triple colocation. With reference to the triple colocation equations
(Eqs. 6–8), the corrected RMSD can be written:

RMSEISX ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RMSDIS

X

� �2− RMSETCI
� �2q

ðB:1Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b θX−θIð Þ2N−b θX−θIð Þ θY−θIð ÞN

q
ðB:2Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b θX−θIð Þ θX−θYð ÞN

p
ðB:3Þ

¼ RMSETCX : ðB:4Þ

The calibration constants have been neglected above for clarity.
However, this result does not change if the calibration constants are in-
cluded, except for the introduction of an inconsistency between the cal-
ibration constants used in the RMSETCand RMSDIS calculations, since the
latter is based on only two data sets andwill be biased (Stoffelen, 1998).

References

Bartalis, Z., Wagner, W., Naeimi, V., Hasenauer, S., Scipal, K., Bonekamp, H., et al.
(2007). Initial soil moisture retrievals from the METOP-A Advanced Scatterometer
(ASCAT). Geophysical Research Letters, 34 L20401.

Caires, S., & Sterl, A. (2003). Validation of ocean wind and wave data using triple collo-
cation. Journal of Geophysical Research, 16, 3098.

Crow, W., & Zhan, X. (2007). Continental-scale evaluation of remotely-sensed soil
moisture products. IGARS Letters, 4, 451–455.

dall'Amico, J., Schlenz, F., Loew, A., & Mauser, W. (2012). First results of SMOS soil
moisture validation in the Upper Danube catchment. IEEE Transactions on Geosci-
ence and Remote Sensing, 50, 1507–1516.

de Jeu, R., & Owe, M. (2003). Further validation of a newmethodology for surface mois-
ture and vegetation optical depth retrieval. International Journal of Remote Sensing,
24, 4559–4578.

de Jeu, R., Wagner, W., Holmes, T., Dolman, A., van de Giesen, N., & Friesen, J. (2008).
Global soil moisture patterns observed by space borne microwave radiometers
and scatterometers. Surveys in Geophysics, 29, 399–420.

Dharssi, I., Bovis, K., Macpherson, B., & Jones, C. (2011). Operational assimilation of
ASCAT surface soil wetness at the Met Office. Hydrology and Earth System Sciences,
15, 2729–2746.

Dorigo, W., Scipal, K., Parinussa, R., Liu, Y., Wagner, W., de Jeu, R., et al. (2010). Error char-
acterisation of global active and passive microwave soil moisture datasets. Hydrology
and Earth System Sciences, 14, 2605–2616.

Draper, C., Reichle, R., De Lannoy, G., & Liu, Q. (2012). Assimilation of passive and active
microwave soil moisture retrievals. Geophysical Research Letters, 39 L04401.

Draper, C., Walker, J., Steinle, P., de Jeu, R., & Holmes, T. (2009). An evaluation of AMSR-E
derived soil moisture over Australia. Remote Sensing of Environment, 113, 703–710.

Entekhabi, D., Njoku, E., O'Neill, P., Kellogg, K., Crow, W., Edelstein, W., et al. (2010). The
Soil Moisture Active Passive (SMAP) mission. Proceedings of the IEEE, 98, 704–716.

Entekhabi, D., Reichle, R., Koster, R., & Crow,W. (2010). Performancemetrics for soilmois-
ture retrievals and application requirements. Journal of Hydrometeorology, 11,
832–840.
Friedl, M., McIver, D., Hodges, J., Zhang, X., Muchoney, D., Strahler, A., et al. (2002).
Global land cover mapping from MODIS: Algorithms and early results. Remote
Sensing of Environment, 33, 287–302.

Gherboudj, I., Magagi, R., Goita, K., Berg, A., Toth, B., & Walker, A. (2012). Validation of
SMOS data over agricultural and boreal forest areas in Canada. IEEE Transactions on
Geoscience and Remote Sensing, 50, 1623–1635.

Jackson, T. (2003). Measuring surface soil moisture using passive microwave remote
sensing. Hydrological Processes, 7, 139–152.

Jackson, T., Bindlish, R., Cosh, M., Tianjie, Z., Starks, P., Bosch, D., et al. (2012). Validation
of Soil Moisture and Ocean Salinity (SMOS) soil moisture over watershed networks
in the U.S. IEEE Transactions on Geoscience and Remote Sensing, 50, 1530–1543.

Kerr, Y., Waldteufel, P., Wigneron, J., Martinuzzi, J., Font, J., & Berger, M. (2001). Soil
moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mis-
sion. IEEE Transactions on Geoscience and Remote Sensing, 39, 1729–1735.

Koster, R., Guo, Z., Yang, R., Dirmeyer, P., Mitchell, K., & Puma, M. (2009). On the nature
of soil moisture in land surface models. Journal of Climate, 22, 4322–4335.

Koster, R., Suarez, M., Ducharne, A., Stieglitz, M., & Kumar, P. (2000). A catchment-based
approach to modeling land surface processes in a general circulation model. Journal
of Geophysical Research, 105, 24809–24822.

Mahfouf, J. -F. (2010). Assimilation of satellite derived soil moisture from ASCAT in a
limited area NWP model. Quarterly Journal of the Royal Meteorological Society,
136, 784–798.

Miralles, D., Crow, W., & Cosh, M. (2010). Estimating spatial sampling errors in
coarse-scale soil moisture estimates derived from point-scale observations. Journal
of Hydrometeorology, 11, 1423–1429.

Naeimi, V., Scipal, K., Bartalis, Z., Hasenauer, S., & Wagner, W. (2009). An improved soil
moisture retrieval algorithm for ERS and METOP scatterometer observations. IEEE
Transactions on Geoscience and Remote Sensing, 47, 1999–2013.

Njoku, E. (1999). Retrieval of land surface parameters using passive microwave measure-
ments at 6–18 GHz. IEEE Transactions on Geoscience and Remote Sensing, 37, 79–93.

Owe, M., de Jeu, R., & Walker, J. (2001). A methodology for surface soil moisture and
vegetation optical depth retrieval using the microwave polarization difference
index. IEEE Transactions on Geoscience and Remote Sensing, 39, 1643–1654.

Parinussa, R., Holmes, T., & Crow, W. (2011). The impact of land surface temperature on
soil moisture anomaly detection from passive microwave observations. Hydrology
and Earth System Sciences, 15, 3135–3151.

Parinussa, R., Meesters, A., Liu, Y., Dorigo, W., Wagner, W., & de Jeu, R. (2011). Error esti-
mates for near-real-time satellite soil moisture as derived from the Land Parameter
Retrieval Model. IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, 8, 779–783.

Reichle, R. (2012). The MERRA-Land Data Product. GMAO Office Note No. 3 (Version 1.2)
(Available from http://gmao.gsfc.nasa.gov/pubs/office_notes).

Reichle, R., & Koster, R. (2004). Bias reduction in short records of satellite soil moisture.
Geophysical Research Letters, 31 L19501.

Reichle, R., Koster, R., De Lannoy, G., Forman, B., Liu, Q., Mahanama, S., et al. (2011). As-
sessment and enhancement of MERRA land surface hydrology estimates. Journal of
Climate, 24, 6322–6338.

Reichle, R., Koster, R., Dong, J., & Berg, A. (2004). Global soil moisture from satellite ob-
servations, land surface models, and ground data: Implications for data assimila-
tion. Journal of Hydrometeorology, 5, 430–442.

Reichle, R., Koster, R., Liu, P., Mahanama, S., Njoku, E., & Owe, M. (2007). Comparison
and assimilation of global soil moisture retrievals from the Advanced Microwave
Scanning Radiometer for the Earth Observing System (AMSR-E) and the Scanning
Multichannel Microwave Radiometer (SMMR). Journal of Geophysical Research, 112
D09108.

Schaefer, G., Cosh, M., & Jackson, T. (2007). The USDA Natural Resources Conservation
Service Soil Climate Analysis Network (SCAN). Journal of Atmospheric and Oceanic
Technology, 24, 2073–2077.

Scipal, K., Drusch, M., & Wagner, W. (2008). Assimilation of a ERS scatterometer
derived soil moisture index in the ECMWF numerical weather prediction system.
Advances in Water Resources, 31, 1101–1112.

Scipal, K., Holmes, T., de Jeu, R., Naeimi, V., &Wagner, W. (2008). A possible solution for
the problem of estimating the error structure of global soil moisture data sets. Geo-
physical Research Letters, 35 L24403.

Stoffelen, A. (1998). Toward the true near-surface wind speed: Error modeling and cal-
ibration using triple collocation. Journal of Geophysical Research, 7755–7766.

Vinnikov, K., Robock, A., Qiu, S., & Entin, J. (1999). Optimal design of surface networks
for observation of soil moisture. Journal of Geophysical Research, 104, 19743–19749.

Vrugt, J., ter Braak, C., Diks, C., Robinson, B., Hyman, J., & Higdon, D. (2009). Accelerating
Markov chain Monte Carlo simulation by differential evolution with self-adaptive
randomized subspace sampling. International Journal of Nonlinear Sciences &
Numerical Simulation, 10, 271–288.

Wagner, W., Lemoine, G., & Rott, H. (1999). A method for estimating soil moisture from
ERS scatterometer and soil data. Remote Sensing of Environment, 70, 191–207.

Wagner, W., Scipal, K., Pathe, C., Gerten, D., Lucht, W., & Rudolf, B. (2003). Evaluation of
the agreement between the first global remotely sensed soil moisture data with
model and precipitation data. Journal of Geophysical Research, 108, 4611.

Wilks, D. (2006). Statistical methods in the atmospheric sciences. : Elsevier.
Yilmaz, M., & Crow, W. (2013). The optimality of potential rescaling approaches in land

data assimilation. Journal of Hydrometeorology, 14, 650–660.

http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0005
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0005
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0010
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0010
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0015
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0015
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0020
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0020
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0020
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0025
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0025
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0025
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0030
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0030
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0035
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0035
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0035
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0040
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0040
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0040
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0045
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0045
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0050
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0050
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0055
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0055
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0060
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0060
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0060
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0065
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0065
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0070
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0070
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0070
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0075
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0075
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0080
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0080
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0080
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0085
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0085
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0085
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0090
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0090
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0095
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0095
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0095
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0100
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0100
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0100
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0105
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0105
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0105
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0110
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0110
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0110
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0115
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0115
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0120
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0120
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0120
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0125
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0125
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0125
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0130
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0130
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0130
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0130
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0135
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0135
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0140
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0140
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0145
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0145
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0145
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0150
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0150
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0150
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0155
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0155
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0155
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0155
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0155
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0160
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0160
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0160
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0165
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0165
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0165
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0170
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0170
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0170
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0175
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0175
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0180
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0180
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0185
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0185
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0185
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0185
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0190
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0190
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0195
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0195
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0195
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0200
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0205
http://refhub.elsevier.com/S0034-4257(13)00206-X/rf0205

	Estimating root mean square errors in remotely sensed soil moisture over continental scale domains
	1. Introduction
	2. Data
	2.1. Remotely sensed soil moisture data sets
	2.2. Catchment model soil moisture
	2.3. In situ soil moisture data

	3. Methods
	3.1. Triple colocation
	3.2. Error propagation through the retrieval models
	3.3. Confidence intervals of the triple colocation RMSE
	3.4. Fractional RMSE (fRMSE)

	4. Results
	4.1. fRMSE over the domain
	4.2. Dependence of RMSETC on the data triplet

	5. Discussion
	6. Conclusions and recommendations
	Acknowledgments
	Appendix A. Dependence of triple colocation on features resolved by the data triplet
	Appendix B. Equivalence of Miralles et al. (2010) in situ RMSD correction to triple colocation
	References


