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The main result of the paper is a constructive proof of the following
equivalence: two pure *-terms are observationally equivalent in the lazy
concurrent *-calculus iff they have the same Le� vy�Longo trees. An algo-
rithm which allows to build a context discriminating any two pure *-terms
with different Le� vy�Longo trees is described. It follows that contextual
equivalence coincides with behavioural equivalence (bisimulation) as
considered by Sangiorgi. Another consequence is that the discriminating
power of concurrent lambda contexts is the same as that of
Boudol�Laneve's contexts with multiplicities. ] 1999 Academic Press

1. INTRODUCTION

The aim of this paper is to improve our understanding of what is the ``meaning''
of a term in the lazy *-calculus. To explain our result let us begin with the following
few observations borrowed from the paper [2] of Abramsky and Ong.

In the ordinary *-calculus, the most natural understanding of evaluation to a
``value'' is reduction to a normal form. It is however, well known that this inter-
pretation cannot be taken as a basis of a consistent equational theory. Indeed,
equating all *-terms without normal forms results in equating everything: the
equality *x .xN0=*x.xM0 must hold for each M, N (see [7, p. 39]), where
0#(*x .xx)(*x .xx).
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One can consider head normal forms instead, obtaining a consistent theory,
which equates unsolvable terms. The ``meaning'' of a *-term is then understood as
its equivalence class of the observational equivalence t defined so that MtN
holds iff

C[M] a � C[N] a for all contexts C[ ],

where the notation ``Pa'' reads ``P has a value.''
This meaning of a *-term can equivalently be expressed by the notion of Bo� hm

trees, that is we have

MtN iff BT(M)$BT(N),

where $ stands for equality of Bo� hm trees modulo possibly infinite eta-reductions.
The reader is referred to [2] for a discussion why this understanding of a ``mean-

ing'' is not satisfactory when *-calculus is meant to be used as a prototypical
functional language. In short, a lazy language may evaluate an expressions to a
``prompt'' (an abstraction) rather than to a head normal form. This is better
represented by assuming that any abstraction is a ``value.'' This idea gives rise to
the lazy *-calculus. The lazy *-calculus is a type free calculus, with the same syntax
as pure *-calculus and a reduction relation over closed terms, with just two rules:

(*x.M)N � M[N�x],
M � M$

MN � M$N
.

Clearly, the structure of lazy *-calculus is finer than that of the ``standard theory.''
Terms like 0 and *x.0 are now distinguished, and the contextual equivalence t

has smaller equivalence classes. Thus, obviously, Bo� hm trees are no longer
adequate to describe the ``meaning'' of *-terms.

Here comes the idea of a refinement of the Bo� hm tree approach for the lazy evalua-
tion: the Le� vy�Longo trees. Indeed Longo [24] and Ong [27, 28] prove that Le� vy�
Longo trees characterize the *-theory of the lazy Plotkin�Scott�Engeler models. These
trees were introduced by Longo in [24] following ideas of Le� vy [23].

The Le� vy�Longo trees are defined in a similar way to Bo� hm trees with the
following modifications. First is that one distinguishes between = and *x1 ...xn .=,
for all n. In addition, there is a new symbol � used to represent an ``infinite lambda
abstraction'' obtained when a term can be reduced to weak head normal forms
*x1 ...xn .Mn , for all n and suitable Mn . (An example of such a term is
(*xy .xx)(*xy .xx).) The Le� vy�Longo tree of a term M is denoted by LL(M).

It should be clear that equality of Le� vy�Longo trees suffices for contextual equiv-
alence. However, the converse does not hold even for Bo� hm trees. Take as an example
the two terms M#*x .xx and N#*x .x(*y .xy). We have MtN, but BT(M){BT(N).

We shall however contend that Le� vy�Longo trees provide an appropriate under-
standing of the actual ``meaning'' of a *-term with respect to lazy evaluation, even
if, as shown by the above example, they are of stronger discriminating power than
the ordinary notion of contextual equivalence. This is because the notion of lazy

154 DEZANI-CIANCAGLINI, TIURYN, AND URZYCZYN



contextual equivalence may change when the lazy *-calculus is embedded into a
richer language. Then the finer structure of lazy *-terms becomes visible in the
extended contexts.

As noticed in [33], this is interesting mainly when we add parallel and nondeter-
ministic features to the lazy *-calculus, in view of the integration between functional
and concurrent programming languages. We want to know when a functional
procedure can replace another one, leaving unchanged the observable behaviour of
a process which uses it.

Notice that an equivalence finer than that induced by Le� vy�Longo trees seems
unreasonable. In fact [33] proves that enriching the lazy *-calculus with well-formed
operators (w.r.t. a natural definition inspired by [22]), we never distinguish *-terms
with the same Le� vy�Longo tree.

In the literature we can find essentially two different scenarios which induce the
same equivalence relation on pure *-terms as Le� vy�Longo trees.

In [33], Sangiorgi considers the embedding of lazy *-calculus in some concurrent
calculi. First, Milner's encoding of lazy *-calculus in ?-calculus is studied. A slight
variant of this encoding gives rise to a *-calculus model whose theory is again that
of Le� vy�Longo trees [34]. Then the lazy *-calculus is enriched with a simple
nondeterministic operator, which, when applied to an argument, either gives the
argument itself or diverges. In both cases the processes are compared using
bisimulation. So we can conclude that ``nondeterminism+bisimulation'' has the
discriminating power of Le� vy�Longo trees.

On the other side, Boudol and Laneve [12] introduce a ``resource conscious''
refinement of *-calculus, in which every argument comes with a multiplicity. The
reduction process (which uses explicit substitution in an essential way) remains
deterministic, but a deadlock can appear. The terms are compared by means of
the standard observational equivalence. The result is that also ``deadlock+
observational equivalence'' discriminate as Le� vy�Longo trees. Notably Boudol and
Laneve use in [11] the *-calculus of multiplicities to show that the preorder on
terms induced by the encoding in ?-calculus when processes are compared using
may testing coincide with the preorder on terms induced by their Le� vy�Longo tree
representation.

We consider the behaviour of pure *-terms inside contexts of the concurrent
*-calculus as defined in [18]. This calculus is obtained from the pure *-calculus
(with call-by-value and call-by-name variables) by adding a non-deterministic
choice operator + and a parallel operator &, whose main reduction rules are

M+N � M, M+N � N

M � M$ N � N$
M & N � M$ & N$

M � M$ N�%
M & N � M$ & N, N & M � N & M$

,

where � stands for one-step reduction and �% means irreducibility. The reader can
find more on this calculus in Section 4 of this paper.
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The main technical tool we use is a type assignment system for union and inter-
section types (see Section 3 for details). Let |& denote the derivation in this system.
Besides the logic Type67 of intersection and union types, we will consider also the
logic Type7 of intersection types only, and the set of type schemes Type7t obtained
by adding type variables to Type7 . We stress that we are interested in results con-
cerning Type67 and that the introduction of the other two languages is only a
device for showing these results.

The following theorem is proved in [18].

Theorem 1 [18]. For pure *-terms M, N, the following conditions are equivalent:

(i) For every basis 1 and type _,

1 |&M : _ iff 1 |&N : _;

(ii) M and N are observationally equivalent in the concurrent *-calculus.

The main technical result of our paper is as follows:

Theorem 2. For pure *-terms M, N, the following conditions are equivalent:

(i) For every basis 1 and type _,

1 |&M : _ iff 1 |&N : _;

(ii) M and N have the same Le� vy�Longo trees.

This result nicely complements the characterization obtained in [18].
Theorems 1 and 2 together give the following fact

Corollary 3. Two pure *-terms are observationally equivalent in the concurrent
*-calculus iff they have the same Le� vy�Longo trees.

Really, Theorems 1 and 2 hold for broader sets of terms. In fact Theorem 1 was
stated in [18] for the terms of the concurrent *-calculus 4+& (introduced in
Section 4) and we will prove Theorem 2 for the set of terms 4=, � , obtained by
adding the constants =, � to the pure *-terms (cf. Section 3). The intersection
between 4+& and 4=, � is the set of pure *-terms, so we get Corollary 3 for them.
Notice that the observation contexts which give us the discriminating power of
Le� vy�Longo trees belong to the concurrent *-calculus.

Corollary 3 justifies the title of the paper: we can exhibit a discriminating context
belonging to the concurrent *-calculus whenever we get two pure *-terms with
different Le� vy�Longo trees.

Hence the third scenario of the same discriminating power as the Le� vy�Longo
trees is ``concurrent *-calculus + observational equivalence''. We want to justify the
interest in this third scenario by comparing it with the previous ones.

From one side, observational equivalence seems a more appropriate tool than
bisimulation. First, the notion of observational equivalence is simpler: indeed
bisimulation amounts to verifying the behaviours of processes at intermediate steps
of computation rather than just the input�output relation. Then, as pointed out
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in [9], there are various notions of bisimulation (see, for example [25, 26, 32]) and
there is no consensus on which is the proper one. Notably Sangiorgi proves in [34]
that these notions of bisimulation coincide on the sublanguage of ?-calculus which
suffices for encoding lazy *-calculus.

On the other side, the *-calculus of multiplicities of [12] does not seem to be of
independent interest, while systems similar to the concurrent *-calculus have been
studied in different papers, like [10, 29, 30, 3, 17, 18].

A last remark is that we give a very simple algorithm for building discriminating
contexts. Also the proofs of [32, 12] are constructive, so they can be used for
obtaining discriminating contexts, through suitable variants of the Bo� hm-out
technique [7, Section 10.3].

As a by-product of our main result we have that the *-theory of the logical model
of [18] coincides with the equality of Le� vy�Longo trees, proving a conjecture
of [18]. The domain of this logical model is the initial solution of the domain equa-
tion D=P>([D � D]=) in the category of prime algebraic lattices, where P> is the
upper powerdomain functor, [ } � } ] is the space of continuous functions and ( } )=

is the lifting operator. The lazy Plotkin�Scott�Engeler models [31] of lazy
*-calculus are solutions of the domain equations D=[D � D]= _P(A), where P

is the powerset constructor and A is an enumerable set, in the same category. In
spite of this difference, Le� vy�Longo trees characterize the *-theory of all these
models, when we restrict to pure *-terms. Notice that in this case the powerdomain
semantics uses only singleton sets.

We want to stress that we describe a discrimination algorithm. Given two
*-terms with different Le� vy�Longo trees, we can determine a concurrent context
which separates these terms. A proof without explicit construction of a concurrent
context was given in [20].

This paper is organized as follows. In Section 2 we define the intersection and
union types Type67 and an auxiliary language Type7 of intersection types.
Section 3 gives the language 4=, � , and introduces the type assignment system |&.
Section 4 contains an introduction to the concurrent *-calculus. In Section 5 we
define Le� vy�Longo trees and approximants. The latters serve as the main tool in
proving the main result of this paper. Section 6 introduces the notion of principal
pairs and discusses their properties. The main result of the paper (Theorem 20) and
the discrimination algorithm are given in Section 7. We also illustrate there the
technique of finding discriminating typings and concurrent contexts for two *-terms
with different Le� vy�Longo trees. The concluding remarks section discusses the
relation with Abramsky�Ong development [2]. The Appendix contains proofs of
the auxiliary technical results which are used during the proof of the main theorem
of the paper.

2. SUBTYPE PREORDERS

In this section we define the set of types Type67 used in our type assignment
system, and a subset Type7 of it, and we state some basic properties of the
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subtype relations we need. We remark that the logic Type67 is central to our
development, while the logic Type7 is only useful in some proofs given in the
Appendix. In spite of this, we present here both logics since we think the conservativity
result (Proposition 4) is of independent interest.

The set Type67 is defined by the grammar

_ ::=| | _ � _ | _ 7 _ | _ 6 _,

and the set Type7 is defined by

_ ::=| | _ � _ | _ 7 _.

Clearly Type7�Type67 and the inclusion is proper. A notational convention is
that 7 and 6 take precedence over �.

Now we define our subtyping relations. The relation � over Type67 is the
smallest preorder such that

1. (Type67 , �) is a distributive lattice in which 7 is the meet, 6 is the
join and | is the top. (Strictly speaking it becomes a lattice after taking
the quotient by the equivalence relation induced by the preorder �.) That is, the
following axioms and rules axiomatize 7, 6, and |:

(A1) _�_;

(A2) _�|;

(A3) _ 7 {�_;

(A4) _ 7 {�{;

(A5) _�_ 6 {;

(A6) {�_ 6 {;

(A7) _ 7 ({ 6 \)�(_ 7 {) 6 (_ 7 \);

(R1) _�\, \�{ O _�{;

(R2) \�_, \�{ O \�_ 7 {;

(R3) _�\, {�\ O _6 {�\;

2. the arrow satisfies

(A8) _ � |�| � |;

(A9) (_ � \) 7 (_ � {)�_ � \ 7 {;

(R4) _�_$, {�{$ O _ � {�_$ � {$.

The relation � over Type7 is the smallest preorder such that

1. (Type7 , �) is a semi-lattice, in which 7 is the meet, and | is the top, i.e.
the axioms (A1) through (A4) and rules (R1) and (R2) above axiomatize 7 and |.

2. the arrow satisfies (A8), (A9), and (R4) above.

We will use the symbols �7 and �67 , for subtyping in Type7 and Type67 ,
respectively. The symbol t7 denotes the equivalence relation induced by �7 .
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Similarly, t67 denotes the equivalence relation induced by �67 . In fact, as it
follows from the next result, we do not have to be careful when using subscripts,
since the preorder over Type67 is conservative over Type7 . We will sometimes
identify t-equivalent types, especially we identify types _ and _ 7 |.

Proposition 4 (Conservativity). For all _, { # Type7 ,

_�67 { iff _�7 {.

We defer the proof of Proposition 4 for the Appendix. In the remainder of this
section we collect some useful properties of the subtyping relations.

Lemma 5. For types in Type67 we have:

1. If �i # I (_i � {i)�67 \ 6 +, then either �i # I (_i � {i)�67 \ or �i # I (_i � {i)
�67 +.

2. If 7 does not occur in _ and in {i for all i # I and �i # I {i�67 _, then there
is i # I such that {i�67 _.

For types in Type67 or Type7 we have:

3. If �i # I (+ i � &i)�_ � {, where {t% |, then for some J�I it holds that
_��j # J +j and �j # J &j�{.

4. If I1 �I then �i # I (_i � _$i)�(�i # I1
_ i) � (�i # I1

_$i).

Proof. Part (1) follows from the irreducibility of arrow types (as shown in
Section 3.1 of [18]). Part (2) follows from Proposition 3.8(iii) in [18]. Part (3) is
Lemma 3.9(ii) in [18]. For part (4), let us observe that �i # I (_ i � _$i)�
�i # I1

(_ i � _$i)��i # I1
((�k # I1

_k) � _$i)�(�i # I1
_ i) � (� i # I1

_$i). The last inequality
follows from the subtyping axiom (A9). K

3. LAMBDA-TERMS AND TYPE ASSIGNMENT

The set 4 of terms of the untyped *-calculus (*-terms) is defined as usual accord-
ing to the following grammar

M :=x | MM | *x .M,

where x ranges over an infinite set of term variables. We refer to [7, Definition 2.1.6]
for the standard notions of free and bound variables. We use FV(M) to denote the
set of free variables in M (according to Definition 2.1.7 of [7]).

We will abbreviate some *-terms as

I=Def *x .x, 2=Def *x .xx

K=Def *xy .x, O=Def *xy .y

0=Def 22, Y=Def *y . (*x .y(xx))(*x .y(xx)).
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We consider the language 4=, � obtained from 4 by adding two new constants:
= and �. Therefore the set 4=, � is defined by

M :=x | = | � | MM | *x .M.

Usually in the literature only = is added to 4, both in the case of classical
*-calculus [7, p. 366] and of lazy *-calculus [23]. We need the additional constant �

to account for an ``infinite abstraction.'' It will become clearer after we introduce
Le� vy�Longo trees in Section 5.

In the lazy *-calculus = plays the role of an unsolvable term which never reduces
to an abstraction, and therefore it could be replaced by 0. Analogously, � plays
the role of an unsolvable term which reduces to terms with arbitrary numbers of
initial abstractions, and therefore it could be replaced by YK. We think that our
choice (which is the standard one) is better since it allows us to approximate
*-terms by constants rather than by *-terms (cf. Section 5).

The symbol # denotes the syntactic equality of terms up to the renaming of
bound variables.

Head normal forms are terms of the form *x1 } } } xn .yM1 } } } Mm , where n, m�0.
The variable y is called the head variable of such a head normal form.

On 4=, � we consider the reduction rules

=M � =

�M � �

*x .� � �

for all x and all M. So by reduction we will mean the contextual, reflexive and trans-
itive closure of these rules, plus the standard beta rule. By = =, �

; we will denote the
symmetric closure of this reduction relation.

Now we present the definitions and basic properties of our type assignment
system. A basis 1 is a partial mapping from term variables to types. We derive
assertions 1 |&M : {, where M # 4=, � , and { # Type67 , and all types in 1 are in
Type67 . In the next section we will extend this system to terms of the concurrent
*-calculus. For that extension the subject reduction property (Theorem 8) is no
longer true; this is the reason why we first consider the present system.

The axioms and rules of our system are the following:

(Ax) 1 |&x : 1(x) (|) 1 |&M : | (�) 1 |&� : _

(�I)
1, x : _ |&M : {

1 |&*x .M : _ � { ,
(�E)

1 |&M : _ � { 1 |&N : _
1 |&MN : {

(7I)
1 |&M : _ 1 |&M : {

1 |&M : _ 7 {
, (�)

1 |&M : _ _�{
1 |&M : {

.

We write 1, x: _ for the mapping 1 $( y)=_ if y#x and 1 $( y)=1( y), otherwise.
The notation ``1 |&M : {'' means ``1 |&M : { is derivable.''
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None of the logical rules use disjunction explicitly. But types containing disjunction
can be derived with the help of rule (�).

Note that, in general, the condition 1 |&M : { does not imply that all free vari-
ables of M are in the domain of 1. This is because of rule (|). Thus, for uniformity,
we assume that 1(x)=|, whenever x � Dom(1 ).

In the following we use the notation

1_+ 1 $=[x : _ 7 { | 1(x)=_ and 1 $(x)={].

Accordingly we define:

1 +�1 $ � _1" .1_+ 1"=1 $.

The type assignment rules can be ``reversed,'' as stated in the following theorem.

Theorem 6. (Generation Theorem).

1. If 1 |&x : { then 1(x)�{.

2. If 1 |&*x .M : { then there are types +1 , ..., +n , &1 , ..., &n , such that
�n

i=1 (+i � &i)�{ and 1, x : +i |&M : &i , for all i�n.

3. If 1 |&*x .M : _ � { then 1, x : _ |&M : {, in addition if _t| then 1 |&M : {.

4. If 1 |&MN : { with {t% |, then 1 |&M : _ � { and 1 |&N : _, for some _.

Proof. The proof of (1) and (2) is by a routine induction with respect to the size
of derivations. Part (3) follows from part (2) and Lemma 5(3). Part (4) is proved
again by induction, with Lemma 5(4) used for case (7I).

Following [18], we will use the notation |n � _, defined by

|0 � _=_;

|n+1 � _=| � (|n � _).

We will also use the abbreviation |n � |=|n .
The types |n for suitable n are ``better than'' all other types, as shown in the

following proposition (proved in [18]).

Proposition 7. For all _, there exists n such that |n�_.

An essential property of the system |& is the subject conversion property; the types
are invariant w.r.t. = =, �

; conversion. This property is fairly well known for
ordinary systems with intersection types w.r.t. beta conversion (see, e.g. [13]) and
can be shown for our system using the same approach. Let us stress here that our
system |& should not be confused with systems of union types with a ``union
elimination'' rule, (cf., e.g. [5]) which often do not have even the subject reduction
property. As shown in [18], union elimination is unsound for the concurrent
*-calculus, since the terms of this calculus contain the nondeterministic choice
operator (defined in Section 4). For example, in absence of the union elimination
rule we cannot derive |&*xy .xy : (_ � {) 6 (\ � {) � (_ 7 \) � {.

Theorem 8 (Subject conversion). If 1 |&M : { and M= =, �
; M$, then 1 |&M$ : {.
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Proof. For beta equality the proof is a straightforward adaptation of the proof
given in [13]. For the conversion rules involving �, notice that 1 |&*x .� : { holds
for all 1, { and x. In fact for a fixed { by Proposition 7 we can always find n such
that |n�{. Now by axiom (�) we can deduce 1 |&� : |n , so by rules (�I) and
(�) we are done, since |n+1�|n . Moreover, 1 |&�M : { for all 1, {, and M
follows from 1 |&� : | � { and 1 |&M : | using rule (�E).

About =, notice that only types equivalent to | can be derived for = and
=M. K

Observe that types are not preserved by '-reduction. Indeed, we have, e.g.
|&*y .xy : | � |, but |&% x : | � |.

4. THE CONCURRENT *-CALCULUS

We extend the syntax of pure *-calculus with a nondeterministic choice operator
+ and a parallel operator &. We allow two sorts of variables, namely the set Vn
of call-by-name variables, ranged over by x, y, z and the set Vv of call-by-value
variables, ranged over by v, w. The terms of the concurrent *-calculus are defined
by the grammar

M ::=x | v | (*x .M) | (*v .M) | (MM) | (M+M) | (M & M).

We denote by 4+& this set of terms. In writing terms, we assume that abstraction
and application take precedence over the symbols + and &. For any M # 4+& , the
symbol FV(M) stands for the set of free variables of M and 40

+& is the set of terms M
such that FV(M)=<. Moreover, we shall refer to the following set

Par=[(M & N ) | M, N # 4+&].

As discussed in [18], we need to distinguish between partial and total values. We
define the set Val of values according to the grammar

V ::=v | *x .M | *v .M | V&M | M&V

and the set TVal of total values as the subset of Val

W ::=v | *x .M | *v .M | W&W.

A value V is partial iff V � TVal. The main difference between the partial and total
values concerns the parallel operator. Note that we require both M and N to be
total values to ensure that M & N is a total value, while in general it suffices that
either M or N is a value to have that M & N is a value. For example, I & (K+O)
is a partial value, while both I & K and I & O are total values.

We now introduce a reduction relation which is intended to formalize the
expected behaviour of a machine which evaluates in a synchronous way parallel
compositions, until a value is produced. Partial values can be further evaluated, and
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this is essential to deal with an application of a call-by-value abstraction. Therefore,
in some cases an asynchronous evaluation of parallel composition is permitted.

The reduction relation � is the least binary relation over 40
+& such that

(;) (*x .M) N � M[N�x], (;v)
W # TVal

(*v .M) W � M[W�v]

(+v)
N � N$ N � Val

(*v .M) N � (*v .M) N$
, (;v&)

V � V$ V # Val

(*v .M) V � M[V�v] & (*v .M) V$

(&app) (M & N ) L � ML & NL, (&)
M � M$ M � Val _ Par

MN � M$N

(&s)
M � M$ N � N$
M & N � M$ & N$

, (&a)
M � M$ W # TVal

M & W � M$ & W, W & M � W & M$

(+) M+N � M, M+N � N.

We denote by w�n the n-times self-composition of � and by �* the reflexive and
transitive closure of � .

As in [18] a term is convergent if and only if all reduction paths will eventually
reach a value. Let M # 40

+& ; then

M - � _n .M w�n N O N # Val.

Note that M - implies that M w�n N O N # Val holds for almost all n. Also note that
(M+N) - if and only if both M - and N - . On the other hand, (M & N ) - if and
only if either M - or N - (or both).

Rule (;v&) asks for some explanation. Given a value V, we cannot decide
whether it has been sufficiently evaluated to perform the reduction step
(*v .M) V � M[V�v], or if it is necessary to reduce V further, before contracting the
outermost ;-redex. We cannot reduce V as long as possible, since this could not
terminate. In the meantime, M[V�v] can diverge while M[V$�v] can converge for
all V$ which are reducts of V. For example, if M#vv0I, we have that
M[I & (K+O)�v] �* 0I & 0 & 0I, which will never reduce to a value, while both
M[I & K�v] and M[I & O�v] reduce (deterministically) to values. On the other
hand, any effective description of the operational semantics calls for a definition of
a recursive one-step reduction relation. This explains why rule (;v&) to compute
(*v .M) V ``takes the best'' between the terms M[V�v] and (*v .M) V$, for an
arbitrary V$ such that V �* V$. We realize this by evaluating in parallel (using the
operator &) M[V�v] and (*v .M) V$ for all V$ such that V � V$. Then (*v .M) V
will have as many reduction paths as V.

Notice that our reduction is highly nondeterministic, and also very sensitive to
counting the number of steps. For example the only reductions of the term

(*v .vI)(I & *x . (K+O))
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are

(*v .vI)(I & *x . (K+O)) � (I & *x . (K+O)) I � II & (*x . (K+O)) I

� I & (K+O) � I & K

and the symmetrical

(*v .vI)(I & *x . (K+O)) �* I & O.

But adding an application of the identity function we get the possible reduction:

(*v .vI)(I & (I(*x . (K+O))) �* I & K & I & O.

Analogously we get the terms I & O & I & K, I & K & I & K and I & O & I & O.
As usual we say that two terms are operationally equivalent if and only if in all

contexts they exhibit the same behaviour with respect to convergence.
Let M, N # 4+& . Then

M&O N � \C[ ] .C[M] - � C[N] - ,

where C[M], C[N] # 40
+& .

The operational semantics overcomes the above-discussed anomaly of our reduc-
tion relation. As regards to the previous example, it is clear that I & K&O

I & K & I & K and I & O&O I & O & I & O. Instead every context that converges when
filled with I & K or I & O, converges also when filled with I & K & I & O or I & O & I & K,
but the opposite is not always true. Since we require that all reduction paths out
of a term reach a value for assuring convergence, we obtain that

(*v .vI)(I & *x . (K+O))&O (*v .vI)(I & (I(*x . (K+O))).

As in [18] we can extend the type assignment system |& to terms in 4+& by
adding the following rules1:

(�Iv)
1 |&*v .M : (_ � \) 7 ({ � \)

1 |&*v .M : _ 6 { � \

(+I)
1 |&M : _ 1 |&N : {

1 |&M+N : _ 6 {

(&I)
1 |&M : _ 1 |&N : {

1 |&M & N : _ 7 {
.

We write |&E to denote derivability in this extended system. The so-obtained typing
enjoys the subject reduction property, as proved in [18]. Instead the subject
expansion fails. For example, |&E I : | � |, but |&% E I+0 : | � |.
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For the present development, we are mainly interested in the full abstraction
result of [18], which here can be rephrased as follows.

Theorem 9. For all terms M, N # 4+& , the condition M&O N holds if and only if

1 |&E M : _ iff 1 |&E N : _ for all 1 and _.

Notice that Theorem 1 is the restriction of Theorem 9 to the case M, N # 4.

5. LE� VY�LONGO TREES AND APPROXIMANTS

In this section we consider only terms in 4=, � . It is easy to verify that the set
of normal forms A�4=, � with respect to the reduction relation introduced in
Section 3 is the least set satisfying:

1. =, � # A;

2. A1 , ..., An # A O xA1 } } } An # A (n�0);

3. A # A, A�� O *x .A # A.

The elements of A are called approximate normal forms.
We define two preorder relations on approximate normal forms. The first preor-

der generalizes that of [23], making � the top element of the approximate normal
forms of the shape *x� .=. In the second preorder � is the top of the whole A, and
an '-redex is always less than its contractum.

1. The relation P is the least preorder in A such that:

(a) =PA;

(b) APA$, A$�� O *x .AP*x .A$;

(c) A1 PA$1 , ..., An PA$n O xA1 } } } An PxA$1 } } } A$n ;

(d) *x� .=P�.

2. The relation P' is the least preorder in A, such that it satisfies clauses (a),
(b), (c) above, and moreover

(d') AP' �;

(e) *y .xA1 } } } An yP' xA1 } } } An , where y � FV(xA1 } } } An).

The following lemma gives a characterization of P' .

Lemma 10. The condition AP' B is equivalent to the disjunction of the following
conditions (vectors of variables and terms may be empty):

�� A#*x� .= and B#*x� y� .=;

�� A#*x� .= and B is a head normal form;

�� B#�;

�� A#*x� z� .yC9 Z9 and B#*x� .yD9 , with C9 P' D9 and Z9 P' z� , componentwise.
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Proof. (O) The proof is by induction with respect to the definition of P' . The
only nontrivial case is transitivity. Details are left to the reader.

(o) The only nontrivial observation is *x� y� .=P' *x� y� .zA9 y� P' *x� .zA9 . K

For each term M # 4=, � , we define the set A(M ) of its approximants. (The goal
is to express properties of pure *-terms with the help of their approximants, but for
uniformity we need also to define approximants of terms involving = and �.)
A natural way to state this definition would be to first define a direct approximant
of a term M, denoted |(M ), and then to take A(M)=[|(N ) | N= =, �

; M] as the
set of approximants of M. Let us recall that according to Le� vy [23] we have

�� |(xM1 } } } Mm)=x|(M1) } } } |(Mm), for m�0;

�� |(*x .M )=*x .|(M );

�� |((*x .N ) PM1 } } } Mm)==, for m�0.

Unfortunately, this does not reflect the possibility of an ``infinite abstraction,''
caused by �. Thus, we have to use the definition by structural induction on the set
of approximate normal forms. A term A is an approximant of a term M if and only
if one of the following holds (vectors of variables and terms may be empty):

�� M has a head normal form *x� .yP9 , and A is of the form *x� .yA9 , where A9
are approximants of P9 ;

�� M reduces to *x� .Q, and A is of the form *x� .=;

�� M reduces to *x� .Q for arbitrarily long x� , or to �, and A#�;

�� M reduces to �, and A is of the form *y� .=.

Clearly, = # A(M) for all M.
We say that a term M has a weak head normal form iff it has a head normal form

or it is equal to an abstraction, in the sense of ==, �
; . Clearly, M has a weak head

normal form iff A(M ){[=].
Some properties of sets of approximants follow straightforwardly.

Lemma 11.

1. If M==, �
; N then A(M )=A(N ).

2. If *x .A # A(M) then M==, �
; *x .N, where A # A(N ).

3. If xA9 # A(M ) then M==, �
; xN9 , where A9 # A(N9 ) componentwise.

Proof. 1. Easy induction with respect to the length of approximants.

2�3. Immediate from the definition. K

As in the case of the standard definition [23], the set A( ) turns out to be an
ideal with respect to P.

Lemma 12. For each M, the set A(M) is an ideal (that is, a downward closed
upper semi-lattice) with respect to P.

Proof. It is easy to verify that A(M) is downward closed, so we prove that it
is directed. If M does not have a head normal form, then the set A(M ) is linearly
(pre)ordered with respect to P. Otherwise, if M has a head normal form *x� .yN9 ,
then the proof is by induction on the length of approximants. K
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Since A(M ) is not downward closed with respect to P' , we also need to consider
the set

A*(M )=[A # A | AP' B for some B # A(M )].

Note that if � # A*(M ) then A*(M ) is the whole set of approximate normal
forms, i.e. A*(M)=A.

The inclusion A(M )�A(N ) implies A*(M )�A*(N ). The converse does not
hold (take, e.g., M#*x .yx and N#y), but we have a slightly weaker property.

Lemma 13. If A*(M )=A*(N ), then A(M)=A(N ).

Proof. First note that if A*(M)=A*(N ) and one of the terms M, N has a
head normal form *x� .yP9 , then the other one must also have a head normal form
*x� .yQ9 (with the same x� , y, and the same length of P9 and Q9 ). Indeed, if M has a
head normal form as above, then it has an approximant A#*x� .y=9 . There is
B # A(N ) with AP' B. By Lemma 10, the term B (which is in head normal form)
must either be of shape *x� .yC9 , or have a lambda prefix shorter than that of A. In
the former case, A is an approximant of N, in the latter case we have another
approximant of M, say A$, such that AP' BP' A$. But then, the lambda prefix of
A$ would also have to be shorter than the vector x� . But this is impossible for an
approximant of M in head normal form.

Having observed the above, we prove the following claim, by induction with
respect to the size of A:

For all M and N, if A*(M )=A*(N ) and A # A(M ), then A # A(N).

Assume first that both M and N have head normal forms, say *x� .yP1 } } } Pn and
*x� .yQ1 } } } Qn , respectively. Then, for all i=1, ..., n, we have A*(Pi)=A*(Qi).
Indeed, if D # A(Pi), then we have an approximant of M of the form
*x� .y= } } } =D= } } } =, with D on the i th position. There must be E # A(N ) such
that *x� .y= } } } =D= } } } =P' E. By Lemma 10, we must have E#*x� .yF1 } } } Fn ,
where DP' F i # A(Q i). Thus, A(Pi)�A*(Qi), which implies A*(Pi)�A*(Qi).
The converse inclusion follows from the symmetry.

Assume that A # A(M ). If A#*y� .= then A # A(N ). Otherwise, we have
A#*x� .yD1 } } } Dn . For each i=1, ..., n, we apply the induction hypothesis to Di , to
obtain that D i # A(Qi). This gives A # A(N ).

Now suppose that neither N nor M has a head normal form. If � # A(N), then
A(N ) includes � and all terms of the form *z� .=, among them A. Otherwise, we
have A#*y� .=, and if B # A(N ) is such that AP' B then B must be of the form
*y� x� .=. Thus N=; *y� x� .Q, for some Q, and we conclude that A # A(N ). K

We prove also other features of A*( ).

Lemma 14.

1. If A(M ){A(N ), then there is A # A(M ) such that A � A*(N ) or vice
versa.
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2. If M has a weak head normal form and z � FV(M ), then A*(*z .Mz)�
A*(M ).

3. If A9 # A*(M9 ) componentwise, then xA9 # A*(xM9 ).

Proof. 1. It is enough to observe that A(M )�A*(N ) and A(N )�A*(M)
imply A*(M )�A*(N ) and A*(N )�A*(M ). So we are done by Lemma 13.

2. It suffices to show A(*z .Mz)�A*(M ). The case M= =, �
; *x .M$ is trivial.

Let M==, �
; xN9 . By definition A # A(*z .Mz) implies one of the following alter-

natives: A#=, A#*z .=, or A#*z .xA9 Z, where A9 # A(N9 ) componentwise, and
Z # A(z). Therefore xA9 # A(M) and Z is either = or z. In all cases we can conclude
that AP' xA9 .

3. If A9 # A*(M9 ) then there are A9 $ # A(M9 ) such that A9 P' A9 $. By definition
this implies xA9 $ # A(xM9 ) and xA9 P' xA9 $. K

Recall that a weak head normal form is a head normal form or an abstraction.
The Le� vy�Longo tree LL(M) of a term M # 4=, � (see [24]) is defined by cases on M:

(1) If M= =, �
; �, or M reduces to *x� .Q, for arbitrarily long x� , then

LL(M )= } �.

(2) If M= =, �
; *x� .Q, where Q has no weak head normal form, then

LL(M )= } *x� .=.

(3) If M has a head normal form *x� .yN1 } } } Nn , then

LL(M)= *x� .y

LL(N1) } } } LL(Nn).

Some examples of Le� vy�Longo trees are shown in Fig. 1.
We get immediately that � # A(M ) (and � # A*(M )) iff LL(M )= } �. With the

standard definition of approximants, LL(M )= } � implies only that *x� .= # A(M)
for arbitrarily long x� .

From the above it follows easily that equality of Le� vy�Longo trees coincides with
equality of sets of approximants A(M ). This property holds also for the standard
definition of sets of approximants [24].

Lemma 15. For all M, N # 4=, � , the conditions LL(M)=LL(N ) and A(M )=
A(N ) are equivalent.

The approximation theorem allows us to relate the sets of types of a term to the
set of its approximants, and therefore to its Le� vy�Longo tree.

Theorem 16 (Approximation theorem). 1 |&M : _ iff there is A # A(M) such
that 1 |&A : _.
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FIG. 1. (a) LL(2); (b) LL(x(YK)(K0)); (c) LL(Y); (d) LL(*x .x(*yzt .yzt)); (e) LL(*x . (*y .xy)).

We defer the proof of Theorem 16 to the Appendix. The following is an
immediate consequence of the above result.

Theorem 17. Let A(N )�A(M). Then 1 |&N : _ implies 1 |&M : _.

We derive one more consequence of Theorem 16, which shows how the types
characterize properties of terms.

Theorem 18. M has a weak head normal form iff there is a basis 1 and a type
_t% | such that 1 |&M: _.

Proof. It is easy to verify that for every term A in approximate normal form we
have A�= iff there is a basis 1 and a type _t% | such that 1 |&A : _. On the other
hand, M has a weak head normal form iff M has an approximant A�=. Hence the
conclusion follows from Theorem 16. K

6. PRINCIPAL PAIRS

In this section, we consider type schemes, built out of types in Type7 by adding
type variables. The set of all type schemes is denoted by Type7t . Notice that we do
not consider a logic with variables; we only use the language Type7t to define the
principal pairs of approximate normal forms. To simplify our treatment, we split
the set of type variables in two disjoint subsets V=[ti : i # N] and V$=[t$i : i # N].
We use respectively t and t$ (without indices) as (meta)variables ranging over V
and V$, respectively. So the set of type schemes is defined by

_ ::=t | t$ | | | _ � _ | _ 7 _.
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We consider also basis schemes whose predicates are type schemes. In what follows,
the notation TV((1; _) ) stands for the set of type variables which occur in the
basis scheme 1 or in the type scheme _.

For each A # A, we define the principal pair, denoted pp(A) by induction:

1. pp(=)=(<; |);

2. pp(�)=(<; t$) , where t$ # V$;

3. if pp(Ai)=(1i ; _i) , TV((1i ; _i) ) & TV((1j ; _j) )=< for 1�i{j�n
and t # V is fresh, then

pp(xA1 } } } An)=�\ +.
i�n

1i+_+ [x : _1 � } } } � _n � t]; t� (n�0);

4. if pp(A)=(1, x : {; _) , then pp(*x .A)=(1; { � _);

5. if pp(A)=(1; _) and x � Dom(1 ), then pp(*x .A)=(1; | � _).

The set of all principal pairs is denoted by 6. A type scheme _ is principal iff
(1; _) # 6, for some basis scheme 1. A basis scheme 1 is principal iff (1; _) # 6
for some type scheme _. We assume that principal pairs are taken up to renaming
of their type variables (agreeing with the splitting between V and V$), so that we
may have a unique principal pair for each approximate normal form.

As an immediate consequence of the definition we get the following observation.
Let pp(A)=(1; _) , and let s be an arbitrary substitution mapping type variables
into types. Then s(1 ) |&A : s(_). Note that the converse does not hold, i.e., our prin-
cipal pair is not principal with respect to substitutions. Indeed, pp(*xy .xy)=
(<; (t1 � t2) � t1 � t2) but |&*xy .xy : | � | � |. Principal pairs for intersection
and union types are studied in [4].

Let 1�n�m. We will define a substitution sm, n . First for every j�2n we define

;j=|m+ j&1 � |1 � |m+2n& j+1 � |1 .

Using ;j 's we define for every i�n,

:i=;i 6 ;n+i .

Now, we define the substitution sm, n as

v sm, n(ti)=:i for i�n and t i # V;

v sm, n(ti)=| for i>n and t i # V;

v sm, n(t$i)=|3m+2n+3 for all t$i # V$.

We extend sm, n to type schemes and base schemes in the usual way.

Next we define the auxiliary measures, where M # 4=, � and A # A,

v order(M, h) is the maximum branching of nodes at height less than or equal
to h in LL(M );
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v degree(M, h) is the maximum number of consecutive abstractions in labels
of nodes at height less than or equal to h in LL(M );

v v(A) is the number of type variables from V (i.e., nonprimed versions)
which occur in pp(A);

v }(M, A)=max[a+degree(M, h), a+order(M, h), v(A)], where a is the
number of arrows which occur in pp(A) and h is the height of LL(A).

The following is the main tool which provides the discriminating power. We defer
the proof of this theorem to the Appendix.

Theorem 19. (Principal pair theorem). Let M # 4=, � , A # A and pp(A)=
(1; _). Let n=v(A) and m=}(M, A). If sm, n(1 ) |&M : sm, n(_), then A # A*(M ).

Note that the converse implication in Theorem 19 is not true: take A#*x .= and
M#y; then |&% y : | � |. Moreover we really need to consider types with union and
intersection to obtain the result of Theorem 19. In fact, Theorem 19 does not hold
if we do not allow 6 in the range of substitutions. For example, we have pp(x)=
(x : t; t) and for all _ # Type7 we get x : _ |&*y .xy : _, but x � A*(*y .xy).

7. MAIN RESULT��A DISCRIMINATION ALGORITHM

This section contains our main result.

Theorem 20. For all terms M, N # 4=, � , LL(M)=LL(N ) if and only if for all
1 and _,

1 |&M : _ iff 1 |&N : _.

Proof. (O) From Lemma 15 and Theorem 17.

(o) Assume LL(M ){(N ). Then by Lemma 15 and Lemma 14(1) there is
A # A(M ) such that A � A*(N ) (or vice versa). Let pp(A)=(1; _) , m=}(N, A),
and n="(A). By Theorem 16, we have sm, n(1) |&M : sm, n(_). If we assume
sm, n(1) |&N : sm, n(_), then by Theorem 19 we get A # A*(N ), which is a contradic-
tion. So we can conclude that

sm, n(1 ) |&M : sm, n(_) and sm, n(1 ) |&% N : sm, n(_);

i.e. (sm, n(1); sm, n(_)) discriminates between M and N. K

It should be clear that the above proof, together with that of Theorem 19,
describes a simple algorithm to discriminate by typing two terms with different
Le� vy�Longo trees. Since the Le� vy�Longo trees are possibly infinite, the inputs of
our algorithm are the trees of M and N cut at a height sufficiently big to be dif-
ferent. This allows us to find an approximate normal form A such that A # A(M)
and A � A*(N ). We compute:
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h=the height of LL(A);

o=order(N, h);

d=degree(N, h);

(1; _)=pp(A);

n=v(A);

a=the number of arrows in (1; _);

m=max[a+d, a+o, n].

Now we have

sm, n(1 ) |&M : sm, n(_) and sm, n(1 ) |&% N : sm, n(_).

Example 21. Consider M#x and N#*y .xy. The corresponding trees are
respectively subtrees of the trees (a) and (e) in Fig. 1 of Section 5. Clearly
M � A*(N ).

We have h=0, o=order(N, 1)=1 and d=degree(N, 1)=1. We get pp(M )=
([x : t1]; t1) , n=1, a=0. Then m=1, s1, 1(t1)=:1=;1 6 ;2 , where

;1 #| � |1 � |3 � |1 ,

;2 #|2 � |1 � |2 � |1 .

To get x : :1 |&*y .xy : :1 we need either x : :1 |&*y .xy : ;1 or x : :1 |&*y .xy : ;2 by
Theorem 6(2) and Lemma 5(1). So we would need by Theorem 6(1, 3, 4), either
:1�| � ;1 or :1�| � ;2 , but they are both false. Instead it is easy to verify that
x : :1 |&x : :1 .

Example 22. Consider M#2 and N#*x .x(*y .xy). The corresponding trees
are respectively the trees (a) and (e) in Fig. 1 of Section 5. Clearly M � A*(N ).

We have h=1, o=order(N, 1)=2, and d=degree(N, 1)=1. Let _#t1 7

(t1 � t2) � t2 . We get pp(M )=(<; _) , n=2, a=2. Then m=4, s4, 2(_)={ � :2 ,
where

{#:1 7 (:1 � :2),

:1 #;1 6 ;3 , :2 #;2 6 ;4 , ;1 #| � |1 � |8 � |1 ,

;2 #|5 � |1 � |7 � |1 , ;3 #|6 � |1 � |6 � |1 ,

;4 #|7 � |1 � |5 � |1 .

To have |&N : { � :2 we need by Theorem 6(3) that x : { |&x(*y .xy) : :2 . We get by
Theorem 6(1, 4) that x : { |&*y .xy : :1 , which requires either x : { |&*y .xy : ;1 or
x : { |&*y .xy : ;3 by Theorem 6(2) and Lemma 5(1). So we would need by
Theorem 6(1, 3, 4), either {�| � ;1 or {�| � ;3 , but they are both false.
Instead, it is easy to verify that |&M : { � :2 .

To find a suitable context C[ ] such that C[M] - and C[N] � we define by
induction on { the ``test term'' T{ as
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R| #0; T| #*xy .y;

R_ � { #*x .T_xR{ ; T_ � { #*v .T{ (v R_ );

R_ 7{ #R_ & R{ ; T_ 7 { #*x . (T_x+T{x);

R_ 6{ #R_ +R{ . T_ 6 { #*v . (T_v & T{v), where _ 6 {{|.

Now we can use the following result from [18].

Theorem 23. Let M # 40
+& . Then T{M - � |&E M : {.

Let M, N # 4 and assume 1 |&M : _ and 1 |&% N : _, where FV(MN)=[xi | 1�i�n],
and 1(x i)={i for 1�i�n. Take {={1 � } } } � {n � _; then we have
|&*x1 } } } xn .M : { and |&% *x1 } } } xn .N : { by Theorem 6(3). Therefore, choosing
C[ ]=T{ (*x1 } } } xn . [ ]), we have by Theorem 23 that C[M] - and C[N] � . So
really the algorithm gives us a discriminating context.

Example 24. 1. If M, N are as in Example 21, we get the following
discriminating context C[ ]#T:1

[ ]#*v . (T;1
v & T;2

v)#*v . (T|1
(v0(*x .0) 03) &

(T|1
(v02(*x .0) 02)), where T|1

#*vy .y.

2. If M, N are as in Example 22, we get the discriminating context C[ ]#
T{ � :2

[ ]#*v .T:2
(vR{ )[ ], where R{ #R:1

& R:1 � :2
#R:1

& *x .T:2
xR:1

, T:2
#

*v . (T;2
v & T;4

v)#*v . (T|1
(v05(*x .0) 07) & (T|1

( v07(*x .0) 05)), R:1
#R;1

& R;3

#*x1 } } } x5 .T|1
x5(*x6 } } } x14 .0) & *x1 } } } x7 .T|1

x7(*x8 } } } x14 .0), and T|1
is as in

the previous example.

8. CONCLUDING REMARKS

The literature related to the present work has mostly been quoted in the Intro-
duction. Here we want to compare our development (based on [18]) with that
of [2].

First we consider the logic Type67 of intersection and union types, while
Abramsky and Ong consider the logic Type7 of intersection types only. This is
reflected in the solved domain equations: D=P>([D � D]=) in [18] and
D=[D � D]= in [2].

Also the techniques to find these solutions are different; [2] uses domain prelo-
cales following [1]. Instead, [18] uses a (simplified) version of information
systems [35]: the filter model approach introduced in [8]. Domain prelocales
allow us to describe the category of SFP domains, while filter models only allow
us to describe complete |-algebraic lattices. But in many cases filter models are
sufficient, also for different languages; for example [21, 15] build fully abstract filter
models of the ?-calculus.

Lastly, there is a difference in the choice of the language: [2] builds a model for
the lazy *-calculus, while [18] builds a model for the concurrent *-calculus intro-
duced in Section 4. We can compare the local structure of these models by restrict-
ing ourselves to pure *-terms. Let us consider x and *y .xy; we have |&% x : | � |,
while |&*y .xy : | � |. One can prove that with types in Type7 we get 1 |&*y .xy : {
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whenever 1 |&x : {. Therefore, in the model of [2] the interpretation of x is
properly included in that of *y .xy. But they are incomparable in the model of [18].
Indeed, in Example 21 we showed that x : :1 |&x : :1 while x : :1 |&% *y .xy : :1 , for a
suitable :1 containing 6.

If we consider *x .xx and *x .x(*y .xy), Sangiorgi proves in [33] that these terms
have the same types in Type7 . Therefore, they have the same interpretation in the
Abramsky�Ong model. As a consequence that model equates *-terms with different
Le� vy�Longo trees, as already noticed in [27]. Example 22 exhibits a type
\ # Type67 such that |&x : \, and |&% *y .xy : \. We can show that *x .xx possesses all
types in Type67 derivable for *x .x(*y .xy). Therefore, in the model of [18] the
interpretation of *x .x(*y .xy) is properly included in that of *x .xx.

To sum up, we proved that intersection and union types discriminate as strictly
as Le� vy�Longo trees do. Using the results of [18] we can then build a discriminat-
ing context in the concurrent *-calculus. For the classical *-calculus the more
common way of comparing terms is to consider their Bo� hm trees [7, Chap. 10]. So
a natural question is what can be added to the pure *-calculus in order to give it
the discriminating power of Bo� hm trees. The paper [6] gives a type assignment
system in which two *-terms have the same types iff they have the same Bo� hm trees.
Starting from this result, [16] proves that adding to the pure *-calculus a nondeter-
ministic choice operator and an adequate numeral system we obtain a language
which internally discriminates two *-terms if and only if they have different Bo� hm
trees.

APPENDIX

In this appendix we will provide the missing proofs of the following three results.

v Conservativity (Proposition 4);

v Approximation (Theorem 16);

v Principal pair (Theorem 19).

Notice that we consider only terms in 4=, � .

A.1. Proof of the Conservativity Property

We start with the following measure. The arrow-degree of a type in Type67 , i.e.,
the maximal number of consecutive external arrows, is inductively defined by

1. ad(|)=0;

2. ad(_ � {)=ad({)+1;

3. ad(_ 7 {)=max(ad(_), ad({));

4. ad(_ 6 {)=min(ad(_), ad({)).

We have the following simple lemma.

Lemma 25. If _�76 { then ad({)�ad(_).

Proof. The proof is by easy induction w.r.t. the definition of �76 .
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Our first goal is to show that in fact Type7 has least upper bounds of finite non-
empty sets. First let us observe that every element in Type7 is either equal to |
(after some obvious normalization) or is of the form �i # I (_ i � _$i), with I{<.

For _, { # Type7 we define a binary operation _ ? { by induction on min[ad(_),
ad({)]=*(_, {). If *(_, {)=0, then we set _ ? {=|. Otherwise, let _#
�i # I (_i � _$i) and {#�j # J ({j � {$j). Then

_ ? {= �
i # I, j # J

((_i 7 {j) � (_$i ? {$j)).

Since ad(_)>ad(_$i), for all i # I, and ad({)>ad({$j), for all j # J, it follows that
*(_, {)>*(_$i , {$j), for all i # I and j # J. Hence the definition is well-founded and
gives a total operation ?. We show several properties of this operation.

Lemma 26. For all _, {, \ # Type7 ,

1. _�7_ ? {;

2. _ ? {t7 { ? _;

3. _ ? ({ 7 \)t7 (_ ? {) 7 (_ ? \).

Proof. The proofs of parts 1 and 2 are by induction on ad(_). We prove
only 1, the proof of 2 being similar. For _t7 | or {t7 | the conclusion is obvious.
So take _#�i # I (_ i � _$i) and {#� j # J ({j � {$j). Since ad(_$i)<ad(_) for i # I, it
follows by the induction hypothesis that for all j # J we have

_i � _$i�7 (_i 7 {j) � (_$i ? {$j).

Hence _�7 _ ? {.
For 3, we can assume without loss of generality that all _, {, and \ are not

equivalent to |. Let _#�i # I (_i � _$i), {#� j # J ({j � {$j), and \#�k # K (\k � \$k).
We may assume that the sets J and K are pairwise disjoint. Let L=J _ K. Then the
left-hand side of 3 equals, by definition,

�
i # I, l # L

(_i 7 ! l) � (_$i ? !$l), (4)

where !l is {j , provided j # J, and \k otherwise, and similar notation for !$l . The
right-hand side of 3 is equal to

�
i # I, j # J

((_i 7 {j) � (_$i ? {$j)) 7 �
i # I, k # K

((_i 7 \k) � (_$i ? \$k)),

which is clearly the same (up to t7) as the formula (4). K

Corollary 27. For types in Type7 we have

_ 7 ({ ? \)�7 (_ 7 {) ? (_ 7 \).
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Proof. By Lemma 26 we have

_ 7 ({ ? \)t7 _ 7 _ 7 _ 7 ({ ? \)

�7 (_ ? _) 7 (_ ? \) 7 ({ ? _) 7 ({ ? \)

t7 (_ 7 {) ? (_ 7 \). K

Lemma 28. For types in Type7 we have that if _�7 \ and {�7 \ then
_ ? {�7 \.

Proof. We prove the lemma by induction on *(_, {). If *(_, {)=0, then
_t7 | or {t7 | and therefore \t7 | and we are done.

Assume *(_, {)>0 and let _#�i # I (_ i � _$i) and {#�j # J ({j � {$j) with
I{<{J. Without loss of generality we may assume that \ is of the form \1 � \2

with \2t% 7 |. Hence, by Lemma 5(3) there exist sets I1 �I and J1 �J such that

\1�7 �
i # I1

_i , �
i # I1

_$i�7 \2

and

\1�7 �
j # J1

{j , �
j # J1

{$j�7 \2 .

Hence,

\1�7 �
i # I1 , j # J1

(_i 7 {j). (5)

By induction hypothesis we get

\�
i # I1

_$i+? \ �
j # J1

{$j+�7 \2 .

By Lemma 26(3) the above formula is equivalent to

�
i # I1 , j # J1

(_$i ? {$j)�7 \2 . (6)

Now, by formulas (5), (6) and rule (R4) we have

_ ? {t7 �
i # I, j # J

(_i 7 {j) � (_$i ? {$j)�7 �
i # I1 , j # J1

(_i 7 {j) � (_$i ? {$j)�7 \1 � \2 .

This completes the proof. K

Our next goal is to show that Type7 is a retract of Type67 . From this a
conservativity result will follow. Let us define a function G : Type67 � Type7 by
induction as
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G(|)=|;

G(_ � {)=G(_) � G({);

G(_ 7 {)=G(_) 7 G({);

G(_ 6 {)=G(_) ? G({).

It is clear that G restricted to Type7 is identity. Hence, by the next lemma it will
follow that G is a retraction.

Lemma 29. G is monotone, i.e., for _, { # Type67 , if _�67 { then G(_)�7 G({).

Proof. The lemma is proved by induction on the length of the derivation of
_�67 {. The case of the axioms (A1) through (A4), (A8), and (A9) and of the rules
(R1), (R2), and (R4) is obvious since G preserves |, �, and 7. Axioms (A5) and
(A6) follow from Lemma 26(2, 3). Axiom (A7) follows from Corollary 2, while rule
(R3) follows from Lemma 28. K

Now we can conclude the proof of Proposition 4; i.e., we can show that for all
_, { # Type7 ,

_�67 { iff _�7 {.

The implication (O) follows directly from Lemma 29 and the fact that G is the
identity on Type7 . The opposite implication is obvious.

The reader should be warned that even though Type7 is a lattice and it is a
retract of Type67 as a semi-lattice, the least upper bounds in Type7 and in Type67

do not coincide. For example, (|1 � |1) 6 (|2 � |2) is strictly smaller in Type67

than (|1 � |1) ? (|2 � |2)=|2 � |1 . A similar phenomenon occurs for the set T
of pure arrow types, i.e., the types of Type7 which do contain 7. It can be shown,
using a definition of ? and @ in T by mutual recursion, that T is a lattice with the
ordinary subtype preorder. However, lub's and glb's in T, in general, do not
coincide with those in Type67 , nor with those in Type7 .

A.2. Proof of the Approximation Theorem

The approximation theorem is proved by means of a variant of Tait's ``computa-
bility'' technique, in the style of [19]. We define sets of ``approximable'' and ``com-
putable'' terms. The computable terms are defined by induction on types, and every
computable term is shown to be approximable (Lemma 32(3)). Using induction on
type derivations, we show that every term is computable for the appropriate type
(Lemma 34).

For M # 4=, � , we define two predicates App(1, _, M ) and Comp(1, _, M ) as

1. App(1, _, M ) � _A # A(M ) .1 |&A : _;

2. (a) Comp(1, |, M ) is always true;

(b) If {t| then Comp(1, _ � {, M ) � App(1, _ � {, M );
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(c) If {t% | then Comp(1, _ � {, M) holds iff Comp(1 $, _, N ) implies
Comp(1_+ 1 $, {, MN ), for each 1 $ and N;

(d) Comp(1, _ 7 {, M) � Comp(1, _, M ) and Comp(1, {, M );

(e) Comp(1, _ 6 {, M) holds iff Comp(1, _, M ) or Comp(1, {, M ) or
[M==, �

; xN9 and App(1, _ 6 {, M )].

We can easily prove by induction on types that Comp is invariant under beta
conversion and that it is always true for terms of the shape �M9 .

Lemma 30. 1. Comp(1, _, M ) and M=; N imply Comp(1, _, N ).

2. Comp(1, _, �M9 ) is true for all 1, _, M9 .

Proof. For part (2), if _#_1 � _2 and _2 t| we use Lemma 11(1). If
_#_1 � _2 and _2 t% |, we have by induction Comp(1_+ 1 $, _2 , �M9 N ) for all
1 $, N, so we get Comp(1, _, �M9 ). K

Below we show some properties of type assignments deducible for approximate
normal forms.

Lemma 31. 1. If 1 |&A : _ and APA$ then 1 |&A$ : _.

2. Let z � FV(M), {t% | and 1 $=1, z : _. Then App(1 $, {, Mz) implies
App(1, _ � {, M ).

Proof. Part (1) follows by induction with respect to the definition of P using
Theorem 6. For part (2), let A # A(Mz) be such that 1 $ |&A : {. We show that there
exists A� # A(M ) such that 1 |&A� : _ � {. If M is beta equal to an abstraction, then
*z .Mz= ;M and we can choose A� #*z.A. Otherwise, either A#�, and we can
take A� #�, or A must be of the form xA1 } } } AnZ. In the latter case we can choose
A� #xA1 } } } An . Indeed, since 1 $ |&xA1 } } } AnZ : {, we have by Theorem 6(4) that
1 $ |&xA1 } } } An : \ � {, for some \ with 1 $ |&Z : \. As an approximant of z, the
term Z is either z or =, and in both cases it must be _�\. Thus
1 |&xA1 } } } An : _ � {, as desired.

We can now show that computability implies approximability.

Lemma 32. For all 1, _, L9 , and M:

1. If App(1, _, xL9 ) then Comp(1, _, xL9 );

2. If Comp(1, _, M ) then App(1, _, M ).

Proof. Conditions (1) and (2) are proved by a simultaneous induction on _.

1. Most cases are easy, so we only consider the case _#_1 � _2 , with _2t% |.
Let App(1, _, xL9 ). This means that there is an approximant A # A(xL9 ) with
1 |&A : _. By inspecting the definition of approximants, we easily find out that A
must be of the form xA9 , where A9 is a vector of approximants of L9 .

We show that Comp(1, _, xL9 ). Assume Comp(1 $, _1 , N ). By the induction
hypothesis, part 2, we have App(1 $, _1 , N ), that is, there is an approximant
B # A(N ) of type _1 in the context 1 $. The term AB#xA9 B is an approximant of
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xL9 N, and we have 1_+ 1 $ |&AB : _2 . Thus Comp(1_+ 1 $, _2 , xL9 N ) follows from
part 1 of the induction hypothesis.

2. Assume first that _#_1 � _2 and _2t% |. Let 1 $=1, z : _1 , where
z � FV(M ), and suppose Comp(1, _1 � _2 , M). Then we have

Comp([z : _1], _1 , z) by part 1

O Comp(1 $, _2 , Mz) by definition

O App(1 $, _2 , Mz) by induction

O App(1, _1 � _2 , M) by Lemma 31(2).

Now let _#_1 7 _2 , and assume Comp(1, _1 7 _2 , M ). Then we have
Comp(1, _1 , M ) and Comp(1, _2 , M ). By part 2 of the induction hypothesis, there
is an approximant for M of type _1 and another of type _2 . Using Lemmas 12 and
Lemma 31(1), we obtain one approximant that has both these types. The remaining
cases are easy. K

Let us notice that without the last clause of part (e) in the definition of Comp,
Lemma 32 would be false. Consider, for example, that x : _ 6 { |&x : _6 {; then we
get App([x : _ 6 {], _ 6 {, x) and this implies Comp([x : _ 6 {], _ 6 {, x) by
Lemma 32(1). But we can derive neither x : _ 6 { |&x : _ nor x : _ 6 { |&x : {, and
therefore, App([x : _ 6 {], _, x) and App([x : _ 6 {], {, x) are both false. We
conclude that also Comp([x : _ 6 {], _, x) and Comp([x : _ 6 {], {, x) are both
false by Lemma 32(2).

The following lemma states that computability agrees with the typing rule (�).

Lemma 33. If _�{ and Comp(1, _, M) then Comp(1, {, M).

Proof. The proof is by induction with respect to the definition of �. For
example, for axiom (A7), assume that Comp(1, _ 7 ({ 6 \), M ). If M==, �

; xN9 for
some x and N9 , then by Lemma 32(2) we have App(1, _ 7 ({ 6 \), M). Thus
App(1, (_ 7 {) 6 (_ 7 \), M ), and this implies Comp(1, (_ 7 {) 6 (_ 7 \), M ) by
Lemma 32(1).

Otherwise, we have Comp(1, _, M ) and Comp(1, { 6 \, M). But now we can
assume that M is not ==, �

; equal to any xN9 , and thus either Comp(1, {, M ) or
Comp(1, \, M ) by definition. In a routine way we obtain Comp(1, (_ 7 {)
6 (_ 7 \), M ).

Consider the case of rule (R3). Suppose we derive _ 6 {�\ from _�\ and {�\.
Assume Comp(1, _ 6 {, M ). To show Comp(1, \, M ), we consider three cases,
according to the definition of Comp(1, _ 6 {, M ). For the first two cases, we use
the induction hypothesis, and for the third one, we apply Lemma 32. The remaining
cases are easy. K

Lemma 34. Let 1=[x1 : _1 , ..., xn : _n] and let 1 |&M : {. Assume that the condi-
tion Comp(1i , _i , Ni) holds for each i�n and take 1 $=�+ n

i=1 1i . Then

Comp(1 $, {, M[N1 �x1 , ..., Nn �xn]).
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Proof. Induction on the derivation of 1 |&M : {. Cases (Ax) and (|) are
immediate. Case (�) follows from Lemma 30(2). Cases (�E) and (7I) follow from
the induction hypothesis. Case (�) follows from the induction hypothesis and
Lemma 33.

For the proof in case (�I), let M#*y .P and {#{1 � {2 and suppose that
1, y : {1 |&P : {2 has been derived. If {2t% | and Comp(1", {1 , Q) then from the
induction hypothesis

Comp(1 $_+ 1", {2 , P[Q�y, N9 �x� ]).

There is no loss of generality in assuming that y � FV(N9 ), so that

P[Q�y, N9 �x� ]#P[N9 �x� ][Q�y], (*y .P[N9 �x� ]) Q#((*y .P)[N9 �x� ]) Q.

By the invariance of computability under beta conversion (Lemma 30(1)), it follows
that Comp(1 $_+ 1", {2 , ((*y .P)[N9 �x� ]) Q), and hence,

Comp(1 $, {1 � {2 , (*y .P)[N9 �x� ]),

since the computable term Q was arbitrary.
If {2 t|, then *y .= is an approximant of *y .P[N9 �x� ] of type {1 � |, and thus,

Comp(1 $, {1 � |, M[N9 �x� ]) holds. K

Now we can complete the proof of the approximation theorem (Theorem 16); i.e.
we show

1 |&M : _ iff _A # A(M ) such that 1 |&A : _. (7)

(O) If � # A(M) it is trivial. Otherwise, since App([x : {], {, x) holds for
any variable x and type {, then by Lemma 32(1), we have Comp([x : {], {, x). Thus
we can apply Lemma 34 for the identity substitution, to obtain Comp(1, _, M).
The hypothesis follows from Lemma 32(2).

(o) The proof is by induction with respect to 1 |&A : _. Cases (7I), (�),
and (|) are obvious. Case (�I) follows from Lemma 11(2), and cases (�E) and
(Ax) from Lemma 11(3). The most interesting case is when the last rule is (�).
Now if M==, �

; � it follows by subject conversion (Theorem 8). Otherwise,
� # A(M ) implies that M reduces to *x1 } } } xn .Qn for suitable Qn and all n. We
have 1 |&*x1 } } } xn .Qn : |n for all n, so we conclude 1 |&M : _ for all 1, _, by
Proposition 7 and Theorem 8. This completes the proof of (7). K

A.3. Proof of the Principal Pair Theorem

We start with the following result which collects some of the properties of our
definition of a principal pair.

Lemma 35. Let (1; _) # 6. Then:

1. Each type variable t # V occurs twice in 1, _, and at most once as a tail
variable of a type scheme in 1.
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2. Each type variable t$ # V$ occurs at most once in 1, _, and never as a tail
variable of a type scheme in 1.

3. Each type scheme _ which occurs in 1 as a predicate is of the form
_1 7 _2 7 } } } 7 _k , where k�1, and each _ i equals some \ i

1 � } } } � \ i
ni

� ti with
ni�0.

4. If x : {1 � } } } � {n � + # 1, then for all 1�i�n there is 1i
+�1 such that

(1i ; {i) # 6.

5. If _#+ � { and +t% |, then (1, x : +; {) # 6 for every x.

6. If _#| � { then (1 ; {) # 6.

Proof. Easy induction. K

A basis scheme 1 is semi-principal iff it satisfies conditions (1), (2), (3), and (4)
of the above Lemma.

We define a ``labeled partial order'' 2C=_ 1, where (2; _) must be a principal pair
and 1 is semi-principal. The definition of C=_ is by induction. As a base step we
take 2C=_ 2. Further, if 2C=_ 1 holds, then:

1. If 2=(�+ i�n 2i)_+ [x : {1 � } } } � {m � t] and _#t, then 2iC={i
1, for

each i;

2. If _#\1 � \2 , and \1t% |, then 2, x : \1 C=\2
1, x : \1 , where x is a fresh

variable;

3. If _#| � \2 , then 2C=\2
1.

One can easily see that 2C=_ 1 implies 2 +�1. Recall that the symbol +� denotes the
inclusion between bases defined above Theorem 6.

Before we start proving the Principal Pair Theorem we have to show how to
build types in Type67 which essentially behave like different type variables with
respect to �67 .

First we define a mapping F : Type67_N � Type67 , as

1. F(_, 0)=_;

2. F(|, n+1)=|;

3. F(_ � {, n+1)=F({, n);

4. F(_7 {, n+1)=F(_, n+1) 7 F({, n+1);

5. F(_6 {, n+1)=F(_, n+1) 6 F({, n+1).

Let us fix numbers n and m with 1�n�m, and let h=m+2n+1. Let us recall the
definition of types :i from Section 6,

:i=;i 6 ;n+i ,

where ;j for j�2n is defined as

;j=|m+ j&1 � |1 � |h& j � |1 .

We have the following lemma.
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Lemma 36. For each I�[1, ..., n], each pi , qi�m, and j�n:

�
i # I

(| pi � F(:i , qi))�67 :j iff j # I and p j=q j=0.

Proof. If �i # I (| pi � F(:i , qi))�67 :j , then from Lemma 5(2) we have
|pi � F(:i , qi)�67 :j for some i # I.

By definition ad(:i)=ad(;i)=ad(;n+i)=h+m+1 for all i. On the other hand,
ad(| pi � F(:i , q i))= p i+h+m+1&qi . An immediate consequence of Lemma 25
is that pi�qi .

Case 1. pi=0. Then also qi=0, and we actually have :i=F(: i , 0)�67 :j .
Lemma 5 gives us G(:i)�67 G(:j), i.e.,

|m+i&1 � |1 � |n&1 � |1 � |h&n&i � |1

�7 |m+ j&1 � |1 � |n&1 � |1 � |h&n& j � |1 .

Thus, the positions of |1 must match, and we have i= j.

Case 2: pi>0. By Lemma 5(1), the condition | pi � F(: i , qi)�67 :j implies
either | pi � F(:i , qi)�67 ;j or | pi � F(: i , q i)�67 ;n+ j . Assume the first
possibility. Then, from Lemma 29, we obtain

G(| pi � F(:i , qi))�7 G(; j)=; j .

That is, we have

| pi+m&qi+i&1 � |1 � |n&1 � |1 � |h&n&i � |1

�7 |m+ j&1 � |1 � |h& j � |1 .

The right-hand side of the above inequality has only one occurrence of |1 and the
left-hand side has two. To satisfy the inequality, the first |1 must match the
occurrence at the right-hand side, and the second one must occur not earlier than
the (h+m+2)nd argument (to be ``covered'' by the target |). It follows that
h+m+2�pi+m&qi+i+n&1�pi+m+i+n�2m+2n, which is a contradiction.
Similarly we get that the second possibility is contradictory. K

We need one more technical lemma for the proof of Theorem 19. Let us recall
that the arrow-degree ad(&) is defined in Section A.1 for the proof of the conser-
vativity property.

Lemma 37. If 1 |&*x1 } } } xn .yM1 } } } Mm : _ and 1( y)={, then ad(_)�
ad({)+n&m.

Proof. The proof is by induction w.r.t. the length of derivations. Case (Ax)
follows from Theorem 6(1) and Lemma 25. Case (�) follows from Lemma 25. K

Now we are ready to start proving Theorem 19. Recall that we have to show that
for M # 4=, � , A # A, and pp(A)=(1; _) , if we take n=v(A) and m=}(M, A),
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then sm, n(1) |&M : sm, n(_) implies A # A*(M ). Definitions of measures " and } are
given in Section 6.

We show a stronger claim, from which our theorem follows:
Let M # 4=, � , A # A, (2; _) = pp(A), and 2C=_ 1. Let n be the number of type

variables from V (i.e., nonprimed versions) which occur in (1; _) , and let
m�[a+degree(M, h), a+order(M, h), n], where a is the number of arrows which
occur in (1; _) and h is the height of LL(A). Then sm, n(1 ) |&M : sm, n(_) implies
A # A*(M ).

The case LL(M)= } � is trivial, since we get A(M )=A. In the other cases the
proof is by induction with respect to (2; _). Whenever _t% |, by Theorem 18 the
term M must have a weak head normal form:

Case 1. If (2; _)=(<; |) then A#=.

Case 2. If (2; _) =(<; t$) then sm, n(t$)=|3m+2n+3 . Let M#*x1 } } } xd $ .M$
where M$ does not have a weak head normal form. Then a type deducible for M
is always �|d $ . Now |d $�|3m+2n+3 is impossible by Lemma 25, since ad(|d $)=
d $<ad(|3m+2n+3)=3m+2n+3.

Assume M#*x1 } } } xd $ .yN9 . By definition of semi-principal basis and of sm, n( ) a
type which occurs in sm, n(1 ) is an intersection of arrow types of the shape
{1 � } } } � {a$ � :i for some a$�a and i�n. Notice that ad(:i)=2m+2n+2, then
a being the total number of arrows in (1; t$) we have ad(\)�a+2m+2n+2 for
all \ which occur in sm, n(1). By Lemma 37 we get that sm, n(1 ) |&M : { implies
ad({)�d $+a+2m+2n+2�3m+2n+2. Therefore, we cannot have {�|3m+2n+3 ,
since this would contradict Lemma 25. So we conclude that either M==, �

; � or
M==, �

; *x� .Q for arbitrarily long x� . In both cases A*(M )=A.

Case 3. Let _#_1 � _2 in (2; _) . Then A#*x .B, and (2, x : _1 ; _2) = pp(B)
if _1t% |; (2; _2)= pp(B) otherwise. If M= =, �

; *x .M$, then sm, n(1 ) |&M : sm, n(_)
implies sm, n(1, x : _1) |&M$ : sm, n(_2) and we apply the induction hypothesis. If
M==, �

; yN9 , then sm, n(1 ) |&M : sm, n(_) implies sm, n(1 ) |&*z .Mz : sm, n(_), where
z � FV(M ). Notice that degree(*z .Mz, h)�d+1 and order(*z .Mz, h)�o+1, but
the number of arrows in (1, x : _1 ; _2) is a&1, so the hypothesis on m is still valid.
Therefore, from the previous case A # A*(*z .Mz) and by Lemma 14(2), we get
A # A*(M ).

Case 4. Let (2; _) =( (�+ j�k 2j)_+[x : _1 � } } } � _k � t]; t). Then A#
xA1 } } } Ak and sm, n(t)=:l for some l�n.

Let M#*x1 } } } xd $ .M$ where M$ does not have a weak head normal form. Then
a type deducible for M is always �|d $ . Now |d $�:l is impossible by Lemma 25,
since ad(|d $)=d $<ad(: l)=2m+2n+2.

Assume M==, �
; *y1 } } } yd $ .zN9 . By Theorem 6(1, 3, 4) and the assumptions that

a type for M will have either the shape

\1 � } } } � \d $ � {1 � } } } � {a$ � : i
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or the shape

\1 � } } } � \d $ � F(:i , o$)

for some a$+d $, o$�m, and i�n, or it is an intersection of types of the above
shapes. Clearly,

|a$+d $ � :i�\1 � } } } � \d $ � {1 � } } } � {a$ � :i

and

|d $ � F(:i , o$)�\1 � } } } � \d $ � F(:i , o$).

Therefore, we need to satisfy

�
i # I

(| pi � F(:i , qi))�:l

for some I�[1, ..., n] and pi , qi�m. Lemma 36 gives a$=d $=o$=0 and i=l. By
construction, the only type in sm, n(1 ) which ends by : l is sm, n(_1 � } } } � _k � t),
so we get M==, �

; xN1 } } } Nk and sm, n(1) |&Ni : sm, n(_i) for 1�i�k by Theorem 6.
This implies by induction that Ai # A*(Ni) for 1�i�k, so we conclude
A # A*(M ) by Lemma 14(3). This completes the proof of the claim and now
Theorem 19 follows.
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