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1. Introduction

The fuzzy numbers are often used to represent the uncertain and incomplete information in decision making, linguistic

controllers, expert systems, datamining, pattern recognition, etc. Because complicated fuzzy numbersmay cause important

difficulties in data processing, different kinds of approximations (interval, triangular, trapezoidal, parametric)were proposed

in many recent papers [1–4,6–10,18,27–29,37,43–48]. The aim of the present paper is to continue the development of the

topic.

To capture the relevant information, to simplify the task of representing and handling of fuzzy numbers, the value and the

ambiguityof a fuzzynumberwere introduced in [24]. Theauthors alsodiscussedhowtoapproximateagiven fuzzynumberby

a suitable trapezoidal one with the same value and ambiguity. Because it is not possible to uniquely determine a trapezoidal

fuzzy number,which is characterized by four numbers, from two conditions, some additional conditionsmust be introduced.

An idea is to determine the trapezoidal fuzzy number by minimizing the distance between the initial fuzzy number and its

approximation. In the present paper we completely solve the problem to find the nearest trapezoidal approximation of a

fuzzy number, with respect to a well-known metric, preserving the ambiguity. The triangular approximation and interval

approximation are determined too. They can be useful for practitioners which prefer to work with more simplified data.

In applications is sometimes better to consider symmetric data such as we compute the nearest symmetric triangular

and the nearest symmetric trapezoidal fuzzy number with respect to average Euclidean distance, under the preserving of

ambiguity. We propose a simpler and elementary method to avoid the Karush–Kuhn–Tucker theorem and the associated

calculus and to prove some properties, like continuity. We give examples and algorithms of calculus in terms of width,

left-hand and right-hand ambiguity. In the paper [11] it was proved that, in the case of trapezoidal approximation without

conditions and in the case of trapezoidal approximation preserving the expected interval, there is no difference whether
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the trapezoidal approximation is performed before or after aggregation with respect to average. The property is valid in the

case of approximations treated in the present paper too.

2. Preliminaries

We consider the following well-known description of a fuzzy number A:

A(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if x ≤ a1,

lA(x), if a1 ≤ x ≤ a2,

1 if a2 ≤ x ≤ a3,

rA(x), if a3 ≤ x ≤ a4,

0, if a4 ≤ x,

(1)

where a1, a2, a3, a4 ∈ R, lA : [a1, a2] −→ [0, 1] is a nondecreasing upper semicontinuous function, lA(a1) = 0, lA(a2) = 1,

called the left side of the fuzzy number A and rA : [a3, a4] −→ [0, 1] is a nonincreasing upper semicontinuous function,

rA(a3) = 1, rA(a4) = 0, called the right side of the fuzzy number A. The α−cut, α ∈ (0, 1], of a fuzzy number A is a crisp

set defined as

Aα = {x ∈ R : A(x) ≥ α}.
The support or 0−cut A0 of a fuzzy number is defined as

A0 = {x ∈ R : A(x) > 0}.
Every α−cut, α ∈ [0, 1], of a fuzzy number is a closed interval

Aα = [AL(α), AU(α)]
where

AL(α) = inf{x ∈ R : A(x) ≥ α},
AU(α) = sup{x ∈ R : A(x) ≥ α}

for anyα ∈ (0, 1]. If the sides of the fuzzy number A are strictlymonotone then one can see easily that AL and AU are inverse

functions of lA and rA, respectively. We denote by F(R) the set of all fuzzy numbers.

The ambiguity Amb(A) of a fuzzy number A, Aα = [AL(α), AU(α)], α ∈ [0, 1] is given by (see [24])

Amb(A) =
∫ 1

0
α(AU(α) − AL(α)) dα. (2)

The typical value of A, called the expected value of A, is given by (see [25,33])

EV (A) = 1

2

(∫ 1

0
AL (α) dα +

∫ 1

0
AU (α) dα

)
. (3)

The nonspecificity of a fuzzy number A, called the width of A, is introduced by (see [18])

w (A) =
∫ 1

0
AU (α) dα −

∫ 1

0
AL (α) dα. (4)

To describe the spread of the left-hand and right-hand part of a fuzzy number with respect to the expected value, the

left-hand ambiguity and right-hand ambiguity of a fuzzy number A, were introduced in [31] as follows

AmbL (A) =
∫ 1

0
α (EV(A) − AL (α)) dα, (5)

AmbU (A) =
∫ 1

0
α (AU (α) − EV(A)) dα. (6)
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A metric on the set of fuzzy numbers, which is an extension of the Euclidean distance, is defined by [26]

d2(A, B) =
∫ 1

0
(AL(α) − BL(α))2 dα +

∫ 1

0
(AU(α) − BU(α))2 dα. (7)

Fuzzynumberswith simplemembership functions arepreferred inpractice (see e.g. [15,17,19,20,35,38,41,42]). Themost

usedsuch fuzzynumbersareso-called trapezoidal fuzzynumbers.A trapezoidal fuzzynumberT, Tα = [TL (α) , TU (α)] , α ∈
[0, 1] is given by

TL(α) = t1 + (t2 − t1)α,

TU(α) = t4 − (t4 − t3)α,

where t1, t2, t3, t4 ∈ R, t1 ≤ t2 ≤ t3 ≤ t4. We denote by T = (t1, t2, t3, t4) a trapezoidal fuzzy number and by FT (R) the
set of all trapezoidal fuzzy numbers. When t2 = t3 we obtain a triangular fuzzy number. We denote by Ft(R) the set of all

triangular fuzzy numbers. When t2 − t1 = t4 − t3 we obtain a symmetric trapezoidal fuzzy number. We denote by FS(R)
the set of all symmetric trapezoidal fuzzy numbers. When t2 = t3 and t2 − t1 = t4 − t3 we obtain a symmetric triangular

fuzzy number. We denote by Fs(R) the set of all symmetric triangular fuzzy numbers.

Sometimes (see [45]) it is useful to denote a trapezoidal fuzzy number by

T = [l, u, x, y]
with l, u, x, y ∈ R such that

x ≥ 0, (8)

y ≥ 0, (9)

x + y ≤ 2(u − l). (10)

Then

TL(α) = l + x

(
α − 1

2

)
,

TU(α) = u − y

(
α − 1

2

)
,

for every α ∈ [0, 1].
It is immediate that

l = t1 + t2

2
, (11)

u = t3 + t4

2
, (12)

x = t2 − t1, (13)

y = t4 − t3 (14)

and

Amb(T) = 6u − 6l − x − y

12
. (15)

It is easy to obtain that a trapezoidal fuzzy number T = [l, u, x, y] is symmetric if and only if x = y and triangular if and

only if 2u − 2l = x + y. The distance between T = [l, u, x, y] and T ′ = [l′, u′, x′, y′] becomes [44]

d2(T, T ′) = (l − l′)2 + (u − u′)2 + 1

12
(x − x′)2 + 1

12
(y − y′)2. (16)

Another important kind of fuzzy number was introduced in [16] as follows. Let a, b, c, d ∈ R such that a ≤ b ≤ c ≤ d.

A fuzzy number A such that

Aα = [AL (α) , AU (α)] =
[
a + (b − a) α1/r, d − (d − c) α1/s

]
, α ∈ [0, 1] , (17)
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where r, s > 0, is denoted by A = (a, b, c, d)r,s. When r = s = 1 we obtain a trapezoidal fuzzy number. We denote by

Fr,s(R) the set of such fuzzy numbers.

Let A, B ∈ F (R) , Aα = [AL (α) , AU (α)] , Bα = [BL (α) , BU (α)] , α ∈ [0, 1] and λ ∈ R. We consider the sum A+ B and

the scalar multiplication λ · A by (see e.g. [23], p. 40)

(A + B)α = Aα + Bα = [AL (α) + BL (α) , AU (α) + BU (α)]

and

(λ · A)α = λAα =
⎧⎨
⎩ [λAL (α) , λAU (α)] , if λ ≥ 0

[λAU (α) , λAL (α)] , if λ < 0,

respectively, for every α ∈ [0, 1]. In the case of the trapezoidal fuzzy numbers T = (t1, t2, t3, t4) and S = (s1, s2, s3, s4)
we obtain

T + S = (t1 + s1, t2 + s2, t3 + s3, t4 + s4) ,

λ · T = (λt1, λt2, λt3, λt4) if λ ≥ 0,

λ · T = (λt4, λt3, λt2, λt1) if λ < 0.

We also mention that

(a, b, c, d)r,s +
(
a′, b′, c′, d′)

r,s
=
(
a + a′, b + b′, c + c′, d + d′)

r,s
(18)

and

λ · (a, b, c, d)r,s = (λa, λb, λc, λd)r,s , (19)

for every λ ≥ 0.

An extended trapezoidal fuzzy number [44,45] (see also [12,46]) is an ordered pair of polynomial functions of degree

less than or equal to 1. An extended trapezoidal fuzzy number may not be a fuzzy number, that is t1 ≤ t2 ≤ t3 ≤ t4
(or equivalently (8)–(10)) are not satisfied, but the distance between two extended trapezoidal fuzzy numbers is similarly

defined as in (7) or (16). In addition, we define the ambiguity of an extended trapezoidal fuzzy number in the same way as

in the classical case of a fuzzy number. We denote by FTe (R) the set of all extended trapezoidal fuzzy numbers.

The extended trapezoidal approximation

Te(A) = [le (A) , ue (A) , xe (A) , ye (A)] = [le, ue, xe, ye]
of a fuzzy number A is the extended trapezoidal fuzzy numberwhichminimizes the distance d(A, X)where X is an extended

trapezoidal fuzzy number. In the paper [5] the authors proved that Te(A) is not always a fuzzy number. The extended

trapezoidal approximation Te(A) = [le, ue, xe, ye] of a fuzzy number A, Aα = [AL (α) , AU (α)] , α ∈ [0, 1] is determined

(see [44]) by the following equalities

le =
∫ 1

0
AL(α) dα, (20)

ue =
∫ 1

0
AU(α) dα, (21)

xe = 12

∫ 1

0

(
α − 1

2

)
AL(α) dα, (22)

ye = −12

∫ 1

0

(
α − 1

2

)
AU(α) dα. (23)

The real numbers xe and ye are non-negative (see [44]) and from the definition of a fuzzy number we have le ≤ ue.
In the paper [43] the author proved two very important distance properties for the extended trapezoidal approximation

operator Te : F(R) →FTe (R), as follows.

Proposition 1 ([43], Proposition 4.2). Let A be a fuzzy number. Then

d2(A, B) = d2(A, Te(A)) + d2(Te(A), B),

for any trapezoidal fuzzy number B.
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Proposition 2 ([43], Proposition 4.4). d(Te(A), Te(B)) ≤ d(A, B) for all fuzzy numbers A and B.

Remark 3. LetA and B be two fuzzy numbers and Te(A) = [le, ue, xe, ye], Te(B) = [l′e, u′e, x′e, y′e] the extended trapezoidal

approximations of A and B. From (16) and from Proposition 2, it is immediate that

(le − l′e)2 + (ue − u′e)2 ≤ d2(A, B)

and

(xe − x′e)2 + (ye − y′e)2 ≤ 12d2(A, B).

Proposition 4. If A is a fuzzy number and Te(A) = [le, ue, xe, ye] is the extended trapezoidal approximation of A then

Amb(A) = Amb(Te(A)).

Proof. By direct calculation, we get

Amb(Te(A))

= 1

12
(6ue − 6le − xe − ye) = 1

2

∫ 1

0
AU(α) dα − 1

2

∫ 1

0
AL(α) dα

−
∫ 1

0

(
α − 1

2

)
AL(α) dα +

∫ 1

0

(
α − 1

2

)
AU(α) dα

=
∫ 1

0
α(AU(α) − AL(α)) dα = Amb(A). �

The below version of the well-known Karush–Kuhn–Tucker theorem is an important tool in approximation of fuzzy

numbers by trapezoidal or triangular fuzzy numbers (see [6,7,9,29]).

Theorem 5 ([34,36], see also [39], pp. 281–283). Let f , g1, ..., gm : R
n → R be convex and differentiable functions. Then x

solves the convex programming problem

min f (x)

s.t. gi (x) ≤ hi, i ∈ {1, ...,m}

if and only if there exists ξi, i ∈ {1, ...,m} , such that

(i) �f (x) + m∑
i=1

ξi � gi (x) = 0;
(ii) gi (x) − hi ≤ 0;
(iii) ξi ≥ 0;
(iv) ξi (hi − gi (x)) = 0.

3. Approximation of fuzzy numbers by real intervals preserving ambiguity

Because a real interval [v,w] can be represented as a fuzzy number with the α-cuts [v,w] , for every α ∈ [0, 1], from (2)

we get

Amb ([v,w]) = w − v

2
.

We find IA, the nearest interval of a given fuzzy number A, Aα = [AL (α) , AU (α)] , α ∈ [0, 1] such that its ambiguity is

preserved, by solving the following problem

min d ([v,w] , A) ,∫ 1

0
α(AU(α) − AL(α)) dα = w − v

2
.
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The problem is equivalent to find v,w such that

min

(∫ 1

0
(AL (α) − v)2 dα +

∫ 1

0
(AU (α) − w)2 dα

)
, (24)

w − v

2
=
∫ 1

0
α(AU(α) − AL(α)) dα (25)

v ≤ w. (26)

After simple calculations we get the problem (24)–(26) is reduced to

min

(
2v2 +

(
4

∫ 1

0
αAU(α) dα − 4

∫ 1

0
αAL(α) dα

−2

∫ 1

0
AU(α) dα − 2

∫ 1

0
AL(α) dα

)
v

)
,

w = 2

∫ 1

0
α(AU(α) − AL(α)) dα + v

The following result is immediate.

Theorem 6. The nearest interval to A ∈ F (R), which preserves the ambiguity of A, IA = [v,w] , is given by

v =
∫ 1

0

(
α + 1

2

)
AL(α) dα +

∫ 1

0

(
−α + 1

2

)
AU(α) dα (27)

w =
∫ 1

0

(
−α + 1

2

)
AL(α) dα +

∫ 1

0

(
α + 1

2

)
AU(α) dα. (28)

According with (2) and (3) we obtain

IA = [EV (A) − Amb (A) , EV (A) + Amb (A)] .

Corollary 7. If A = (a, b, c, d)r,s then IA = [v,w] is given by

v = 2 + 3r

2 (1 + r) (1 + 2r)
a + 3r + 4r2

2 (1 + r) (1 + 2r)
b + s

2 (1 + s) (1 + 2s)
(d − c) ,

w = r

2 (1 + r) (1 + 2r)
(a − b) + 3s + 4s2

2 (1 + s) (1 + 2s)
c + 2 + 3s

2 (1 + s) (1 + 2s)
d.

Example 8. We have

I(1,2,3,4) =
[
5

3
,
21

6

]

I(1,2,3,4)2,2 =
[
9

5
,
10

3

]
.

4. Approximation of fuzzy numbers by trapezoidal fuzzy numbers preserving ambiguity

In this section we prove that for any fuzzy number A there exists an unique trapezoidal fuzzy number TA such that

Amb(A) = Amb(TA) and which is the nearest to Awith respect to the metric d. By Proposition 1 and Proposition 4 it follows

that the problem to find the trapezoidal approximation preserving the ambiguity of a fuzzy number A is equivalent with

the problem to find a trapezoidal fuzzy number TA such that Amb(TA) = Amb(Te(A)) and d(TA, Te(A)) ≤ d(B, Te(A)) for all
B ∈ FT (R) satisfying Amb(B) = Amb(Te(A)). Therefore

TA = [lT (A) , uT (A) , xT (A) , yT (A)] = [lT , uT , xT , yT ]
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is a solution of the discussed problem if and only if the quadruple (lT , uT , xT , yT ) ∈ R
4 is a solution of the minimization

problem

min

(
(l − le)2 + (u − ue)2 + 1

12
(x − xe)2 + 1

12
(y − ye)2

)
(29)

under the conditions

x ≥ 0, (30)

y ≥ 0, (31)

x + y ≤ 2(u − l), (32)

6u − 6l − x − y = 6ue − 6le − xe − ye. (33)

Condition (33) implies

u − l = ue − le + 1

6
(x + y) − 1

6

(
xe + ye

)

and

l − le = u − ue − 1

6

(
x − xe

)− 1

6

(
y − ye

)
, (34)

therefore problem (29)–(33) becomes

min F (l, u, x, y) ,

where

F (l, u, x, y) = 2(u − ue)2 + 1

9
(x − xe)2 + 1

9
(y − ye)2 − 1

3

(
u − ue

) (
x − xe

)

−1

3

(
u − ue

) (
y − ye

)+ 1

18

(
x − xe

) (
y − ye

)

under the conditions

x ≥ 0, (35)

y ≥ 0, (36)

2x + 2y ≤ 6ue − 6le − xe − ye. (37)

After elementary calculus we get

F (l, u, x, y) = 2

(
u − ue − 1

12

(
x − xe + y − ye

))2

+ 7

72
(x − xe)2

+ 7

72
(y − ye)2 + 1

36

(
x − xe

) (
y − ye

)
.

Because conditions (35)–(37) are independent of u and taking into account (34), TA = [lT , uT , xT , yT ] is the nearest trape-

zoidal fuzzy number to fuzzy number A such that Amb (A) = Amb (TA) if and only if

uT = ue + 1

12

(
xT − xe + yT − ye

)
, (38)

lT = le − 1

12

(
xT − xe + yT − ye

)
(39)
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and (xT , yT ) is the solution of the minimization problem

min
(
(7(x − xe)2 + 7(y − ye)2 + 2(x − xe)(y − ye)

)
, (40)

x ≥ 0, (41)

y ≥ 0, (42)

2x + 2y ≤ 6ue − 6le − xe − ye. (43)

Let us denote (see Fig. 1)

MA = {(x, y) ∈ R
2 : x ≥ 0, y ≥ 0, 2x + 2y ≤ 6ue − 6le − xe − ye} (44)

and dE the Euclidean metric on R
2.

To solve the above problem we give the following result.

Theorem 9. The problem (40)–(43) has an unique solution (xT , yT ), where

(xT , yT ) = PMA

(
xe, ye

)
and PM (a, b) denotes the orthogonal projection of (a, b) ∈ R

2 on nonempty set M ⊂ R
2, with respect to the Euclidean metric

dE.

Proof. First, we prove that MA is nonempty. Indeed, taking into account (20)–(23) we have

6ue − 6le − xe − ye = 12

∫ 1

0
α(AU(α) − AL(α)) dα ≥ 0,

thereforeMA 	= ∅.
Let us define an inner product 〈·, ·〉 on R

2 by

〈(x1, y1), (x2, y2)〉 = 7x1x2 + 7y1y2 + x1y2 + x2y1.

If (x1, y1), (x2, y2) ∈ R
2 then

D2((x1, y1), (x2, y2)) = 〈(x1 − x2, y1 − y2), (x1 − x2, y1 − y2)〉
= 7(x1 − x2)

2 + 7(y1 − y2)
2 + 2 (x1 − x2) (y1 − y2)

introduces a distance on R
2, induced by the above inner product. Since R

2 is a finite dimensional space it follows that(
R

2, 〈·, ·〉
)
is a Hilbert space. Because MA is a nonempty closed convex subset of the Hilbert space

(
R

2, 〈·, ·〉
)
it follows

(see e.g. [40], Theorem 4. 10, p. 79) that for any (x, y) ∈ R
2 there exists an unique element denoted

(
PMA

)
D (x, y) such that

D((x, y) ,
(
PMA

)
D (x, y)) = inf

C∈MA

D((x, y) , C),

MA

(0,3 -3 - /2- /2)u l ye e exe

(3 -3 - /2- /2,0)xeu l ye e e

( )i

(ii)

(iii)

(iv)

x

y

0

Fig. 1.MA and cases for (xe, ye) in the finding of TA .
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that is

(xT , yT ) = (
PMA

)
D

(
xe, ye

)
(45)

is the unique solution of problem (40)–(43). Now, we distinguish the following two cases:

(i) (xe, ye) ∈ MA. Then it is obvious that

(xT , yT ) = (
xe, ye

) = (
PMA

)
D

(
xe, ye

) = PMA

(
xe, ye

)
.

(ii) (xe, ye) /∈ MA. We prove that (xT , yT ) ∈ M1, where

M1 = {(x, y) ∈ R
2 : x ≥ 0, y ≥ 0, 2x + 2y = 6ue − 6le − xe − ye}.

Let us assume (xT , yT ) /∈ M1. Because (xT , yT ) ∈ MA\M1, there exists B ∈ M1 such that B is between (xT , yT ) and (xe, ye),
therefore

D(
(
xe, ye

)
, (xT , yT )) > D(

(
xe, ye

)
, B),

a contradiction with (45).

Since (xT , yT ) ∈ M1 we get that (xT , yT ) is the solution of the problem

min G (x, y) ,

where

G (x, y) = 7(x − xe)2 + 7(y − ye)2 + 2(x − xe)(y − ye),

under conditions

x ≥ 0, (46)

y ≥ 0, (47)

2x + 2y = 6ue − 6le − xe − ye. (48)

Taking into account (48) we get

G (x, y) = 6(x − xe)2 + 6(y − ye)2 +
(
3ue − 3le − 3

2
xe − 3

2
ye
)2

and since the expression (3ue − 3le − 3
2
xe − 3

2
ye)2 is constant we obtain that (xT , yT ) is the solution of the problem

min
(
(x − xe)2 + (y − ye)2

)

under the conditions

x ≥ 0,

y ≥ 0,

2x + 2y = 6ue − 6le − xe − ye,

therefore (xT , yT ) = PM1
(xe, ye). Because (xe, ye) /∈ MA we easily obtain (xT , yT ) = PMA

(xe, ye) . �

Theorem 9, together (38) and (39), suggest us the following method to compute TA = [lT , uT , xT , yT ], the nearest trape-

zoidal fuzzy number of a fuzzy number A preserving the ambiguity (see Fig. 1).

(i) (xe, ye) ∈ MA, that is

−2le + 2ue − xe − ye ≥ 0.
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Then

xT = xe,

yT = ye,

lT = le,

uT = ue.

If (xe, ye) /∈ MA then the following cases are possible:

(ii) If

6le − 6ue + 3xe − ye > 0

then

xT = −3le + 3ue − 1

2
xe − 1

2
ye,

yT = 0,

uT = −1

4
le + 5

4
ue − 1

8
xe − 1

8
ye,

lT = 5

4
le − 1

4
ue + 1

8
xe + 1

8
ye.

(iii) If

−6le + 6ue + xe − 3ye < 0

then

xT = 0,

yT = −3le + 3ue − 1

2
xe − 1

2
ye,

uT = −1

4
le + 5

4
ue − 1

8
xe − 1

8
ye,

lT = 5

4
le − 1

4
ue + 1

8
xe + 1

8
ye.

(iv) If

−2le + 2ue − xe − ye < 0,

6le − 6ue + 3xe − ye ≤ 0,

−6le + 6ue + xe − 3ye ≥ 0,

then

xT = −3

2
le + 3

2
ue + 1

4
xe − 3

4
ye,

yT = −3

2
le + 3

2
ue − 3

4
xe + 1

4
ye,

uT = −1

4
le + 5

4
ue − 1

8
xe − 1

8
ye,

lT = 5

4
le − 1

4
ue + 1

8
xe + 1

8
ye.

Taking into account (11)–(14) and (20)–(23) we obtain the following result to compute

TA = (T1 (A) , T2 (A) , T3 (A) , T4 (A)) = (T1, T2, T3, T4) ,

the nearest trapezoidal fuzzy number of a fuzzy number A preserving the ambiguity.
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Theorem 10. (i) If

∫ 1

0
(1 − 3α)AL (α) dα +

∫ 1

0
(3α − 1)AU (α) dα ≥ 0 (49)

then

T1 =
∫ 1

0
(−6α + 4)AL(α) dα, (50)

T2 =
∫ 1

0
(6α − 2)AL(α) dα, (51)

T3 =
∫ 1

0
(6α − 2)AU(α) dα, (52)

T4 =
∫ 1

0
(−6α + 4)AU(α) dα. (53)

(ii) If

∫ 1

0
(3α − 1)AL (α) dα +

∫ 1

0
(α − 1)AU (α) dα > 0 (54)

then

T1 = 1

2

∫ 1

0
(1 + 9α)AL(α) dα + 1

2

∫ 1

0
(1 − 9α)AU(α) dα, (55)

T2 = T3 = T4 = 1

2

∫ 1

0
(1 − 3α)AL(α) dα + 1

2

∫ 1

0
(1 + 3α)AU(α) dα. (56)

(iii) If

∫ 1

0
(α − 1)AL (α) dα +

∫ 1

0
(3α − 1)AU (α) dα < 0 (57)

then

T1 = T2 = T3 = 1

2

∫ 1

0
(1 + 3α)AL(α) dα + 1

2

∫ 1

0
(1 − 3α)AU(α) dα, (58)

T4 = 1

2

∫ 1

0
(1 − 9α)AL(α) dα + 1

2

∫ 1

0
(1 + 9α)AU(α) dα. (59)

(iv) If

∫ 1

0
(1 − 3α)AL (α) dα +

∫ 1

0
(3α − 1)AU (α) dα < 0,

∫ 1

0
(3α − 1)AL (α) dα +

∫ 1

0
(α − 1)AU (α) dα ≤ 0,

∫ 1

0
(α − 1)AL (α) dα +

∫ 1

0
(3α − 1)AU (α) dα ≥ 0,

then

T1 = 2

∫ 1

0
AL(α) dα −

∫ 1

0
(6α − 2)AU(α) dα, (60)

T2 = T3 =
∫ 1

0
(3α − 1)AL (α) dα +

∫ 1

0
(3α − 1)AU (α) dα, (61)

T4 =
∫ 1

0
(2 − 6α)AL(α) dα + 2

∫ 1

0
AU(α) dα. (62)
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Taking into account the representation (17) of the fuzzy numbers (a, b, c, d)r,s we get

∫ 1

0
((a, b, c, d)r,s)L(α) dα = a + rb

r + 1
,

∫ 1

0
((a, b, c, d)r,s)U(α) dα = sc + d

s + 1
,

∫ 1

0
α((a, b, c, d)r,s)L(α) dα = a + 2rb

2 (2r + 1)
,

∫ 1

0
α((a, b, c, d)r,s)U(α) dα = 2sc + d

2(2s + 1)

and replacing in (49)–(62) we can obtain an important consequence of Theorem 10 (see [10], Corollary 15, in the case of the

nearest trapezoidal fuzzy number preserving value and ambiguity). Due to the length of the result we prefer to give some

examples instead.

Example 11. Case (i) in Theorem 10 is applicable to fuzzy number (1, 2, 3, 4)2,2 and

T(1,2,3,4)2,2 =
(
19

15
,
31

15
,
44

15
,
56

15

)
.

The fuzzy numbers (1, 200, 201, 220)2,2 and (1, 20, 30, 320)2,2 satisfy conditions (54) and (57), respectively, and

T(1,200,201,220)2,2 =
(
1 403

20
,
4 079

20
,
4 079

20
,
4 079

20

)
,

T(1,20,30,320)2,2 =
(
979

60
,
979

60
,
979

60
,
13 903

60

)
.

Case (iv) in Theorem 10 is applicable to fuzzy number (1, 2, 4, 35)2,2 and

T(1,2,4,35)2,2 =
(
7

5
, 2, 2,

133

5

)
.

5. Approximation of fuzzy numbers by symmetric trapezoidal fuzzy numbers preserving ambiguity

The uncertain or imprecise information is often represented by symmetric fuzzy numbers, particularly by symmetric

trapezoidal/triangular fuzzy numbers. Taking into account the considerations in Section 4 we obtain that

SA = [lS (A) , uS (A) , xS (A) , yS (A)] = [lS, uS, xS, yS]

is the symmetric trapezoidal fuzzy number nearest to fuzzy number A with respect to d (see (16)) such that Amb (A) =
Amb (SA) if and only if (xS, yS) ∈ R

2 is the solution of the problem

min
(
(7(x − xe)2 + 7(y − ye)2 + 2(x − xe)(y − ye)

)
,

x ≥ 0,

y ≥ 0, (63)

2x + 2y ≤ 6ue − 6le − xe − ye,

x = y,

and

uS = ue + 1

12

(
xS − xe + yS − ye

)
, (64)

lS = le − 1

12

(
xS − xe + yS − ye

)
. (65)
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We recall, Te(A) = [le, ue, xe, ye] is the extended trapezoidal approximation of A (see (20)–(23)). The problem (63) is

equivalent with

min
(
16x2 − 16

(
xe + ye

)
x + 7

(
xe
)2 + 7

(
ye
)2 + 2xeye

)
,

x ≥ 0,

x ≤ 3

2
ue − 3

2
le − 1

4
xe − 1

4
ye.

Because the function h : R → R given by

h (x) = 16x2 − 16
(
xe + ye

)
x + 7

(
xe
)2 + 7

(
ye
)2 + 2xeye

attains its minimum if and only if x = xe+ye

2
and taking into account xe ≥ 0, ye ≥ 0 (see [44]), the following cases are

possible:

(i) If

xe + ye

2
≤ 3

2
ue − 3

2
le − 1

4
xe − 1

4
ye,

that is

xe + ye ≤ 2
(
ue − le

)
then

xS = yS = xe + ye

2
,

uS = ue,

lS = le.

(ii) If

xe + ye

2
>

3

2
ue − 3

2
le − 1

4
xe − 1

4
ye,

that is

xe + ye > 2
(
ue − le

)
then

xS = yS = 3

2
ue − 3

2
le − 1

4
xe − 1

4
ye,

uS = 5

4
ue − 1

4
le − 1

8
xe − 1

8
ye,

lS = −1

4
ue + 5

4
le + 1

8
xe + 1

8
ye.

From (20)–(23) we obtain the following result to compute

SA = (S1 (A) , S2 (A) , S3 (A) , S4 (A)) = (S1, S2, S3, S4) ,

the nearest symmetric trapezoidal fuzzy number of a fuzzy number A preserving the ambiguity.

Theorem 12. (i) If

∫ 1

0
(1 − 3α)AL (α) dα +

∫ 1

0
(3α − 1)AU (α) dα ≥ 0 (66)

then
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S1 =
∫ 1

0

(
−3α + 5

2

)
AL(α) dα +

∫ 1

0

(
3α − 3

2

)
AU(α) dα, (67)

S2 =
∫ 1

0

(
3α − 1

2

)
AL(α) dα +

∫ 1

0

(
−3α + 3

2

)
AU(α) dα, (68)

S3 =
∫ 1

0

(
−3α + 3

2

)
AL(α) dα +

∫ 1

0

(
3α − 1

2

)
AU(α) dα, (69)

S4 =
∫ 1

0

(
3α − 3

2

)
AL(α) dα +

∫ 1

0

(
−3α + 5

2

)
AU(α) dα. (70)

(ii) If

∫ 1

0
(1 − 3α)AL (α) dα +

∫ 1

0
(3α − 1)AU (α) dα < 0 (71)

then

S1 =
∫ 1

0

(
3α + 1

2

)
AL(α) dα +

∫ 1

0

(
−3α + 1

2

)
AU(α) dα, (72)

S2 = S3 = 1

2

∫ 1

0
AL(α) dα + 1

2

∫ 1

0
AU(α) dα, (73)

S4 =
∫ 1

0

(
−3α + 1

2

)
AL(α) dα +

∫ 1

0

(
3α + 1

2

)
AU(α) dα. (74)

Example 13. Case (i) in Theorem 12 is applicable to fuzzy number (1, 2, 3, 4)2,2 and

S(1,2,3,4)2,2 =
(
19

15
,
31

15
,
44

15
,
56

15

)
.

The fuzzy numbers (1, 200, 201, 220)2,2 , (1, 20, 30, 320)2,2 and (1, 2, 4, 35)2,2 satisfy (71) in Theorem 12. We get

S(1,200,201,220)2,2 =
(
518

5
,
341

2
,
341

2
,
1187

5

)
,

S(1,20,30,320)2,2 =
(
−563

15
,
421

6
,
421

6
,
2668

15

)
,

S(1,2,4,35)2,2 =
(
−23

5
, 8, 8,

103

5

)
.

6. Approximation of fuzzy numbers by triangular fuzzy numbers preserving ambiguity

Taking into account (38)–(43),

tA = [lt (A) , ut (A) , xt (A) , yt (A)] = [lt, ut, xt, yt]
is the nearest triangular fuzzy number to fuzzy number A such that Amb (A) = Amb (tA) if and only if

ut = ue + 1

12

(
xt − xe + yt − ye

)
, (75)

lt = le − 1

12

(
xt − xe + yt − ye

)
(76)

and (xt, yt) is the solution of the minimization problem

min
(
(7(x − xe)2 + 7(y − ye)2 + 2(x − xe)(y − ye)

)
, (77)

x ≥ 0, (78)

y ≥ 0, (79)

2x + 2y = 6ue − 6le − xe − ye, (80)



A.I. Ban, L. Coroianu / International Journal of Approximate Reasoning 53 (2012) 805–836 819

where Te(A) = [le, ue, xe, ye] is the extended trapezoidal approximation of A. Let us denote (see Fig. 2)

NA = {(x, y) ∈ R
2 : x ≥ 0, y ≥ 0, 2x + 2y = 6ue − 6le − xe − ye} (81)

and dE the Euclidean metric on R
2.

Theorem 14. The problem (77)–(80) has an unique solution (xt, yt), where

(xt, yt) = PNA

(
xe, ye

)
and PM (a, b) denotes the orthogonal projection of (a, b) ∈ R

2 on nonempty set M ⊂ R
2 with respect to dE.

Theorem 14 suggests ((75) and (76) are important here) the followingmethod to compute tA = [lt, ut, xt, yt], the nearest
triangular fuzzy number of a fuzzy number A preserving the ambiguity (see Fig. 2).

(i) If

6le − 6ue + 3xe − ye ≤ 0

and

−6le + 6ue + xe − 3ye ≥ 0

then

xt = −3

2
le + 3

2
ue + 1

4
xe − 3

4
ye,

yt = −3

2
le + 3

2
ue − 3

4
xe + 1

4
ye,

ut = −1

4
le + 5

4
ue − 1

8
xe − 1

8
ye,

lt = 5

4
le − 1

4
ue + 1

8
xe + 1

8
ye.

(ii) If

6le − 6ue + 3xe − ye > 0

then

xt = −3le + 3ue − 1

2
xe − 1

2
ye,

yt = 0,

ut = −1

4
le + 5

4
ue − 1

8
xe − 1

8
ye,

lt = 5

4
le − 1

4
ue + 1

8
xe + 1

8
ye.

NA

(0,3 -3 - /2- /2)u l x ye e e e

(3 -3 - /2- /2,0)u l x ye e e e

( )i
(ii)

(iii)

(i)

x

y

0

Fig. 2. NA and cases for (xe, ye) in the finding of tA .
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(iii) If

−6le + 6ue + xe − 3ye < 0

then

xt = 0,

yt = −3le + 3ue − 1

2
xe − 1

2
ye,

ut = −1

4
le + 5

4
ue − 1

8
xe − 1

8
ye,

lt = 5

4
le − 1

4
ue + 1

8
xe + 1

8
ye.

From (20)–(23) we obtain the following result to compute tA in the representation

tA = (t1 (A) , t2 (A) , t3 (A)) = (t1, t2, t3) .

Theorem 15. (i) If

∫ 1

0
(3α − 1)AL (α) dα +

∫ 1

0
(α − 1)AU (α) dα ≤ 0 (82)

and ∫ 1

0
(α − 1)AL (α) dα +

∫ 1

0
(3α − 1)AU (α) dα ≥ 0 (83)

then

t1 = 2

∫ 1

0
AL (α) dα −

∫ 1

0
(6α − 2)AU(α) dα, (84)

t2 =
∫ 1

0
(3α − 1) AL (α) dα +

∫ 1

0
(3α − 1)AU(α) dα, (85)

t3 = −
∫ 1

0
(6α − 2)AL(α) dα + 2

∫ 1

0
AU(α) dα. (86)

(ii) If

∫ 1

0
(3α − 1)AL (α) +

∫ 1

0
(α − 1)AU (α) dα > 0 (87)

then

t1 = 1

2

∫ 1

0
(1 + 9α)AL(α) dα + 1

2

∫ 1

0
(1 − 9α)AU(α) dα, (88)

t2 = t3 = 1

2

∫ 1

0
(1 − 3α)AL(α) dα + 1

2

∫ 1

0
(1 + 3α)AU(α) dα. (89)

(iii) If

∫ 1

0
(α − 1)AL (α) dα +

∫ 1

0
(3α − 1)AU (α) dα < 0 (90)

then

t1 = t2 = 1

2

∫ 1

0
(1 + 3α)AL(α) dα + 1

2

∫ 1

0
(1 − 3α)AU(α) dα, (91)

t3 = 1

2

∫ 1

0
(1 − 9α)AL(α) dα + 1

2

∫ 1

0
(1 + 9α)AU(α) dα. (92)
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As in the case of trapezoidal approximationwe prefer to give few examples instead of a theoretical result in the particular

case of fuzzy numbers (a, b, c, d)r,s (see (17)).

Example 16. Case (i) in Theorem 15 is applicable to fuzzy numbers (1, 2, 3, 4)2,2 and (1, 2, 4, 35)2,2. We get

t(1,2,3,4)2,2 =
(
2

5
,
5

2
,
23

5

)
,

t(1,2,4,35)2,2 =
(
7

5
, 2,

133

5

)
.

The fuzzy numbers (1, 200, 201, 220)2,2 and (1, 20, 30, 320)2,2 satisfy (87) and (90) in Theorem 15, respectively, and

t(1,200,201,220)2,2 =
(
1403

20
,
4079

20
,
4079

20

)
,

t(1,20,30,320)2,2 =
(
979

60
,
979

60
,
13903

60

)
.

From (63), (64) and (65),

sA = [ls (A) , us (A) , xs (A) , ys (A)] = [ls, us, xs, ys]

is thenearest symmetric triangular fuzzynumber to fuzzynumberA such thatAmb (A) = Amb (sA) if andonly if (xs, ys) ∈ R
2

is the solution of the problem

min
(
(7(x − xe)2 + 7(y − ye)2 + 2(x − xe)(y − ye)

)
, (93)

x ≥ 0,

y ≥ 0,

2x + 2y = 6ue − 6le − xe − ye, (94)

x = y (95)

and

us = ue + 1

12

(
xs − xe + ys − ye

)
,

ls = le − 1

12

(
xs − xe + ys − ye

)
,

where Te(A) = [le, ue, xe, ye] is the extended trapezoidal approximation of A. In fact, (94) and (95) imply

x = y = 3

2
ue − 3

2
le − 1

4
xe − 1

4
ye,

therefore the minimization in (93) is not effective because the system of conditions has an unique solution. We obtain the

following result taking into account (20)–(23).

Theorem17. Thenearest symmetric triangular fuzzynumberpreservingambiguityof the fuzzynumberA, Aα = [AL (α) , AU (α)] ,
α ∈ [0, 1] , in the representation

sA = (s1 (A) , s2 (A) , s3 (A)) = (s1, s2, s3)

is given by

s1 =
∫ 1

0

(
3α + 1

2

)
AL (α) dα +

∫ 1

0

(
1

2
− 3α

)
AU(α) dα, (96)

s2 = 1

2

∫ 1

0
AL (α) dα + 1

2

∫ 1

0
AU(α) dα, (97)

s3 =
∫ 1

0

(
1

2
− 3α

)
AL(α) dα +

∫ 1

0

(
3α + 1

2

)
AU(α) dα. (98)
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Example 18. We get

s(1,2,3,4)2,2 =
(
2

5
,
5

2
,
23

5

)
,

s(1,2,4,35)2,2 =
(
−23

5
, 8,

103

5

)
,

s(1,200,201,220)2,2 =
(
518

5
,
341

2
,
1187

5

)

and

s(1,20,30,320)2,2 =
(
−563

15
,
421

6
,
2668

15

)
.

7. Algorithms

Because the conditions in Theorem10 are too technical, we express them in terms of ambiguity,width, right and left-hand

ambiguity (see (2), (4)–(6)). The idea was proposed in [30,31] and continued in [7,10].

Since (49) is equivalent with

w (A) ≤ 3Amb (A) ,

(54) with

4AmbL (A) < Amb (A)

and (57) with

4AmbU (A) < Amb (A) ,

we get the following algorithm for computing the nearest trapezoidal approximation preserving the ambiguity:

Algorithm 19. Step 1: If w (A) ≤ 3Amb (A) then apply (50)–(53) to compute TA, else

Step 2: If 4AmbL (A) < Amb (A) then apply (55)–(56) to compute TA, else

Step 3: If 4AmbU (A) < Amb (A) then apply (58)–(59) to compute TA, else

Step 4: apply (60)–(62) to compute TA.

To avoid checking unnecessary requirements and taking into account the properties (see [10], Proposition 14)

4AmbL (A) < Amb (A) ⇒ w (A) > 3Amb (A)

4AmbU (A) < Amb (A) ⇒ w (A) > 3Amb (A)

we use Algorithm 19 if the fuzzy number is almost symmetrical or moderately asymmetrical and the below algorithm if the

fuzzy number A is strongly asymmetric to the right or to the left.

Algorithm 20. Step 1: If 4AmbL (A) < Amb (A) then apply (55) and (56) to compute TA, else

Step 2: If 4AmbU (A) < Amb (A) then apply (58) and (59) to compute TA, else

Step 3: If w (A) > 3Amb (A) then apply (60)–(62) to compute TA, else

Step 4: apply (50)–(53) to compute TA.

As a conclusion, for more vague fuzzy numbers the approximation is a trapezoidal fuzzy number computed by (50)–(53).

For less vague fuzzy numbers the approximation is a triangular fuzzy number.

The following short algorithm describes the computing of the nearest symmetric trapezoidal fuzzy number preserving

the ambiguity of a fuzzy number A (see Theorem 12).

Algorithm 21. Step 1: If w (A) ≤ 3Amb (A) then apply (67)–(70) to compute SA, else

Step 2: apply (72)–(74) to compute SA.
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The computing of the nearest triangular fuzzy number preserving the ambiguity of a fuzzy number A (see Theorem 15)

can be given in the following form:

Algorithm 22. Step 1: If 4AmbL (A) < Amb (A) then apply (88)–(89) to compute tA, else

Step 2: If 4AmbU (A) < Amb (A) then apply (91) and (92) to compute tA, else

Step 3: Apply (84)–(86) to compute tA.

8. Properties

Scale invariance, translation invariance and additivity are between the propertieswhichhave been studied for trapezoidal

or triangular approximations (see [4,6,7,10,46,47]).

Because

Amb (A + z) = Amb (A) ,

for every A ∈ F (R) , z ∈ R, and the distance d in (7) is translation invariant, that is

d (A + z, B + z) = d (A, B) ,

for every A, B ∈ F (R) , z ∈ R, from Theorem 1 in [13] we obtain the translation invariance of the operators given in

Theorems 6, 10, 12, 15 and 17. Because

Amb (λ · A) = |λ| Amb (A) ,

for every A ∈ F (R) , λ ∈ R, and the distance d is scale invariant, that is

d (λ · A, λ · B) = |λ| d (A, B) ,

for every A, B ∈ F (R) , λ ∈ R, from Theorem 4 in [13] we obtain the scale invariance of the operators given in Theorems 6,

10, 12, 15 and 17.

It is immediate that the operators given in Theorems 6 and 17 are additive, that is

IA + IB = IA+B

and

sA + sB = sA+B,

for every A, B ∈ F (R). Unfortunately, the trapezoidal approximation operators in Theorems 10, 12 and the triangular

approximation operator in Theorem 15 are not additive.

Example 23. Case (ii) in Theorem 10 is applicable to fuzzy number A = [AL(α), AU(α)] , α ∈ [0, 1] given by AL(α) =√
α, AU(α) = 1 and

TA =
(
23

60
,
59

60
,
59

60
,
59

60

)
.

If B = (0, 0, 0, 1) then

TB = (0, 0, 0, 1)

and

TA + TB =
(
23

60
,
59

60
,
59

60
,
119

60

)
.

On the other hand,

(A + B)L (α) = √
α,

(A + B)U (α) = 2 − α,
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the case (iv) in Theorem 10 is applicable and

TA+B =
(
1

3
,
31

30
,
31

30
,
29

15

)
,

therefore

TA + TB 	= TA+B.

We easy get

tA =
(
23

60
,
59

60
,
59

60

)
,

tB = (0, 0, 1)

and

tA+B =
(
1

3
,
31

30
,
29

15

)
,

therefore

tA + tB 	= tA+B.

Example 24. If A, B ∈ F (R) , A as in Example 23 and B = [BL(α), BU(α)] , α ∈ [0, 1] is given by BL(α) = 0, BU(α) =
2 − √

α then we use (ii) and respectively (i) in Theorem 12 to compute SA and SB. We obtain

SA =
(

8

15
,
5

6
,
5

6
,
17

15

)

and

SB =
(
−1

5
,
1

5
,
17

15
,
23

15

)
.

On the other hand, Theorem 12, (i) is applicable to compute SA+B and

SA+B =
(

4

15
,
16

15
,
29

15
,
41

15

)
,

therefore

SA + SB 	= SA+B.

Another very important property that a trapezoidal or triangular approximation operator should posses is the continuity

(see [28]). In what follows, we prove that the approximation operators given in Sections 4 − 6 own this property. In fact

we prove that the discussed operators satisfy a stronger condition, namely, they are Lipschitz. In this sense we have the

following.

Theorem 25. (i) The nearest trapezoidal approximation operator preserving the ambiguity given in Theorem 10 satisfies the

inequality

d(TA, TB) ≤
√
10 + 4

√
2d(A, B),

for all A, B ∈ F(R).
(ii) The nearest symmetric trapezoidal approximation operator preserving the ambiguity given in Theorem 12 satisfies

d (SA, SB) � 2
√

3d (A, B) ,

for all A, B ∈ F(R).
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(iii) The nearest triangular approximation operator preserving the ambiguity given in Theorem 15 satisfies

d (tA, tB) �
√
10 + 4

√
2d (A, B) ,

for all A, B ∈ F(R).
(iv) The nearest symmetric triangular approximation operator preserving the ambiguity given in Theorem 17 satisfies

d (sA, sB) �
√

6d (A, B) ,

for all A, B ∈ F(R).

Proof. (i) Let us consider two fuzzy numbers A and B,

A = [AL(α), AU(α)] ,

B = [BL(α), BU(α)] , α ∈ [0, 1] ,

Te(A) = [le, ue, xe, ye],Te(B) = [l′e, u′e, x′e, y′e] theextendedtrapezoidal approximationsofAandBandTA = [lT,uT , xT , yT ],
TB = [l′T , u′

T , x
′
T , y

′
T ] the trapezoidal approximations preserving the ambiguity of A and B, respectively. We also consider the

points Ae(x
e, ye), Be(x

′e, y′e), A0(xT , yT ) and B0(x
′
T , y

′
T ). Relation (16) implies

d2 (TA, TB) =
(
lT − l′T

)2 +
(
uT − u′

T

)2
+ 1

12

(
xT − x′

T

)2 + 1

12

(
yT − y′

T

)2
. (99)

The Cauchy–Buniakowski–Schwarz inequality, (38) and (39) imply

(
lT − l′T

)2 +
(
uT − u′

T

)2
= 1

144
[(x′

T − xT ) + (y′
T − yT ) + 12(le − l′e) + (xe − x′e) + (ye − y′e)]2

+ 1

144
[(xT − x′

T ) + (yT − y′
T ) + 12(ue − u′e) + (x′e − xe) + (y′e − ye)]2

= 1

288
[12(le − l′e) + 12(ue − u′e)]2

+ 1

288
[2(x′

T − xT ) + 2(y′
T − yT ) + 12(le − l′e) − 12(ue − u′e) + 2(xe − x′e) + 2(ye − y′e)]2

= 1

2
[(le − l′e) + (ue − u′e)]2

+ 1

72
[(x′

T − xT ) + (y′
T − yT ) + 6(le − l′e) − 6(ue − u′e) + (xe − x′e) + (ye − y′e)]2

≤
[
(le − l′e)2 + (ue − u′e)2

]

+ 1

12
[(x′

T − xT )
2 + (y′

T − yT )
2] + 3[(le − l′e)2 + (ue − u′e)2]

+ 1

12
[(xe − x′e)2 + (ye − y′e)2]

=
[
(le − l′e)2 + (ue − u′e)2 + 1

12
(xe − x′e)2 + 1

12
(ye − y′e)2

]

+ 1

12
[(x′

T − xT )
2 + (y′

T − yT )
2] + 3[(le − l′e)2 + (ue − u′e)2]

= d2(Te(A), Te(B)) + 1

12
[(x′

T − xT )
2 + (y′

T − yT )
2] + 3[(le − l′e)2 + (ue − u′e)2].

Taking into account Proposition 2 and Remark 3, we easily get

(
lT − l′T

)2 +
(
uT − u′

T

)2 ≤ 4d2(A, B) + 1

12
[(x′

T − xT )
2 + (y′

T − yT )
2].
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Substituting in (99) we obtain

d2 (TA, TB) ≤ 4d2(A, B) + 1

6
[(x′

T − xT )
2 + (y′

T − yT )
2]

or

d2 (TA, TB) ≤ 4d2(A, B) + 1

6
d2E(A0, B0), (100)

where dE denotes the Euclidean metric on R
2. Let us assume (contrariwise the proof is similar)

6u′e − 6l′e − x′e − y′e ≥ 6ue − 6le − xe − ye.

We consider

MA =
{
(x, y) ∈ R

2 : x ≥ 0, y ≥ 0, x + y ≤ 3ue − 3le − 1

2
xe − 1

2
ye
}

,

MB =
{
(x, y) ∈ R

2 : x ≥ 0, y ≥ 0, x + y ≤ 3u′e − 3l′e − 1

2
x′e − 1

2
y′e
}

and

C

(
3ue − 3le − 1

2
xe − 1

2
ye, 0

)
, (101)

C′
(
0, 3ue − 3le − 1

2
xe − 1

2
ye
)

, (102)

G

(
3u′e − 3l′e − 1

2
x′e − 1

2
y′e, 0

)
, (103)

G′
(
0, 3u′e − 3l′e − 1

2
x′e − 1

2
y′e
)

, (104)

the points which define the closed convex setsMA and MB in the Euclidean space R
2 (see Fig. 3).

According to Theorem 9 we get

A0 = PMA
(Ae)

and

B0 = PMB
(Be) .

We denote by B1 the projection of B0 on the convex set MA, that is the unique element in MA which minimizes DE (B0,Q),
whereQ ∈ MA. It is easy tocheck thatB1 is theprojectionofBe onthesetMA, that isB1 ∈ MA and min

R∈MA

DE (Be, R) = DE (Be, B1).

MA

MB

Ae

Be

B1

B0

A0

Y

XO C G

C’

G’

Fig. 3. One case in the evaluating of the Lipschitz constant of TA .
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Also, it is immediate that

dE (B1, B0) ≤ dE (C, G) = dE

(
C′, G′) .

We have ((20)–(23) and the Cauchy–Buniakowski–Schwarz integral inequality are important here)

d2E (C, G)

= [3(u′e − ue) − 3(l′e − le) − 1

2
(x′e − xe) − 1

2
(y′e − ye)]2

=
(
6

∫ 1

0
α (BU (α) − AU (α)) dα − 6

∫ 1

0
α (BL (α) − AL (α)) dα

)2

≤ 72

((∫ 1

0
α (BU (α) − AU (α)) dα

)2

+
(∫ 1

0
α (BL (α) − AL (α)) dα

)2
)

≤ 72

(∫ 1

0
α2 dα

∫ 1

0
(BU (α) − AU (α))2 dα +

∫ 1

0
α2 dα

∫ 1

0
(BL (α) − AL (α))2 dα

)

= 24

(∫ 1

0
(BL (α) − AL (α))2 dα +

∫ 1

0
(BU (α) − AU (α))2 dα

)

= 24d2(A, B),

that is

d2E (C, G) ≤ 24d2(A, B) (105)

and therefore we get

d2E (B1, B0) ≤ 24d2(A, B).

Because MA is a closed convex subset of R
2 we obtain (see [44], Appendix C)

dE(PMA
(Ae), PMA

(Be)) ≤ dE(Ae, Be),

that is

dE (A0, B1) ≤ dE (Ae, Be) .

Since by Remark 3 we get dE(Ae, Be) ≤ 2
√

3d(A, B), it follows that

dE (A0, B0) ≤ dE (A0, B1) + dE (B1, B0)

≤ dE (Ae, Be) + √
24d(A, B)

≤ 2
√

3d(A, B) + 2
√

6d(A, B)

= 2
√

3
(
1 + √

2
)
d(A, B).

Substituting in (100) we obtain

d2 (TA, TB) ≤ 4d2(A, B) + 2(1 + √
2)2d2(A, B)

which after simple calculus implies

d (TA, TB) ≤
√
10 + 4

√
2d(A, B)

and the proof is complete.

(ii) Let us consider A, B ∈ F(R),

SA = [lS,uS, xS, xS],
SB = [l′S, u′

S, x
′
S, x

′
S]
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the symmetric trapezoidal approximations preserving ambiguity of A and B,

Te(A) = [le, ue, xe, ye],
Te(B) = [l′e, u′e, x′e, y′e],

the extended trapezoidal approximations of A and B and

Ae(x
e, ye),

Be(x
′e, y′e),

A0(xS, xS),

B0(x
′
S, x

′
S).

Following the same root as in the proof of (i), we get

d2 (SA, SB) ≤ 4d2(A, B) + d2E (A0, B0)

6
. (106)

Without any loss of generality, let us assume that

6u′e − 6l′e − x′e − y′e ≥ 6ue − 6le − xe − ye.

We consider the closed convex sets

QA =
{
(x, y) ∈ R

2 : x ≥ 0, x = y, x + y ≤ 3ue − 3le − 1

2
xe − 1

2
ye
}

,

QB =
{
(x, y) ∈ R

2 : x ≥ 0, x = y, x + y ≤ 3u′e − 3l′e − 1

2
x′e − 1

2
y′e
}

and the points C, C′, G, G′ given in (101)–(104). It is easy to check thatQA andQB represent themedians of the trianglesOCC′
and OGG′, respectively (see Fig. 3). According to Theorem 9, it follows that

A0 = PQA
(Ae)

and

B0 = PQB
(Be) .

As in the proof of (i), let us consider B1 = PQA
(B0) . Again, it is immediate that B1 is the projection of Be on the set QA. In

addition, we have

dE (B1, B0) ≤ 1√
2
dE (C, G) = 1√

2
dE

(
C′, G′) .

Taking into account that QA is closed and convex we obtain ([44])

dE (A0, B1) ≤ dE (Ae, Be) .

Since in (105) we have dE (C, G) ≤ 2
√

6d(A, B), it follows that

dE (A0, B0) ≤ dE (A0, B1) + dE (B1, B0)

≤ dE (Ae, Be) + 2
√

3d(A, B)

≤ 4
√

3d(A, B).

Substituting in (106) we obtain

d (SA, SB) � 2
√

3d (A, B) .
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(iii) Let us consider A, B ∈ F(R),

tA = [lt,ut, xt, yt],
tB = [l′t, u′

t, x
′
t, y

′
t],

the triangular approximations preserving ambiguity of A and B,

Te(A) = [le, ue, xe, ye],
Te(B) = [l′e, u′e, x′e, y′e],

the extended trapezoidal approximations of A and B and

Ae(x
e, ye),

Be(x
′e, y′e),

A0(xt, yt),

B0(x
′
t, y

′
t).

Again, following the same root as in the proof of (i), we get

d2 (tA, tB) ≤ 4d2(A, B) + d2E(A0, B0)

6
.

Without any loss of generality, let us assume that

6u′e − 6l′e − x′e − y′e ≥ 6ue − 6le − xe − ye.

We consider the closed convex sets (see Fig. 4)

NA =
{
(x, y) ∈ R

2 : x ≥ 0, y ≥ 0, x + y = 3ue − 3le − 1

2
xe − 1

2
ye
}

,

NB =
{
(x, y) ∈ R

2 : x ≥ 0, y ≥ 0, x + y = 3u′e − 3l′e − 1

2
x′e − 1

2
y′e
}

and the points C, C′, G, G′ given in (101)–(104) (see Fig. 4). In fact, NA and NB represent the closed segments [CC′] and [GG′]
respectively.

NA

NB

C=B1 G=B0

Y

Ae

Be

XO

A0

C’

G’

Fig. 4. One case in the evaluating of the Lipschitz constant of tA .
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According to Theorem 14 we get

A0 = PNA
(Ae),

B0 = PNB
(Be).

We denote by B1 the projection of B0 on the convex set NA, that is B1 = PNA
(B0). It is easy to check that B1 is the projection

of Be on the set NA, that is B1 ∈ NA and min
R∈NA

dE (Be, R) = dE (Be, B1). Also, it is immediate that

dE (B1, B0) ≤ dE (C, G) = dE

(
C′, G′) .

Therefore, from now one, the proof goes exactly on the same pattern with the proof of case (i) and consequently the same

type of estimation is obtained, that is

d(tA, tB) ≤
√
10 + 4

√
2d(A, B).

(iv) Let us consider A, B ∈ F(R),

sA = [ls,us, xs, ys],
sB = [l′s, u′

s, x
′
s, y

′
s]

the symmetric triangular approximations preserving ambiguity of A and B,

Te(A) = [le, ue, xe, ye],
Te(B) = [l′e, u′e, x′e, y′e],

the extended trapezoidal approximations of A and B and

Ae(x
e, ye),

Be(x
′e, y′e),

A0(xs, ys),

B0(x
′
s, y

′
s).

Also, we consider the points C, G given in (101), (103). As in the previous cases we get

d2 (sA, sB) ≤ 4d2(A, B) + d2E(A0, B0)

6
. (107)

Because xs = ys and x′
s = y′

s we obtain

d2E(A0, B0)

= 2(xs − x′
s)

2 = 1

2

[(
3ue − 3le − 1

2
xe − 1

2
ye
)

−
(
3u′e − 3l′e − 1

2
x′e − 1

2
y′e
)]

= 1

2
d2E (C, G)

which together (105) imply

d2E(A0, B0) ≤ 12d2(A, B).

Combining this last inequality with (107) we get

d (sA, sB) ≤ √
6d(A, B)

and the proof is complete. �
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At theendof this sectionwemention that thebest Lipschitz constantof the trapezoidal approximationoperatorpreserving

the expected interval was determined in [21]. The calculus of the best Lipschitz constant in the case of approximation

operators studied in the present paper is sophisticated too. A future research will be dedicated to this subject.

9. Trapezoidal and triangular approximation preserving ambiguity and aggregation

The important problemwhether it is better to simplify initial data before using an aggregation operator or conversely, to

aggregate original fuzzy values and then to simplify the output is addressed in [11]with respect to trapezoidal approximation

and trapezoidal approximation preserving the expected interval of fuzzy numbers. The aim of this section is to prove that

the conclusion in [11] remains valid under the approximations introduced in the previous sections.

The ambiguity of a set {A1, A2, ..., An} ⊂ F (R) can be defined in a natural way (see [32] for the case of an intuitionistic

fuzzy number, which is a conjunction of two fuzzy numbers) by

Amb (A1, A2, ..., An) = 1

n
(Amb (A1) + · · · + Amb (An)) .

Let us suppose that given fuzzy numbers A1, A2, ..., An should be efficiently aggregated to a fuzzy number such that the

ambiguity of aggregation to be equal with the ambiguity of the initial data set {A1, A2, ..., An}. Therefore, we try to find a

trapezoidal fuzzy number TA1,A2,...,An = [l∗, u∗, x∗, y∗] which is the nearest one to all members of the set A1, A2, ..., An with

respect to the distance d given in (7) and, in addition,

Amb
(
TA1,A2,...,An

) = Amb (A1, A2, ..., An) .

In fact, we are looking for a trapezoidal fuzzy number TA1,A2,...,An such that

D2 ((A1, ..., An) , TA1,A2,...,An
) =

n∑
i=1

d2
(
Ai, TA1,A2,...,An

)
(108)

is minimized and the conditions

6u∗ − 6l∗ − x∗ − y∗

12
= 1

n

n∑
i=1

Amb (Ai) , (109)

x∗ ≥ 0, (110)

y∗ ≥ 0, (111)

x∗ + y∗ ≤ 2
(
u∗ − l∗

)
, (112)

that assure the preservation of ambiguity and our output is really a trapezoidal fuzzy number (see (8)–(10)) are satisfied.

According with Proposition 4, after some elementary calculus, (109) can be rewritten as

6u∗ − 6l∗ − x∗ − y∗ = 6

n

n∑
i=1

uei − 6

n

n∑
i=1

lei − 1

n

n∑
i=1

xei − 1

n

n∑
i=1

yei . (113)

Taking into account Proposition 1 this problem becomes to find such TA1,A2,...,An that

n∑
i=1

d2
(
Te (Ai) , TA1,A2,...,An

) → min (114)

with respect to (110)–(113), where Te (Ai) = [
lei , u

e
i , x

e
i , y

e
i

]
is the extended trapezoidal approximation of Ai, i ∈ {1, ..., n}.

Because u∗ is expressed from (113) it reduces ((16) is important here) to find l∗, x∗ and y∗ such that⎧⎨
⎩

n∑
i=1

(
l∗ − lei

)2 + 1

12

n∑
i=1

(
x∗ − xei

)2 + 1

12

n∑
i=1

(
y∗ − yei

)2

+
n∑

i=1

⎛
⎝uei − l∗ − 1

6
x∗ − 1

6
y∗ − 1

n

n∑
i=1

uei (115)

+1

n

n∑
i=1

lei + 1

6n

n∑
i=1

xei + 1

6n

n∑
i=1

yei

⎞
⎠2
⎫⎪⎬
⎪⎭ → min,
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x∗ ≥ 0, (116)

y∗ ≥ 0, (117)

x∗ + y∗ ≤ 3

n

n∑
i=1

uei − 3

n

n∑
i=1

lei − 1

2n

n∑
i=1

xei − 1

2n

n∑
i=1

yei . (118)

According to the Karush–Kuhn–Tucker theorem (Theorem 5), (l∗, x∗, y∗) is a solution of (115)–(118) if and only if there exist

μ1, μ2, μ3 such that the following system holds

2

n∑
i=1

(
l∗ − lei

)− 2

n∑
i=1

⎛
⎝uei − l∗ − 1

6
x∗ − 1

6
y∗ − 1

n

n∑
i=1

uei (119)

+1

n

n∑
i=1

lei + 1

6n

n∑
i=1

xei + 1

6n

n∑
i=1

yei

⎞
⎠ = 0,

−1

3

n∑
i=1

⎛
⎝uei − l∗ − 1

6
x∗ − 1

6
y∗ − 1

n

n∑
i=1

uei + 1

n

n∑
i=1

lei (120)

+ 1

6n

n∑
i=1

xei + 1

6n

n∑
i=1

yei

⎞
⎠+ 1

6

n∑
i=1

(
x∗ − xei

)− μ1 + μ3 = 0,

−1

3

n∑
i=1

⎛
⎝uei − l∗ − 1

6
x∗ − 1

6
y∗ − 1

n

n∑
i=1

uei + 1

n

n∑
i=1

lei (121)

+ 1

6n

n∑
i=1

xei + 1

6n

n∑
i=1

yei

⎞
⎠+ 1

6

n∑
i=1

(
y∗ − yei

)− μ2 + μ3 = 0,

x∗ ≥ 0, (122)

y∗ ≥ 0, (123)

x∗ + y∗ ≤ 3

n

n∑
i=1

uei − 3

n

n∑
i=1

lei − 1

2n

n∑
i=1

xei − 1

2n

n∑
i=1

yei , (124)

μ1 ≥ 0, (125)

μ2 ≥ 0, (126)

μ3 ≥ 0, (127)

μ1x
∗ = 0, (128)

μ2y
∗ = 0, (129)

μ3

⎛
⎝x∗ + y∗ − 3

n

n∑
i=1

uei + 3

n

n∑
i=1

lei + 1

2n

n∑
i=1

xei + 1

2n

n∑
i=1

yei

⎞
⎠ = 0. (130)

Taking into account Propositions 1 and 4, the problem to find the nearest trapezoidal fuzzy number TA =
[
l, u, x, y

]
of

fuzzy number A = 1
n
· (A1 + A2 + ... + An), with respect to the distance d given in (7), such that the ambiguity is preserved,

that is

Amb
(
TA
) = Amb

(
A
)

is equivalent to solve

d2(Te
(
A
)
, TA) → min (131)

with respect to

x ≥ 0, (132)

y ≥ 0, (133)

x + y ≤ 2
(
u − l

)
, (134)

Amb
(
TA
) = Amb

(
Te

(
A
))

. (135)
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Because

Te

(
A
)

=
⎛
⎝1

n

n∑
i=1

lei ,
1

n

n∑
i=1

uei ,
1

n
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according with (15) and (16), (131)–(135) becomes
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It is immediate that TA =
[
l, u, x, y

]
is a solution of the problem (131)–(135) if and only if u satisfies (136) and

(
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solution of the problem
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x ≥ 0, (137)

y ≥ 0,
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According to the Karush–Kuhn–Tucker theorem (Theorem 5),
(
l, x, y

)
is a solution of (137) if and only if there exist ν1, ν2, ν3

such that the following system holds
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+ 1

6
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ν1 ≥ 0, (144)

ν2 ≥ 0, (145)

ν3 ≥ 0, (146)

ν1x = 0, (147)

ν2y = 0, (148)
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If we compare (113) with (136) and (119)–(130) with (138)–(149) the below result is immediate. Because a trapezoidal fuzzy

number [l, u, x, y] is symmetric if and only if x = y, the above reasoning can be repeated in the case of symmetric trapezoidal

approximation.

Theorem 26. The (symmetric) trapezoidal fuzzy number nearest to fuzzy numbers A1, ..., An which preserves the ambiguity of
{A1, ..., An} is the (symmetric) trapezoidal fuzzy number nearest to fuzzy number A = 1

n
· (A1 + A2 + ... + An)which preserves

the ambiguity of A.

Example 27. Let us consider the fuzzy numbers A and B, given by their α-cuts, α ∈ [0, 1] ,

Aα =
[
−1 + α2, 4 − 2α2

]

and

Bα =
[
1 + α2, 3 − α2

]
.

Because(
1

2
· (A + B)

)
α

=
[
α2,

7

2
− 3

2
α2

]
, α ∈ [0, 1] ,

according with Theorems 10, (i) and 12, (i), we get
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)
.

Theorem 26 implies that the trapezoidal fuzzy number nearest to fuzzy numbers A and B, which preserves the ambiguity of

{A, B} is
(
− 1

6
, 5
6
, 9
4
, 15

4

)
too. From the same theorem, we conclude that the symmetric trapezoidal fuzzy number nearest to

fuzzy numbers A and B, which preserves the ambiguity of {A, B} is
(
− 7

24
, 23
24

, 19
8
, 29

8

)
too.

We recall, a trapezoidal fuzzy number [l, u, x, y] is triangular if and only if x + y = 2 (u − l). A similar result with

Theorem 26 remains valid in the case of the nearest (symmetric) triangular fuzzy number preserving ambiguity of a fuzzy

number. We omit the proof.

Theorem 28. The (symmetric) triangular fuzzy number nearest to fuzzy numbers A1, ..., An which preserves the ambiguity of
{A1, ..., An} is the (symmetric) triangular fuzzy number nearest to fuzzy number A = 1

n
· (A1 + A2 + ... + An) which preserves

the ambiguity of A.
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Theorems 26 and 28 show that there is no difference whether the trapezoidal and triangular approximations preserving

the ambiguity are performed before or after aggregation with respect to average.

Example 29. If A, B ∈ F (R) are as in Example 27 then, according with Theorems 15, (i) and 17 we get

t 1
2
·(A+B) =

(
−19

12
,
37

24
,
31

6

)

and

s 1
2
·(A+B) =

(
−41

24
,
5

3
,
121

24

)
.

Theorem 28 proves that the triangular fuzzy number nearest to fuzzy numbers A and B, which preserves the ambiguity of

{A, B} is
(
− 19

12
, 37
24

, 31
6

)
and the symmetric triangular fuzzy number nearest to fuzzy numbers A and B, which preserves the

ambiguity of {A, B} is
(
− 41

24
, 5
3
, 121

24

)
.

10. Conclusion

We continue the list of approximations of fuzzy numbers under conditions. The ambiguity of a fuzzy number [24] is

the characteristic with a central role in the present paper. Strictly speaking, the results are not better or worse than other

results of approximation obtained in this topic. In fact, different approximations can be compared only taking into account

their properties and importance from the theoretical and practical point of view. As example, the trapezoidal approximation

operator given in [4] preserves the core, it is computationally efficient and additive, but discontinuous (see [14]) and does

not preserve the ambiguity or the expected value. The trapezoidal approximation in [44] give us the nearest trapezoidal

fuzzy number of a fuzzy number with respect to the average Euclidean distance (7). The operator is continuous [44], but it

is non-additive, not preserves any important characteristic (expected value, expected interval, ambiguity, value, etc.) and it

is not very good from the computational point of view. The approximations proposed in the present paper are the best in

practical or theoretical developments where it is advisable as the data (expressed by fuzzy numbers) to be simplified but the

ambiguity must be preserved. Operators of approximation of fuzzy numbers by real intervals, trapezoidal fuzzy numbers,

symmetric trapezoidal fuzzy numbers, triangular fuzzy numbers and symmetric triangular fuzzy numbers, preserving the

ambiguity, are given in Theorems 6, 10, 12, 15 and 17. Algorithms of calculus, the study of continuity and behavior related to

aggregationwere debated too. In this way themain properties of the operators were studied even if some improvements are

possible.Asexample,weprove that theoperatorsareLipschitzandthecontinuity is an immediateconsequence.Nevertheless,

the geometrical reasonings used in the paper do not furnish the best Lipschitz constants as in the case of the trapezoidal

approximation preserving the expected interval was performed [21]. The method to find the best Lipschitz constant for the

operators given in the present paperwas already elaborated in [22], but the concrete reasoningswould be very sophisticated

and the presentation too large to be treated here.
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