Due to the possibility to cure the disease, treatment duration in HCV is limited to a maximum of 48 weeks. The lengths of use of direct acting agents (DAA’s) are significantly different: 12 weeks with telaprevir vs. 24, 32 or 44 weeks with boceprevir. These differences make the implementation of futility rules in economic models critical. OBJECTIVES: To provide an insight on the proper application of the futility rules in economic evaluations of DAA’s. METHODS: A decision tree model was developed to assess cost-effectiveness for each DAA, considering 4 patient types: naive, relapsers, partial responders, and null responders. Average acquisition costs have been estimated with and without the use of futility rules; if these rules are used, corresponding salvage treatment costs were included. The efficacy of triple therapy treatment was defined by patient type based on each DAA’s summary of product characteristics. Cost per patient with sustained virological response (SVR) and the number of cancer-related adverse events (RAE) were incurred were calculated with a fixed budget. RESULTS: For a 10 million EUR investment in each patient type for either DAA, using telaprevir offers maximum cured (726 vs. 587) and minimum non-cured patients (399 vs. 517) if futility rules are not considered. If the futility rules are used, there are still maximum cured patients (759 vs. 734) and minimum non-cured patients (450 vs. 697) when telaprevir is used. We performed one-way and two-way sensitivity analyses and the overall conclusion does not change vs. boceprevir. CONCLUSIONS: Telaprevir offers maximum cured and minimum non-cured patients regardless of the futility rule consideration when compared to boceprevir. If stopping rules are considered in economic evaluations for the treatment of HCV, an appropriate horizon timeline should also be considered to capture future unavoidable costs of non-cured patients: salvage treatment and/or potential disease progression.

PHARMACOECONOMIC EVALUATION OF THE INTRODUCTION OF UNIVERSAL INFANT VACCINATION WITH PHiD-CV IN FINLAND USING NEW EFFICACY/EFFECTIVENESS DATA. EXAMPLE OF FINLAND

Delgatie E1, Torvinen S2

1GlaxoSmithKline Vaccines, Wavre, Belgium, 2GlaxoSmithKline, Espoo, Finland

OBJECTIVES: To estimate the disease burden and economic impact of the 10-valent pneumococcal non-typeable Haemophilus influenzae (NTHi) protein D conjugate vaccine (PHiD-CV) compared with 13-valent pneumococcal conjugate vaccine (PCV13) in Finland based on recently generated vaccine efficacy/effectiveness data. To date, vaccine efficacy of the second generation pneumococcal conjugate vaccines (PCVs) on invasive pneumococcal disease (IPD) and pneumonia has been extensively evaluated based on 7-valent PCV13 efficacy data and serotype distribution. Impact of PCVs on IPD and pneumonia is now observed in post-marketing settings in several countries and the effectiveness of PHiD-CV against IPD has recently been demonstrated in a clinical trial in Finland. METHODS: A Markov cohort model was used to estimate the clinical and cost burden of pneumococcal and NTHi-related diseases in a birth cohort over lifetime and to measure the clinical and economic impact of PHiD-CV compared with PCV13 in Finland. Age-specific incidences of IPD, pneumonia and acute otitis media (AOM) and direct medical costs were calculated and used as input data. Only the direct effect of vaccination was considered. Outcomes were measured in quality-adjusted life-years (QALYs) and incremental cost-effectiveness ratio. RESULTS: The model predicts that PHiD-CV and PCV13 may have a similar impact on IPD and pneumonia in a pediatric population. PHiD-CV is estimated to prevent an additional 26,576 AOM cases and 2,502 myringotomy procedures versus PCV13 in a country with a birth cohort of 57,000 infants. This translates in an additional reduction of medical costs by EUR 8,470,547 (discounted with 3%). Cost-effectiveness analysis showed that PHiD-CV provides 135 more QALYs (discounted) saving cost compared with PCV13. Universal infant vaccination with PHiD-CV provides more HE benefits than PCV13. CONCLUSIONS: Nation-wide infant vaccination with PHiD-CV in Finland is projected to improve health outcomes and will be a cost-saving strategy. Funding: GlaxoSmithKline Biologicals SA.

PHARMACOECONOMIC EVALUATION OF THE INTRODUCTION OF UNIVERSAL INFANT VACCINATION WITH PHiD-CV IN ITALY USING NEW EFFICACY/EFFECTIVENESS DATA.

Sauboin C1, Bonanni P2, Ouwens M3, Era S4, Gabutti C5, Resti M4, Azzani C4, Vitale P2

1GlaxoSmithKline Vaccines, Wavre, Belgium, 2University of Florence, Florence, Italy, 3MAPF Consultancy, Houten, The Netherlands, The Netherlands, 4GlaxoSmithKline Spa Pharmacoeconomics, Vienna, Italy, 5Hygiene and Public Health, Chauxen (Gantois), Switzerland, 6Meyer Paediatric University Hospital, Florence, Italy, 7University of Palermo, Palermo, Italy

OBJECTIVES: Chickenpox is an infectious disease caused by the varicella-zoster virus (VZV) in children and is recognized as an important problem for public health and costs. It can lead to serious complications and high costs both for society and health system. Published studies indicate that in Italy about 50,000 people are affected by varicella each year. This analysis estimates the incremental cost-effectiveness ratio (ICER) of replacing MMR vaccine by introducing MMRV vaccine in the current schedule in Italy. The higher risk of fewer episodes and febrile seizures associated with MMRV compared with MMR vaccination and the conservative assumption on exogenous immunity boosting on zoster incidence were taken into account. METHODS: An age-structured dynamic model was used to simulate the evolution of varicella and herpes zoster, both in current schedule and with replacement of MMR by MMRV with a lifetime horizon. Two scenarios were evaluated on the basis of first and second dose of vaccination coverage: 85% and 70% for the first scenario, 70% and 50% for the second scenario. It was assumed that MMR would be completely replaced by MMRV within 5 years. RESULTS: For both scenarios evaluated at the fifth year increased were 11,962 and 17,548 cases respectively. Incremental costs of non-cured patients: salvage treatment and/or potential disease progression.

COST-EFFECTIVENESS OF FLUCONAZOLE/ITRACONAZOLE FOR THE PREVENTION OF INVASIVE FUNGAL INFECTIONS IN NEUTROPENIC PATIENTS

Athanasakis K, Petrakis I, Kyriopoulos J

National School of Public Health, Athens, Greece

PHASE III RCTs of Fluconazole and Itraconazole against the prevention of IFI in neutropenic patients, in which these agents, were used. RESULTS: Avoided IFI with Posaconazole was 6,455 children aged 0 to 14 years was analyzed. The own adapted model was used. CONCLUSIONS: This analysis, which considers benefits and risks of MMRV vaccines, indicates that the implementation of MMRV would provide a benefit in terms of cases and costs avoided and is likely to be cost-effective. From the NHS perspective the ICER supports the introduction of MMRV. Benefits of vaccination increase in time horizon to high vaccination coverage.

COST-EFFECTIVENESS ANALYSIS OF THE PRIMOVACCINATION OF NEWBORNS AGAINST TUBERCULOSIS IN SLOVAKIA

Marusakova E1, Bielik J2, Frecova K2, Nevicka P1, Sedlakova D1

1GlaxoSmithKline Slovakia, Bratislava, Slovak Republic, 2Bratislava University, Bratislava, Slovak Republic, 3World Health Organization, Bratislava, Slovak Republic

OBJECTIVES: To analyze the cost-effectiveness of mass primovaccination of newborns against tuberculosis (TB) in Slovakia. METHODS: A decision tree model was developed, which described the course of neutropenic patients under posaconazole or standard azole (fluconazole or itraconazole) treatment. The effectiveness of Posaconazole was defined for each treatment regimen were derived from published results of a pivotal, multicentric, randomized clinical trial. The cost and health care resources utilization data used, depicted Greek clinical practice and are derived from official Greek sources. In order to obtain some of the model inputs, expert opinion from Greek Hematologists specializing in treating IFIs, was also used. RESULTS: Posaconazole with Posaconazole resulted in fewer IFIs (0.6 vs. 1.0 IFIs per patient) compared to treatment with fluconazole, or itraconazole. Posaconazole during the first 100 days from initiation of prophylaxis treatment. The cost per avoided IFI with Posaconazole was 6,455€, while the cost for every incremental life year gained (LYG) was estimated at 24,956€. Extensive sensitivity analyses (one-way and probabilistic) corroborated the base-case results. CONCLUSIONS: The utilization of Posaconazole for prophylaxis of IFIs in hematology patients with neutropenia is a therapeutic strategy that provides superior clinical efficacy, while being cost-effective compared to alternative therapies.