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1. INTRODUCTION 

In this paper we examine the behavior of the best uniform rational approxi- 
mation operator in certain generalized weight function approximation 
problems. An introduction to this subject is given in 121. 

Let X be a compact topological space, and forf E C(X) let 

Let P and Q be two finite dimensional linear subspaces of C(X). In generalized 
rational approximation one is interested in approximating an f E C(X) by a 
function of the form r = p/q where p E P, q E Q and q > 0 on X. 

A generalized weight function W(x, y) is defined for x E X, y real, and has 
values in the extended reals. Specific examples and a number of results con- 
cerning generalized weight functions are given in ([I], [2], [3], [4]). In this paper 
we are concerned with the problem of finding a generalized rational function Y 
which minimizes 

2: I JJJ t&m - 44II~ (1) 

The sections which follow give a number of results concerning (I), assuming 
various hypotheses on W(x, y) and on the space of functions P -t rQ where r is 
a solution to the approximation problem. Here P + rQ = {p -t rq: p E P, q E Q>. 

Certain notations are used throughout the paper. Suppose for a fixed 
rational function Y that P -t- r Q has a basis g,, . . ., g,.Then for x E Xwe define a 
vector R by 

2 = (SlW, gdx), * * *3 gnw. (79 

The symbol 0 denotes the origin of Euclidean n-space. Suppose Y is a subset 
of X, and g is a real valued function defined on Y. Then 

m(Y) E: Y E y> 
denotes the convex hull of the set of vectors g(y) p with y E Y. 

1 Supported by N.S.F. Grant GP-8686. 
0 1968 by Academic Press 391 

26 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82022817?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


392 LOEBANDMOURSUND 

If G is a linear subspace of C(X), of dimension k, then G is called a Haar 
subspace iff every nonzero element of G has at most k - 1 zeros. 

2. RESTRICTED RANGE APPROXIMATIONS 

Let land u be two elements of C(X) satisfying 

l(x) < u(x) v x E x. 

Letf * E C(X) be the function to be approximated, and define 

R={r=p/q:pEP,qeQ,q>O,l<f*-r,(u). (3) 

In the discussion which follows we always assume that R is nonempty. 
We shall consider a generalized weight function W(x, u) with the following 

properties : 

If D = {(x, JJ) : x E X, y real, Z(x) < y & u(x)> then : 

(a) W(x, Jo) is continuous over D; 
(b) aW(x, v)/ay is continuous over D and positive at each point 

(x, v) of D with y # 0; 
(4) (4 (x, v> E D => sgn W(x, ~4 = sgn Y; 

(d) xEXandy>u(x) * W(x,y)=so; 
(e) x E Xand y < Z(x) 3 W(x, y) = --co. 

These hypotheses are satisfied, for example, in the problem considered in [4]. 
For notational convenience we write 

E(f* - r)(x) = W[x,f*(x) - r(x)]. 

We call E(f* - r) the weighted error function. Thus the problem (1) is to 
minimize 

sjllplW* -4(x)1 = IIWf* - 41. 

In restricted range approximations there are two types of critical points. For 
a particular r E R under consideration define : 

X+, = (x E X: E(f* - r)(x) = ]jE(f* - r)i/} 

A--, = (x E X: E(f * - r)(x) = - /E(f* - r)# 

X+, = (x E X: E(f * - r) (x) = u(x)> 

Xv, = {x E X: E( f * - r)(x) = I(x)} 

x, = x+, u x-1 u x+, u At,. 
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In [I] it was shown that the cases X+, n Xe2 # o and X-r n X+, # (21 are 
exceptional, and not of general interest. Here we shall assume 

x+, nx-,=x-, nx+,= D. 
Then iff* f I we can define an integer valued function u, on X, as follows 

( 

sgnE(f* -r)(x) x E X+, U X-, 
up(x) = +1 x E x+2 

-1 x E x-2. 

For the remainder of this section we assumef* 6 R. The following character- 
ization theorem and lemma, which we shall need later, are established in [I]. 

THEOREM 1. If P + rQ is a Haar subspace then r is a best approximation to 
f*iff 

0 E H{o,(x)f: x E XJ. 

LEMMA 1. If P + r Q is a Haar subspace then 

0 E H{u,(x) 2: x E X,} 

iff there is no nonzero h E P + rQ such that (a,h)(x) 2 0 for all x E X,. 

If r* is a best approximation to f* from R and P + r* Q is a Haar subspace, 
then r* is unique [I]. In this situation we shall denote r* by of*. We shall 
establish the continuity of the operator T at a normal point f * E C(X). 

DEFINITION. f * E C(X) is a normal point iff it has a best approximation r* 
from R such that P + r* Q is a Haar subspace whose dimension = dimension 
P + dimension Q - 1. 

Results concerning normal points can be found in ([5], [6], [7]). The first 
result we shall prove here is a strong uniqueness theorem. 

THEOREM 2. Let r* be a best approximation to f * from R. If f * is normal 
then there exists an cc > 0 such thatfor all r E R 

IP(f * - r>ll a IIW* - r*>II + +W* -- r*> - E(f * - 411. (5) 

Proof. (Note that this result is trivially true if f * E R.) We assume f* f r* 
and that there is no a as stated. Then there exist sequences {r,} c R and (CC”}, 
where a, -+ 0 and 

sIIHf* -r*> -E(f* -r,Jli = llE(f* -rJll - IIE(f* -r*>Il. 
Herer,=p,~q,,q,~O,((p,~j+~~q.~~=l,andr,fr*.SinceI~f*-r,~u,{r,}is 
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bounded. Here there is no loss of generality in assuming that there exist 
p E P, q E Q such that llp[j + j/q/ = 1 and P,, +p, qn --f q. We also can assume 
r* =p*/q* where //p*ll+ l/q*)] =I. F or simplicity of notation we shall write 
u(x) = up*(x). 

If x E X+, U X-i then 

4IW* - r*> - E(f* - r,>ll 
= WV* - rJI - II-W* - r*>ll 
2 4x>{ WM”*(x) - r,W - Wx9f*(x> - r*(x)11 

= u(x) aw[~~'x)l[r*(x) - r,(x)]. (6) 

Here u,,(x) is between f*(x) - r,,(x) and f*(x) - r*(x). For the fixed x under 
consideration it might happen that zero is a point of accumulation of 
{f*(x) - r,(x)}. If that happens then by choosing subsequences one can 
assumef*(x) - r,,(x) --f 0. Then for sufficiently large n, 

u(x)[r*(x) - r,(x)] = u(x)[r*(x) -f*(x) +f*(x) - m(x)] G 0. (7) 

This uses the fact that 

44 U”*(x) - r*Wl = lltf* - r*>ll > 0. 

Now by multiplying each side of (7) by q"(x) and taking limits, one concludes 

0 a 44 [r*(x) 4(x) - ~(41. 63) 

If {f*(x) - r,(x)) does not have zero as a point of accumulation then there 
exists an N such that 

d(x) z inf!!!Yrx’ yn(X)1 > 0 
tl3N aY * 

Hence for sufficiently large n it follows from (6) that 

$Jj IIE(f* - r*) - E(f* - r,>ll > 44 b-*(x) - r,,Wl. (9) 

Then by multiplying by q,,(x) and taking limits one again obtains the inequality 
(8). That is, (8) holds for all x E X+, U X-,. 

For x E X+, U Xe2, 

Hence 
44 V*(x) - r*(x)1 2 44 V*(x) - rkdl. 

4.4 [-r*(x) 4d4 + ~(41 a 0. (10) 
Taking limits we again conclude that (8) holds. 

Since (8) holds for all x E X, we obtain, using Lemma 1, -r*q + p = 0. 
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It then follows from ([5], p. 165) that p* =p, q* = q, and hence r,, --f r*. We 
conclude that zero is not an accumulation point of {f(x) -r,(x)} when 
x E X+, U X-,. Thus, since in any event r, + Y* uniformly, there is no loss 
of generality in assuming there exists a d > 0 such that for all n and all 
x G x+, u x-1, 

d < {w[x, Ytdx>l \ 
ay * 

Since qn -+ q* uniformly, there exists a 6 > 0 such that for all n and all 
x E X, q.(x) > 8. By a straightforward argument, using Lemma 1 and (lo), it 
follows that there exists a c > 0 such that for all n, 

c,c max $4 [r*(x) 4Ax) - P,(X)] . 
xex+1 u X-l ttr* 4n - Pnll 

Using the above results in (6), we conclude 

a,IIE(f* - r*) - EU* - r,>II a dcllr*q, - PJ 
2 dcQ* - r,(l. 

An application of the mean value theorem to this inequality gives the existence 
of an m > 0 such that 

ma&, - r*/ > dc6llr* - r,ll. 

Since r, f r* and a, -+ 0, this yields the desired contradiction and completes 
the proof. 

We now focus our attention on the continuity of 7 at a normal pointf *. Let 

F= {f~ C(X): l<f- of* <u). (11) 

For each f E F, we consider the question of finding a solution to the problem of 
minimizing jJE( f - r)jl for r E R. 

THEOREM 3. Letf * be a normalpoint of C(X). Then there exists an a > 0 such 
thatfoEFandI\f*-hll < a imply that f. has at least one best approximation. 
Moreover, there exists a constant /3 > 0 such that for any best approximation 
r0 tof0, 

IP(f * - Tf *I - E(f, - ro)ll G PlKf * -h)ll. (12) 

Proof. Let r* be the best approximation tof*. The search for a best approxi- 
mation to f. may be confined to those r. E R for which 

IlE(fo - cJl1 G IIE(fo - r*>ll. 
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Such r. satisfy (using the triangle inequality) 

llE(f* - r*) - -Wi - ro>ll G IIE(.f* - r*> - E(f* - ro)il 
+ II W” - ro) - E(fo - roll. 

Using Theorem 2 and then the triangle inequality and other manipulations, it 
follows that the above is 

G @(f* - ro)ll - IIE(f* - r*>lll + llW* - ro> - Wo - ro)ll 

G ; [lIE(f* - ro> - W, - roll + II-W, - rollI - llE(f* - r*>lll 

+ llE(f* - ro) - E(f, - ro>ll 

G; [IIE(f* - ro> - Hf, - ro>ll + llE(fo - r*>ll - IElf* - r*)lll 

+ llE(f* - ro) - ml - ro>Il 

~~~ljE~f’-~o~-~~f,-~o~ll+II~~fo-~*~-~~f*-~*~~!l 

+ llE(f* - r0> - Xh - r0>ll. 

Application of the mean value theorem to each of the three “normed” 
quantities above, leads to the result (12). The proof is then completed by use of 
the methods in [5], p. 168, and [6]. 

It is worth noting that many generalized weight function approximations 
which do not have the restricted range condition can be considered to have it. 
For example, suppose W(x, v) satisfies : 

(4 sgn Wx, v> = sgn Y; 
(b) W(x, JJ) and aW(x, y)/ay are continuous; 
(c) a W(x, y)/+ > 0 when y # 0, and lim j W(x, JJ)] = co. 

lJd-+m 
This allows us to select u(x) sufficiently large, and I(x) sufficiently small, so that 
X+, = m and Xe2 = B. Then the results of Theorems 2 and 3 hold. These 
results are, thus, important if one is considering the computational aspects of 
this problem. 

Next we consider the case where P + (v--*) Q is a Haar subspace butf * is not 
necessarily a normal point of C(X). 

THEOREM 4. Let (f,} = F and {r,,) = R be two sequences such that 

and 
IPU - rJll -+ UE(f* - r*>U- 
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Here r* = Tf *. If r, is written in the normalized form r, =pn/qn, with 
(Ip,,/ + llqnj = 1, then the sequence {(p,, 4”)) converges to the subspace 

Mr((p,q):p~P,q~Q,-p+r*q=O}; 
that is, 

distance [M, (p,, qJ] -+ 0. 

Proof. If r* =f* we find E( f,, - rJ --f 0, and hence by the properties of the 
weight function, fn - r, -+ 0. Thus a fortiori we obtain the desired result. 

If ,f * f r* and the result is false then there exist subsequences of { fn} and 
{r,} which we do not relabel satisfying 

(a) there exist an E > 0 such that distance [M,(p,,q,,)] > E for all n; 

(b) A -+P, qn -+ q where IL-41 + llqll = 1. 

For x E X+, U K,, 

lP(fn - r311 - II-W* - r*)ll 
a +4x)[E( f, -r&4 -E(f* - r*>(Nl. 

Using the same techniques as were employed in the proof of Theorem 2, one 
can verify that 

0 a 44 [r*(xMx) - ~C41. (13) 

Since inequality (13) also holds for x E X+, U Xh2, it follows by Lemma 1 that 

r*q-p=O. 

This contradicts the assumption that 

distance [M, (A, qn)l > E 

and completes the proof. 

for all n 

For the remainder of this section we specialize to the situation where 
X= [a,b]. We make the assumption that for each nonzero q E Q, the set of 
zeros of 4 is of measure zero. 

THEOREM 5. If(r,> c R and (fn> c Fare such that r, =pJq,,, jjpnll + jjqJ\ = 1, 
(pn,qn) --f M, and fn --f f *, then E( fn - r,,) --f E(f * - r*) in measure. Here 
M={(p,q):pEP,qEQ,-p+r*q=O}. 

Proof. Assume the contrary. We can then find subsequences of {r,) and 
if,>, which we do not relabel, such that 

(a) There exist an E > 0 and a positive integer k such that if 
B, E (x: IE(f, -r,)(x) - E(f* - r*)(x)1 > l/k) 

then the measure of B,, is greater than E for all n; 

@I pn + P, qn -+ q where IIPII + llqll = 1. 
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Since /p/1 + j/q11 = 1 and -p + r*q 3 0, we conclude that q $0. Let 

x, = {x:q(x) # 0:. 

By hypothesis the measure of X0 is b - a. Choose a closed set A’, = X, such 
that the measure of X, is b - a. On X,, E(fn - r,) --f E(f * - r*) uniformly. 
Thus for large n, II,, tl X1 = O, which implies that B,, has measure zero. This 
is a contradiction. 

The following result is then clear. 

THEOREM 6. If r* is a best approximation to f * and P + r* Q is a Haar sub- 
space, thenfor every pair of sequences {r,,} c R and { fn} c Fsuch thatf, --f f and 
/E(fn - r,>jl -+ IIE(f* - r*)l(, E(fn - r,) -+ E(f * - r*) in measure. 

3. RATIONALAPPROXIMATIONWITHINTERPOLATION 

We turn now to a different sort of restricted range approximation. Using the 
ordinary uniform norm as a measure of error we are interested in finding a best 
rational approximation which interpolatesf(x) on a prescribed point set. To 
be more specific, let {x1, . . ., x~} c X, where k Q dimension P, be a given set of 
points. ForSE C(X) let 

R,=(r=p/q:pEP;q~Q;q>O;r(x,)=f(xi), i=l,...,k} 

Then we call r* E R, a best approximation toffrom Rf iff 

distance(R,,f) = IIf-- r*/. 

For each r E R, define 

S,={-p+rq:pEP;qEQ;(-p+rq)(xi)=O, i=l,...,k). 

DEFINITION. S, is called an interpolating Haar subspace iff every nonzero 
element in S, has at most d(r) - 1 zeros distinct from {xl, . . ., ~~1. d(r) is the 
dimension of the subspace S,. 

Clearly if P + rQ is a Haar subspace, then S, is an interpolating Haar sub- 
space. The following theorem and lemma are given in [a]. 

THEOREM 7. r is a best approximation to ffrom Rf iff 

O~H{a(x)2i-:x~X,) 

where 

44 = w [f(x) - rW1, -F = b E X: If (x1 - r(x)/ = Ilf- rll>, 

Here 2 z (g,(x), g2(x), . . ., g,(x), whereg,, g2, . . ., g,, is a basis of S,. 
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LEMMA 2. If r is a best approximation to ffrom R,, where r $f and Sr is an 
interpolating Haar subspace, then h E S, and o(x)h(x) > 0 for all x E X, imply 
h E 0. 

In [8], under the assumption that the dimension of the interpolating Haar 
subspace S, is (dimension P -t dimension Q - 1 - k), the Lipschitz continuity 
of the best approximation operator at f was demonstrated. In general we will 
show that only convergence in measure can be expected. 

THEOREM 8. Let r be a best approximation to f from R, and assume S, is 
an interpolating Haar subspace. Let {r,,) and {fn> be two sequences with the 
properties: 

(4 rn E RY,, where r, =P&L andlIp.ll + IMl = 1; 

04 fn -+f; 
(4 llfn - 41 + llf --Il. 

Define A4 = ((p,q) E P x Q: -p + rq = O}. Then 

distance [(p,, qn), M] -+ 0 

Proof. For the case r =f, the result is clear. If r f f, assume that the result is 
false. Then (by taking subsequences if necessary) there exists an E > 0 such that 

distance ((p,, 43, M) a E (14) 

for all n. By taking further subsequences we can secure thatp, -+ p and q,, -+ q. 
Now, for each interpolating point Xi, 

-pn(x*) + Cl,(x*)fn(xJ = 0. 

Sincef,(xi) = r,(x*), one finds by taking the limit, 

-p(xJ + 4(x,) r(xl) = 0. 

Hence -p + rq E S,. By the same argument used in Theorem 2, 

-p(x) + 46) 44 = 0 

for each x E X,. Hence by Lemma 2 

-p+rq=O. 

This contradicts (14). 

THEOREM 9. If r* E R,, and P + r* Q is a Haar subspace, then there exists a 
y > 0 such that (( f - g(( c y implies that R, is nonempty. Furthermore, iff, -+ j 
and 11 f - fn\i c y, there exist r,, E R,, such that r, -+ r*. 



400 LOEBANDMOURSUND 

ProoJ Consider the system of equations forp and q 

-jl(Xi) + g(Xi)q(X,) == 0 i= I ) . . .) k. 

By hypothesis, this system can be solved in a neighborhood ofp =p*, q = q* 
and g = f for a p and q such that if r = p/q, r E $ and r is close to r*. 

COROLLARY. Under the same hypotheses as in the previous theorem, fn + f 
implies distance (R,,, fJ + distance (R,, f). 

Now if we specialize to the case where X = [a, b] and assume for each non- 
zero q E Q, that the set of zeros of q has measure zero, we find, pursuing the 
same ideas as in the restricted range case, that: 

THEOREM 10. Assume r is a best approximation to ffrom Rf and S,. is an inter- 
polating Haar subspace. Then lf {r,} and { fn) are two sequences such that f, + f, 
r,, E R,, and /If, - r,ll + /I f - r/J, then r,, + r in measure. 
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