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Abstract Testis-specific poly(A) polymerase (TPAP) is a cyto-
plasmic poly(A) polymerase that is highly expressed in round
spermatids. We identified germ cell-specific gene 1 (GSG1) as
a TPAP interaction partner protein using yeast two-hybrid and
coimmunoprecipitation assays. Subcellular fractionation analy-
sis showed that GSG1 is exclusively localized in the endoplasmic
reticulum (ER) of mouse testis where TPAP is also present. In
NIH3T3 cells cotransfected with TPAP and GSG1, both pro-
teins colocalize in the ER. Moreover, expression of GSG1 stim-
ulates TPAP targeting to the ER, suggesting that interactions
between the two proteins lead to the redistribution of TPAP from
the cytosol to the ER.

Structured summary:

MINT-6168263:

Gsg1 (Q8R1W2), TPAP (Q9WVP6) and Calmegin (P52194)

colocalize (0403) by cosedimentation (0027)

MINT-6168204, MINT-6168178:

Gsg1 (Q8R1W2) and TPAP (Q9WVP6) colocalize (0403) by

fluorescence microscopy (0416)

MINT-6167930:

Gsg1 (Q8R1W2) physically interacts (0218) with TPAP

(Q9WVP6) by two-hybrid (0018)

MINT-6168112, MINT-6168011, MINT-6168054:

Gsg1 (Q8R1W2) physically interacts (0218) with TPAP

(Q9WVP6) by coimmunoprecipitation (0019)

MINT-61668069, MINT-6168101:

Gsg1 (Q8R1W2)physically interacts (0218) with TPAP

(Q9WVP6) by pull-down (0096)

MINT-6168218:

Gsg1 (Q8R1W2) and GRP78 (P20029) colocalize (0403) by

fluorescence microscopy (0416)

MINT-6168381:

TPAP (Q9WVP6) and GRP78 (P20029) colocalize (0403) by

fluorescence microscopy (0416)
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1. Introduction

Polyadenylation of eukaryotic mRNA is a significant event

for post-transcriptional and translational regulation involved

in export from the nucleus to the cytoplasm, as well as stabil-

ity and translation of mRNA [1–4]. Since transcriptional

block is essential for the formation of germ cells, transla-

tional control by polyadenylation in the cytoplasm is partic-

ularly important in germ cell differentiation. In Xenopus

oocyte maturation, cytoplasmic polyadenylation mediated

by cytoplasmic polyadenylation element binding protein

(CPEB) induces the translation of maternal mRNA [5]. In

addition to CPEB, the CPEB- and CPSF-binding protein,

symplekin, and the cytoplasmic PAP, xGLD-2, act in the

cytoplasmic polyadenylation machinery [6]. In mouse testis,

another novel member of the CPEB protein family (CPEB2)

and a homolog of xGLD-2 (mGLD-2) have been identified

[7,8], suggestive of similar CPEB-dependent cytoplasmic pol-

yadenylation during spermatogenesis. However, in contrast to

Xenopus oocytes, mouse testis contains another cytoplasmic

polymerase, designated �testis-specific poly(A) polymerase�
(TPAP) or PAP b, which is highly expressed in round sper-

matids and involved in the addition of poly(A) at the 3 0-ends

of some mRNAs in haploid germ cells [9]. TPAP, but not

mGLD-2, contains RNA-binding and S/T-rich domains.

GLD-2 localizes in both the cytoplasm and nucleus of

somatic, testicular, and cultured cells [8]. In contrast, TPAP

is expressed only in testis, and localizes predominantly in

the cytoplasm [9,10]. Therefore, TPAP-mediated cytoplasmic

polyadenylation possibly occurs via a testis-specific and

CPEB-independent mechanism.

In TPAP-deficient mice, expression of haploid-specific genes

required for morphogenesis of germ cells is impaired, and

poly(A) tails of specific transcription factor mRNAs of round

spermatids are not elongated completely. Consequently, these

mice are infertile due to spermatogenesis arrest [11]. Mice over-

expressing TPAP display normal spermatogenesis and fertility,

and the mRNA sizes of the transcription factors are unaltered

[12], suggestive of limiting regulatory factors that may act via

interactions with TPAP.

In this study, we identify germ cell-specific gene 1 protein

(GSG1) as a TPAP interaction partner protein. The 40 kDa

GSG1 protein consists of 365 amino acids. GSG1 mRNA is

expressed on day 24 of life in mouse testis [13], coincident with

the expression of TPAP mRNA. We show that GSG1 interacts

with TPAP, leading to redistribution of TPAP from the cyto-

sol to the endoplasmic reticulum.
blished by Elsevier B.V. All rights reserved.
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2. Materials and methods

2.1. Yeast two-hybrid screen
The Matchmaker GAL-4-based two-hybrid system (Clontech) was

employed, using the full sequence of mouse TPAP as bait. An adult
mouse testis library prepared by fusion to the GAL4 activation domain
was purchased from Clontech. Yeast two-hybrid screening was per-
formed by mating with the yeast strains, Y187 and AH109, according
to the manufacturer�s instructions.

2.2. Soluble and insoluble fractionation of nucleus and cytoplasm from
mouse testis

Mouse testis (0.2 g) was homogenized in 2 ml of extraction buffer
(10 mM HEPES/KOH, pH 7.4, 15 mM KCl, 1 mM EDTA, 0.25 M su-
crose, 0.5 mM DTT, 0.5 mM PMSF) with a Dounce homogenizer. The
homogenate was centrifuged at 2500 · g for 10 min, and the resulting
supernatant re-centrifuged at 100000 · g for 30 min. The supernatant
from this step contained the soluble cytoplasmic fraction. The remain-
ing pellet, suspended in 1.6 ml of extraction solution with 1% Triton X-
100, contained the insoluble cytoplasmic fraction. The pellet obtained
from the initial centrifugation was suspended in 2 ml of extraction buf-
fer, overlaid onto 2.8 ml of extraction buffer containing 0.5 M sucrose,
and centrifuged at 2500 · g for 10 min. The resulting pellet was sus-
pended in 0.4 ml of extraction buffer containing 0.5 M NaCl, and cen-
trifuged at 20000 · g for 10 min. The supernatant solution contained
the soluble nuclear fraction. The final pellet, which was washed with
1 ml of extraction buffer and suspended in 0.4 ml of extraction buffer
with 1% Triton X-100, contained the insoluble nuclear fraction.

2.3. Preparation of recombinant cDNA constructs
For expression of GST-TPAP or its derivatives in NIH3T3 cells, the

corresponding cDNA sequences were cloned into pEBG [14]. FLAG-
GSG1 and FLAG-TPAP were obtained by cloning the coding se-
quences of GSG1 and TPAP into p3XFLAG-CMV-7.1 (Sigma). A
plasmid expressing GSG1-EGFP was generated by cloning the
GSG1 coding region into pEGFP-N1 (Clontech).

2.4. Antibodies
The anti-GSG1 antibody synthesized using an oligopeptide contain-

ing residues 233–244 of GSG1 coupled to bovine serum albumin was
provided by Peptron. The anti-TPAP antibody was generated accord-
ing to a previous report [9]. The anti-calmegin monoclonal antibody
was kindly provided by Dr. Y. Nishimune. Antibodies specific for
GST, GRP78, GFP, hnRNP C1/C2, pERK, and eIF4E were pur-
chased from Santa Cruz, while the FLAG antibody was obtained from
Sigma. The FITC- or Cy3-conjugated secondary antibody was from
Jackson Immunoresearch. The anti-GM130 antibody was acquired
from Abcam.

2.5. Coimmunoprecipitation
NIH/3T3 cells were maintained in Dulbecco�s modified Eagle�s

medium supplemented with 10% fetal calf serum. Cells (�1 · 108) were
transfected with DNA constructs (1 lg) using Lipofectamine reagent
(Invitrogen). Coimmunoprecipitations were performed as described
previously [14]. Similar, coimmunoprecipitation assays using lysates
from mouse testes (0.2 g) were also performed with anti-TPAP and
anti-GSG1 antibodies.

2.6. Confocal laser scanning microscopy
NIH/3T3 cells were transfected with cDNA (3 lg) expressing GSG1-

EGFP and/or 3XFLAG-TPAP. Transfected cells were visualized on a
Zeiss LSM510 meta confocal microscope after the treatment of anti-
GRP78, GFP, GM130 and FLAG antibodies, followed by the FITC-
or Cy3-conjugated secondary antibody, as described previously [15].

2.7. Immunocytochemistry
Glass slides fixed with mouse spermatogenic cells were prepared as

described previously [9].The slides were treated with 0.5% Triton-100
in phosphate-buffered saline (PBS) for 5 min, washed three times with
PBS, incubated for 60 min with blocking solution containing 2% don-
key serum and 0.03% TritonX-100 in TBS (150 mM NaCl, 10 mM
Tris–Cl, pH 7.5). Anti-GSG1 antibody and anti-TPAP antibody were
diluted in the blocking solution and applied to the slides for 3 h. The
slides were washed three times with 0.03% TritonX-100 in TBS, treated
with Cy3- and FITC-conjugated secondary antibody for 2 h, and
washed with 0.03% TritonX-100 in TBS. Confocal images were ac-
quired with Zeiss LSM510 meta.

2.8. Membrane flotation assay
The membrane flotation assay was performed with mouse testes

(0.2 g), as described previously [16]. Fractions were collected, and 8%
of each fraction was immunoblotted with antibodies.
3. Results

3.1. Identification of GSG1 as an interacting partner protein of

TPAP

As an initial step in analyzing TPAP-mediated cytoplasmic

polyadenylation, we searched for interacting proteins. A

GAL4-based yeast two-hybrid screen was performed using

the full amino acid sequence of mouse TPAP as bait. One of

the interacting clones encodes mouse GSG1. GSG1 mRNA

is expressed 24 days after birth in mouse testis, but not in

16-day-old testis [13]. However, its function is not known at

present. Sequence analysis of GSG1 using HMMTOP 2.0 re-

vealed the presence of four putative membrane helix motifs

(Fig. 1A). The TPAP-binding sequence, identified from the

yeast two-hybrid screen, resides in the C-terminal region of

GSG1 that is devoid of helix motifs. We examined whether

GSG1 exists in the membrane fraction of mouse testis. We

found that the majority of GSG1 exists in the insoluble frac-

tion of the cytoplasm of adult mouse testis (Fig. 1B), sugges-

tive of a membrane protein.

Expression of GSG1 at the protein level has not been

known, while expression of TPAP protein in round spermatids

and pachytene spermatocytes during testis development has

been reported [9]. To examine how GSG1 protein is expressed

during testis development, we performed immunoblot analy-

ses. GSG1 protein as well as TPAP protein was detected in

21-, 26-, 32-old mouse testis, but not in 15-day-old mouse testis

(Fig. 1C). This result suggests that both GSG1 and TPAP pro-

teins could be expressed coordinately during mouse testis

development and spermatogenesis.

3.2. Interactions of TPAP and GSG1 in vivo

To determine whether interactions between mouse TPAP

and GSG1 occur in vivo, we performed a coimmunoprecipita-

tion experiment using NIH/3T3 cells cotransfected with GST-

TPAP and FLAG-GSG1 DNA. Total lysates from transfected

cells were immunoprecipitated with an anti-FLAG antibody,

and coimmunoprecipitated materials were immunoblotted

with an anti-GST antibody. TPAP was present in GSG1

immunoprecipitates (Fig. 2B). The in vivo data suggest that

TPAP–GSG1 interactions occur in mammalian cells.

Next, we performed coimmunoprecipitation assays to deter-

mine whether endogenous TPAP and GSG1 interact in mouse

testis. Lysates of testes from 6-week-old mice were immuno-

precipitated with anti-TPAP antibody, and blotted with an

anti-GSG1 antibody. The data show that the two proteins

interact within the testis (Fig. 2C).

To delineate the binding domain in TPAP, we generated sev-

eral truncated mutants of the protein. Mutant proteins were

tested for their ability to bind GSG1 by coimmunoprecipita-

tion analyses (Fig. 2A and D). When coimmunoprecipitation

signals were compared to the corresponding proteins present



Fig. 1. Characterization of GSG1 protein. (A) Schematic diagram
presenting the structure of GSG1. The sequence (265–365) initially
identified from the yeast two-hybrid screening is presented as solid
bars. MHM, putative membrane helix motif. (B) Cellular location of
GSG1. Nuclear soluble fraction (NS), nuclear insoluble fraction (NI),
cytoplasmic soluble fraction (CS), and cytoplasmic insoluble fraction
(CI) from mouse testes tissues were separated. Proteins from the same
proportion of each fraction were subjected to immunoblotting using an
anti-GSG1 antibody. Each fraction was probed with hnRNP C1/C2
antibody as a nuclear marker and eIF4E antibody as a cytosolic
marker. (C) Developmental expression of GSG1 protein in mouse
testis. Testis lysates from 15-, 21-, 26-, and 32-day-old mice were used
for immunoblot analysis. TPAP was also probed with anti-TPAP
antibody. a-tubulin is a loading control.
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in total lysates, the N-terminal 365 residues (catalytic domain

of TPAP) and the 366–508 fragment (RNA-binding region of

TPAP) displayed strong and weak binding to GSG1, respec-

tively. In contrast, we observed little interaction between the

C-terminal serine/threonine rich region of TPAP and GSG1.

Although FLAG-GSG1 was expressed as two forms, both

forms reacted with an anti-GSG1 antibody (data not shown).

Since phosphorylation is important in regulating protein–pro-

tein interactions [15], we examined whether binding between

TPAP and GSG1 was phosphorylation-dependent. Prior to

immunoprecipitation, cell lysates cotransfected with GST-

TPAP and FLAG-GSG1 were treated with non-specific

protein phosphatase (Fig. 2E). However, this treatment did

not affect interactions between TPAP and GSG1. This phos-

phorylation-independent interaction is consistent with the

finding that GSG1 does not bind to the serine/threonine-rich

region of TPAP containing several putative phosphorylation

sites (Fig. 2D).

3.3. Confocal microscopy shows the colocalizaion of TPAP and

GSG1 in spermatogenic cells

To examine whether TPAP and GSG1 are colocalized in

spematogenic cells, we performed confocal fluorescence

microscopy (Fig. 3A). TPAP was mainly detected in the cyto-

plasm of pachytene spermatocytes and round spermatids, as

previously reported [9]. GSG1 showed a scattered distribution

in the cytoplasm of pachytene spermatocytes and round sper-

matids. In round spermatids, an extensive localization of
GSG1 was also observed around the nucleus. Although TPAP

and GSG1 existed in both pachytene spermatocytes and round

spermatids, they were colocalized in the cytoplasm of round

spermatids only. To better specify the intracellular localization

of TPAP and GSG1, we examined cells at different stages of

spermiogenesis (Fig. 3B). In early round spermatid, TPAP

and GSG1 were colocalized in the vicinity of the nucleus. In

case of cap-phase spermatid, interestingly, GSG1 showed its

remarkable localization in the perinuclear region and it was

more colocalized with TPAP in the cytoplasm than in that of

early round spermatid. In elongating spermatid, however,

GSG1 and TPAP scarcely showed their colocalization even

though they existed.

3.4. Both TPAP and GSG1 localize in the endoplasmic reticulum

(ER) of testicular cells

In Fig. 1B, GSG1 was separated as a membrane fraction in

the cytoplasm of mouse testicular cells. To further define the

subcellular localization of GSG1, we used confocal fluores-

cence microscopy. NIH/3T3 cells were transfected with

GSG1-GFP. Unfortunately, the GSG1-GFP fluorescence sig-

nals were too weak. Consequently, we used GFP antibody

and FITC-conjugated secondary antibodies to detect GSG1-

GFP. GSG1 colocalized only with GRP78, an ER marker,

suggesting localization in the ER (Fig. 4). Since the confocal

microscopic data (Fig. 3) shows that TPAP colocalizes with

GSG1 in the cytoplasm of spermiogenic cells, it is possible that

TPAP interacts with GSG1 in the ER membrane. To test this

theory, testicular extracts were subjected to a membrane flota-

tion assay [16] by which the ER membrane can be separated

from other cellular fractions. Our data show that both

GSG1 and TPAP proteins exist in the ER membrane fraction

of mouse testicular cells (Fig. 5). The quantitation of Fig 5B

showed that TPAP in the ER membrane fraction constitutes

about 8% of total cellular TPAP, suggesting that only part

of TPAP is redistributed from the cytoplasm to the ER. The

fact that all TPAP does not colocalize with GSG1 in the testic-

ular cells supports this explanation (Fig. 3).

3.5. TPAP localizes to the ER via interactions with GSG1

To investigate the possible roles of GSG1 in ER localization

of TPAP, we compared the subcellular distribution of TPAP in

the absence and presence of GSG1. For this purpose, NIH/3T3

cells were transfected with FLAG-TPAP or cotransfected with

both FLAG-TPAP and GSG1-GFP. In the absence of GSG1,

the majority of FLAG-TPAP proteins dispersed throughout

the cytoplasm, while upon addition of GSG1, FLAG-TPAP

localized in the ER (Fig. 6). This finding suggests that GSG1

causes redistribution of TPAP from the cytosol to the ER.
4. Discussion

We identified GSG1 as a protein interacting with TPAP,

using a yeast two-hybrid assay. Our data show that GSG1

localizes in the ER membrane. The putative transmembrane

domains of GSG1 appear responsible for its ER localization.

Notably, the expression of GSG1 and TPAP coincide during

mouse spermatogenesis [10,13]. GSG1 interacts strongly with

the N-terminal catalytic domain of TPAP in NIH3T3 cells.

TPAP and GSG1 colocalize in round spermatid cells, espe-

cially in cap-phase spermatid cells. However, the elongating



Fig. 2. In vivo interactions of TPAP with GSG1. (A) Schematic diagram presenting the significant features of TPAP. (B) Coimmunoprecipitation of
GST-TPAP with FLAG-GSG1. Cell lysates from NIH/3T3 cells cotransfected with GST-TPAP and FLAG-GSG1 were immunoprecipitated with
anti-FLAG antibody. Immunoprecipitates were subjected to immunoblotting using an anti-GST antibody. For the positive control, 1% of total
lysates were used. (C) Interactions between endogenous TPAP and GSG1 in vivo. Coimmunoprecipitation was performed using testicular lysates
obtained from 6-week-old mice. T, total lysate (1% input); C, control antibody; IP, immunoprecipitates with anti-TPAP. (D) Binding regions of
TPAP for GSG1. Cell lysates from NIH/3T3 cells cotransfected with GST-TPAP derivatives and FLAG-GSG1 were subjected to coimmunopre-
cipitation assays. N365, catalytic domain (1–365); 366–508, RNA-binding domain; C133, S/T rich-domain (509–641). Left, total lysates (1% input) or
their immunoprecipitates with anti-FLAG antibody were blotted with anti-GST antibody. Right, total lysates (1% input) or bound proteins on
glutathione-sepharose beads (GST pull-down) were blotted with an anti-FLAG antibody. (E) Effect of dephosphorylation on interactions of TPAP
and GSG1. Prior to coimmunoprecipitation assays, NIH/3T3 cell lysates cotransfected with GST-TPAP and FLAG-GSG1 were treated with k
phosphatase. A plus sign (+) represents phosphatase (PPase) treatment. Anti-pERK was used as a dephosphorylation control.

Fig. 3. Colocalization of GSG1 and TPAP in mouse spermatogenic cells. Fixed spermatogenic cells were incubated with anti-GSG1 and anti-TPAP
followed by Cy3- and FITC-conjugated secondary antibody. GSG-1 and TPAP were visualized with a confocal fluorescence microscope. Nuclei were
stained with DAPI (blue). (A) Overall localization of GSG1 and TPAP in mouse spermatogenetic cells. White, yellow, and red arrows represent
pachytene spermatocytes, round spermatids, and elongating spermatid, respectively. (B) Localization of TPAP and GSG1 in cells at different stages
of spermiogenesis. BF, bright field; RS, early round spermatid; CS, cap-phase spermatid; ES, elongating spermatid.
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spermatid cells lack this colocalization. These results suggest

that GSG1 interacts with TPAP at specific spermiogenic stages

and that the interaction between TPAP and GSG1 would be

related to the transformation of round spermatids to elongat-

ing spermatids.
We found that TPAP and GSG1 exist in the ER fraction of

mouse testicular cells. Moreover, GSG1 expression affects the

subcellular distribution of TPAP by targeting the cytosolic

protein to the ER. In view of these findings, we propose that

one biological function of GSG1 is to recruit TPAP to the



Fig. 4. Localization of GSG1 in NIH/3T3 cells. NIH/3T3 cells were transfected with GSG1-EGFP, and incubated with anti-GFP and anti-GM130
(Golgi marker) or anti-GRP 78 antibody (ER marker), followed by Cy3- or FITC-conjugated secondary antibody. For detection of mitochondria,
transfected cells were incubated with Mitotracker (Invitrogen). Samples were visualized with a confocal fluorescence microscope.

Fig. 5. Subcellular localization of GSG1 and TPAP in mouse testis.
Testes from 6-week-old mice were subjected to membrane flotation
assays [16]. (A) Each fraction is schematically shown. Fraction 4 was
further centrifuged to obtain the ER fraction. (B) Each fraction was
analyzed by immunoblotting. �4ppt� represents the ER fraction
prepared from fraction 4 by the final centrifugation. Anti-ERK 1
and anti-calmegin antibodies were used as the cytosolic marker and
testis-specific ER marker, respectively.
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ER via protein–protein interactions. TPAP on the ER may

preferentially add adenine residue at the 3 0 ends of mRNAs

for secretory/integral membrane proteins associated to ER-

bound ribosomes. It has been known that ribosomes remain

bound to the ER membrane following the termination of pro-

tein synthesis [17–19], and can initiate de novo protein synthe-

sis without discriminating between mRNAs encoding soluble

and signal sequence-bearing proteins [20]. In the unfolded pro-

tein response (UPR), transcripts of the key soluble stress pro-

teins, XBP-1 and ATF-4, are translated primarily on ER-

bound ribosomes [16]. In this respect, it is also possible that

TPAP acts on mRNA to be associated with ER-bound ribo-

somes to generate soluble proteins.

The mechanisms and functions of TPAP-dependent cyto-

plasmic polyadenylation are yet to be elucidated. The mRNAs

of particular transcription factors, such as TAF10, TAF12,

and TAF13, are deadenylated in round spermatids of TPAP-

deficient mice [11]. However, this does not affect their stability

and translation. Interestingly, TAF10 is transported to the nu-

cleus insufficiently in TPAP-deficient mice [11]. This result sug-

gests that TPAP is involved in regulating the nuclear transport

of TAF10, possibly via modulating the expression of trans-

porter proteins through mRNA polyadenylation on the ER.

We show that TPAP and GSG1 are colocalized during sper-

miogenesis. Since the spermiogenic arrest occurs in TPAP-defi-

cient mice [11], the interaction between TPAP and GSG1 may

be related to the morphological change in spermiogenesis.



Fig. 6. Effects of GSG1 on the cellular localization of TPAP. NIH/3T3 cells were transfected with FLAG-TPAP alone (A) or both FLAG-TPAP and
GSG1-GFP (B). Transfected cells were incubated with anti-FLAG (mouse), anti-GRP 78 (goat) and anti-GFP (rabbit) antibodies, followed by Cy3-
or FITC-conjugated secondary antibody.
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However, the real function of this interaction remains to be

demonstrated.
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