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Tidal energy is a renewable resource that can contribute towards meeting growing energy
demands, but uncertainties remain about environmental impacts of device installation and
operation. Environmental monitoring programs are used to detect and evaluate impacts
caused by anthropogenic disturbances and are a mandatory requirement of project operat-
ing licenses in the United States. In the United Kingdom, consent conditions require mon-
itoring of any adverse impacts on species of concern. While tidal turbine sites share similar
physical characteristics (e.g. strong tidal flows), similarities in their biological characteris-
tics have not been examined. To characterize the generality of biological attributes at tidal
energy sites, metrics derived from acoustic backscatter describing temporal and spatial
distributions of fish and macrozooplankton at Admiralty Inlet, Washington State and the
Fall of Warness, Scotland were compared using t-tests, F-tests, linear regressions, spectral
analysis, and extreme value analysis (EVA). EVA was used to characterize metric values
that are rare but potentially associated with biological impacts, defined as relevant change
as a consequence of human activity. Pelagic nekton densities were similar at both sites, as
evidenced by no statistically significant difference in densities, and similar daily density
patterns of pelagic nekton between sites. Biological characteristics were similar, suggesting
that generic biological monitoring programs could be implemented at these two sites,
which would streamline permitting, facilitate site comparison, and enable environmental
impact detection associated with tidal energy deployment.
� 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Environmental monitoring is used to identify impacts caused by anthropogenic disturbances. Biological components of
monitoring programs focus on the detection of change in variables such as diversity, size, or abundance of monitored species
[1]. Prior to establishing long term monitoring, regulatory agencies typically require the collection of baseline data
before projects can be implemented that may cause alteration to an ecosystem [2]. At a single site, biological characteristics
before and after an alteration can be compared to detect change, as in classic Before – After – Control – Impact (BACI) sample
designs [3]. Standard sampling protocols permit monitoring datasets to be compared between or among sites to evaluate if
observed changes are site-specific or generic.
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Biological monitoring programs are mandatory for marine renewable energy (MRE) tidal energy projects in the US, yet no
standards for monitoring procedures, technologies, or metrics currently exist [4]. This lack of standardization has resulted in
site-specific monitoring programs for each tidal energy pilot project in the US. In Scotland, an Environmental Impact Assess-
ment and a post-installation monitoring program are required for each MRE project, and these are also site-specific [5]. Stan-
dardization of a portion or all monitoring components would enable monitoring plans to be proposed in a time-efficient
manner, and make monitoring datasets comparable across sites.

Determining what the maximum level of ‘‘acceptable” impact, or biologically significant change, is a high priority when
forming a monitoring plan [6]. Because impact above a threshold can determine if a tidal project requires operational mod-
ifications, additional monitoring, mitigation, or removal [7], impact thresholds and characterizations should be determined
before post-installation monitoring begins [8]. Extreme value analysis (EVA) is an approach used to model values that are
infrequent but potentially associated with impacts [9]. This approach also provides a threshold to identify infrequent values,
and could provide statistically significant thresholds for use in biological monitoring [10].

Few studies of fish and macrozooplankton in the water column (i.e. pelagic nekton) have been conducted at tidally
dynamic sites because these sites are challenging to sample. One option for studying biota in the water column is active
acoustic technology. Acoustic instruments use sound to evaluate distributions, abundances, and behavior of fish and macro-
zooplankton [11,12]. Acoustic instruments offer non-invasive methods to continuously sample large volumes of water,
regardless of current speed or light levels. These instruments can be deployed on autonomous or cabled platforms that
are suitable for monitoring at high spatial and temporal resolution [13], and low cost [14].

It is important to evaluate and compare MRE site biological characteristics so that the potential for standardized moni-
toring programs can be assessed, and if applicable, developed and implemented. MRE tidal sites share similar physical char-
acteristics (e.g. high tidal flows), but it is unknown whether these sites share similar biological characteristics. In this study
we describe and compare biological characteristics of pelagic nekton distributions at two tidal energy sites, to examine
whether density distributions are similar or site-specific. We also evaluate whether EVA is an appropriate general approach
to determine impact thresholds of biological monitoring variables at tidal energy sites and comment on the feasibility of
developing generic monitoring programs.
2. Methods

2.1. Site descriptions

Active acoustic data used for this study were collected at two tidal energy sites. Admiralty Inlet, on the west side of Whid-
bey Island in Puget Sound, Washington State, was the proposed site of the Snohomish Public Utility District 1 (SnoPUD) pilot
tidal energy project that received its project license from the Federal Energy Regulatory Commission (FERC) on March 20,
2014. The project, now dormant, would have deployed two OpenHydro turbines (http://www.openhydro.com/) approxi-
mately one kilometer off Whidbey Island (Fig. 1a). Two buried cables were to connect the turbines to the electric grid
[15]. The second dataset was collected at the European Marine Energy Council (EMEC) test facility in the Fall of Warness,
located centrally in the North Isles of Orkney, Scotland (Fig. 1b). The Fall of Warness provides eight grid-connected turbine
berths in depths of 12–50 mwith current speeds up to 4 ms�1. Although the site has actively generating turbines, the dataset
used for this study was collected in the tidal channel, away from any turbine structure to provide a control dataset for the
FLOWBEC project (http://noc.ac.uk/project/flowbec).

2.2. Data acquisition

Acoustic backscatter (i.e. reflected energy) data were recorded at Admiralty Inlet using a seabed mounted BioSonics DTX
echosounder (http://www.biosonicsinc.com/) operating at 120 kHz from May 9 to June 9, 2011 [16]. The echosounder was
placed on the seabed at 55 m depth about 750 m off Admiralty Head at the SnoPUD tidal turbine site. The echosounder sam-
pled at 5 Hz for 12 min every 2 h (Table 1). Tidal velocity data were collected once every 10 min by a Nortek acoustic Doppler
current profiler (http://www.nortek-as.com) operating at 1 Hz.

At the Fall of Warness, a seabed-mounted acoustic platform containing a multibeam sonar and an EK60 echosounder [17]
was deployed at 35 m depth over an 18 day period from June 18 to July 5, 2013. The echosounder collected data at 38 kHz,
120 kHz, and 200 kHz, sampling at 1 Hz (Table 1). Water column mean tidal speeds were modeled from tidal velocity data
that were collected every minute using an SonTek/YSI ADVOcean acoustic Doppler velocimeter (http://www.sontek.com/)
[17].

2.3. Data processing

2.3.1. Admiralty Inlet
Acoustic data from Admiralty Inlet data were processed prior to this study, with processing described in [16] and [18].

Due to a 3rd surface echo in the water column, data values were constrained to 25 m from the seabed, a height correspond-
ing to approximately twice that of the proposed turbines. A volume backscattering strength (Sv) threshold of �75 dB re
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Fig. 1. (a) Admiralty Inlet study and acoustic package locations within Puget Sound, Washington, (b) EMEC tidal test center and the Fall of Warness
deployment site within the Orkney Islands, Scotland.

Table 1
Acoustic sampling parameters of echosounders deployed at
Admiralty Inlet and the Fall of Warness.

Admiralty Inlet Fall of Warness

Manufacturer BioSonics Simrad
Model DTX EK60
Frequency 120 kHz 120 kHz
Beam Angle 7o 7o

Pulse length 500 ls 1024 ls
Sample Rate 5 Hz 1 Hz
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1 m�1 (cf. [12], hereafter dB) was applied to remove noise [16]. Data were horizontally binned in 12 min samples and ver-
tically integrated over the 25 m, resulting in 361 datapoints [18].
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2.3.2. The Fall of Warness
Acoustic data from the Fall of Warness site were processed in Echoview (version 6.0). Background noise was removed

using a post-processing time varied gain noise reduction algorithm [19]. Noise estimates were obtained from three sections
of the water column with low water column Sv values (i.e. empty water samples). The average of these three empty water
samples, �105.44 dB, was subtracted from all data bins [20]. The data range was constrained to 25 m from the seabed to
ensure surface turbulence exclusion and to match the depth of the Admiralty Inlet data. A 12 min temporal block from every
two hours was used to match the sample block size used in the Admiralty Inlet data.

Water turbulence was detected using the SHAPES algorithm [21,22], as implemented in Echoview. This algorithm is typ-
ically used to detect fish and macrozooplankton aggregations by searching for adjacent pixels with density values above a
threshold, and applying a minimum size criterion to groups of pixels. The acoustic threshold, minimum aggregation size, and
amalgamation parameters are set by the analyst. Virtual positions, necessary for use of this algorithm with the Fall of War-
ness data, were created using flow rates derived from ADV data by matching the start and end times of the echogram to the
ADV data, and then indexing each second to a corresponding flow speed. The turbulence detection threshold was set to
�75 dB, to include all backscatter attributed to pelagic nekton and to exclude particulates. After aggregations were detected,
they were classified as turbulence or non-turbulence using depth and length of detected aggregation as criteria (turbulence:
mean depth <8 m, thickness >15 m; pelagic schools: thickness <4 m).

2.3.3. Data alignment and subsampling
To align datasets from the two sites, an 18 day period needed to be selected from the Admiralty Inlet dataset that closely

matched times and conditions sampled at the Fall of Warness. Using historical tide charts from NOAA [23,24], the 18 day
period was selected so that the lunar phases of the two datasets matched. The start and end times of day in the Admiralty
Inlet dataset were also selected to match the start and end times of day in the Fall of Warness dataset.

To enable a direct comparison of samples between sites, the Fall of Warness data needed to be subsampled to match the
resolution of the Admiralty Inlet data, where the echosounder sampled continuously for 12 min every 2 h. Since the echo-
sounder at the Fall of Warness sampled continuously over the deployment period, there are 10 possible 12 min sequential
time bins that could be chosen to represent each 2 h block. The continuous sampling at the Fall of Warness also facilitated an
analysis of how representative each 12 min bin is of a two hour period. The ten mean Sv series of regularly spaced 12 min
bins were compared using an ANOVA, and by examining the fit of a Generalized Pareto Distribution (GPD) for each series [9].
The GPD is used to model extreme values, which are exceedances above a threshold. Thresholds of the GPD fits for the 10
series were compared to examine how the choice of data subset (i.e. 12 min bin) affected the robustness of the threshold
estimate.

The GPD threshold is usually defined using a Mean Residual Life (MRL) plot, which shows the mean number of values
above a threshold as the threshold is increased [8,25]. The optimal GPD threshold is identified as the first value where
the curve becomes linear, however this choice is subjective and because of noise in the graph, the value is not always obvi-
ous. An alternate approach is to take the derivative of the smoothed MRL plot, which was smoothed using a polynomial ker-
nel density smoother [26], implemented using the KernSmooth package in R, and then select the point where the derivative
equals zero [10]. The threshold value obtained by the derivative method for each of the 10 series was compared to the
threshold value obtained for the complete mean Sv dataset.

The effect of varying the amount of data on the threshold estimate for the GPD was also examined. Mean Sv series con-
taining increasing amounts of data were generated, ranging from 10% (one bin randomly selected from each 2 h block) to 90%
of the data (nine bins randomly selected from each two hour block). The random selection was repeated 500 times for a total
of 4500 series, and derivative-based thresholds were estimated for each series. Variability of threshold estimates was eval-
uated by comparing the mean threshold estimate using an ANOVA, and by examining changes in the standard deviation of
threshold estimates as the amount of data included in the calculation increased.

2.4. Data analysis

2.4.1. Metric suite
Ecological indicators are measurable characteristics of three biological attributes: composition, structure, and function.

Changes in indicator values can be used to detect ecosystem change in response to disturbances. Composition is defined
as the number and variety of elements in a system, structure is the physical organization of a system, and function includes
ecological and evolutionary processes [27]. A suite of indicator metrics [cf. 13] was used to quantify variability in vertical
distributions of pelagic nekton through time. Density and center of mass were used to monitor changes in ecosystem struc-
ture, while dispersion and an aggregation index were used to track changes in ecosystem function.

Density is quantified using mean volume-backscattering strength (i.e. mean Sv, the average of the reflected sound from
targets (fish, zooplankton) in the insonified volume of water), which is proportional to biomass density. The aggregation
index (unit: m�1) quantifies vertical patchiness and is calculated on a relative scale of 0–1, with 0 being evenly dispersed
and 1 being aggregated. Mean Sv and aggregation index are used for extreme value analyses. High aggregation and density
values are assumed to be associated with an increased risk of interaction with MRE devices. The center of mass (unit: m)
measures the location of the mean weighted acoustic backscatter relative to the seabed. The dispersion (unit: m2) metric
measures the spread of biomass around the center of mass, and is analogous to the variance.
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2.4.2. Tidal site comparison
Central tendencies in Sv, center of mass, dispersion metrics, and tidal speed were compared using t-tests for means and

F-tests for the variances at an alpha value of 0.05. The aggregation index was not normally distributed and could not be com-
pared with parametric tests, so a Kolmogorov-Smirnov (K-S) test [28] was used to compare mean values, and a Bartlett’s test
[29] was used to compare variances. Differences in metric values between day (Admiralty Inlet: 06:00–20:00, the Fall of
Warness: 04:00–22:00) and night (Admiralty Inlet: 22:00–04:00, the Fall of Warness: 00:00–02:00) were examined using
t-tests for means and F-tests to compare variances.

Frequency domain analysis [30,31] was used to compare dominant periodicities in metric values of the two datasets. Peri-
odograms can be used to examine how the variance of a time series is distributed over its frequency components [31]. Peaks
in plots of frequency against power, a measure of variance, are used to identify frequencies that contribute to the variance of
the time series. Periodograms were generated for metrics at both Admiralty Inlet and the Fall of Warness. Significant fre-
quencies in each periodogram were identified as values exceeding a red noise spectrum (i.e. an auto-regressive process with
a memory of 1 [31]). Coherence between any two series is measured on a scale from 0 to 1, with 0 signifying that the two
series are significantly different and a value of 1 being that phases and amplitudes are the same for all frequencies [31].
Coherence between periodograms of metric pairs was calculated to compare amplitudes and phases of frequencies between
the two sites.

To compare possible underlying processes that influence observed patterns, linear regression models were fit to the four
metric series at each site. A group of potential covariates were tested in each model: tidal speed (ms�1), hour of day, Julian
day, a Fourier series defined by the 4 h period, a Fourier series defined by a 12 h period, and a Fourier series defined by a 24 h
period. Fast Fourier transforms provided amplitudes and phases for the Fourier series. The models were fit by forward selec-
tion [32], and the fit was evaluated using the Akaike Information Criterion (AIC) [33]. The model with the lowest AIC was
selected as the best model. Residual plots were examined to evaluate model fit. Multicollinearity was examined using the
variance inflation factor (VIF) [34].

Fits of the GPD to mean Sv and aggregation indices were compared between sites using EVA. Extreme value theory
[9,35,36] is a statistical technique used to model the probability and periodicity of extreme values, which are rare values
in the tail of a probability distribution. In the peaks-over-threshold (POT) method, extreme values are identified as excee-
dances above a threshold [9], which follow a GPD. To fit a GPD to data, a threshold is selected and then scale and shape
parameters are fit to the data. The GPD was fit to the mean Sv and aggregation index metrics calculated from the Admiralty
Inlet and the Fall of Warness backscatter data. The threshold for the GPD fit was selected by computing the derivative of
diagnostic plots [10] (see Section 2.3.3). Posterior distributions were obtained for the scale and shape parameters using Mar-
kov chain Monte Carlo (MCMC) simulations [9,31]. The MCMC simulation chains were run with one million iterations, where
20% of the iterations were discarded as a burn-in period, and chains were thinned according to the autocorrelation between
iterations. Medians of the resulting posterior distributions were used as scale and shape parameters of the GPDs for each
metric. The fit of the GPD was evaluated for each metric by computing the sums of squares between the observed density
function and the corresponding GPD, and by comparing results between sites. Smaller sums of squares indicate a better GPD
fit. Return level (i.e. the value expected to be exceeded, on average, once every associated period [25]) plots were generated
for the mean Sv and aggregation indices at both sites. The 95% interval values from the posterior distributions of the GPD
parameters were used to generate 95% credible intervals for the return level plots [25]. Shapes of the return level plots were
compared qualitatively.
3. Results

3.1. The Fall of Warness sample block selection

The ANOVA comparing the ten mean Sv series of regularly spaced 12 min bins per two hour block showed that means of
the series were not significantly different (p = 0.7024), suggesting that any of the ten series could be used as a representative
dataset for the Fall of Warness site (Fig. 2).

To aid in the selection of a data series, GPD thresholds for the 10 series were compared. GPD threshold values in the ten
series differed. Standard deviations (range: 1.95–2.87 dB) and number of significant outliers (1–4) also varied among series
(Fig. 2), which could affect the GPD fit as extreme values are those greater than the threshold. The MCMC routine to fit the
GPD did not converge for series 3, 6, and 7, which have few outliers and low variance. The mean for the thresholds of the ten
series was�75.41 dB. Series 8, with a threshold of�75.63 dB was selected as the Fall of Warness dataset to be used in further
analysis as it had the closest threshold to the mean of the thresholds, and successfully converged to a GPD posterior.

The proportion of data used (i.e. how many 12 min bins per 2 h block) in the derivative method did not greatly affect the
mean value of the resulting GPD threshold, but it did affect the variance (Fig. 3). The threshold when all data were included
was �75.68 dB. The mean threshold increased slightly as the proportion of data used to estimate the threshold increased
(e.g. one 12-min bin per 2-h block = �75.72 dB, 9 bins per block = �75.67 dB), but the overall increase was less than
0.1 dB. The standard deviation of the threshold estimate decreased with an increasing proportion of data used, from
0.63 dB at one bin per block, to 0.045 dB at 9 bins per block. Over 500 iterations, when 10% of the data were used
(i.e. 1 bin per block); the threshold estimates ranged from �77.84 dB to �73.79 dB, suggesting that increasing the amount



Fig. 2. Boxplots (0.95, 0.5, median) for the ten Fall of Warness mean Sv (dB) series, with Generalized Pareto Distribution thresholds plotted as orange dots.
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of data used decreases the variance in the threshold estimate. In comparison, the mean threshold estimate from 500 random
draws did not change significantly with increasing data proportion above 70%.
3.2. Comparison of tidal site characteristics

Similarities of biological characteristics were evaluated by comparing metrics describing distributions of pelagic nekton.
Mean Sv, center of mass, and dispersion metrics at both sites displayed a saw-tooth pattern with a low-frequency sinusoidal
component (Fig. 4), while the aggregation index series contained low amplitude values interspersed with high amplitude
spikes. Values at Admiralty Inlet had larger amplitudes compared to metric values from the Fall of Warness. F-tests showed
that standard deviations for the three metrics were significantly (p < 0.05) greater at Admiralty Inlet than at the Fall of War-
ness (Table 2). Metric means, except for mean Sv, were significantly different between sites. Despite shallower water at the
Fall of Warness (35 m) compared to Admiralty Inlet (55 m), the center of mass was, on average, higher (p = 2.2e�16) in the
water column at the Fall of Warness than at Admiralty Inlet (Table 2). Dispersion was greater at Admiralty Inlet while aggre-
gation was greater at the Fall of Warness.
Fig. 3. Boxplots (0.95, 0.5, median) showing the distribution of threshold estimates for 500 draws from the Fall of Warness mean Sv (dB re 1 m�1) series
containing 1 (10%) to 9 bins (90%) of the data.



Fig. 4. Data values for (a) mean Sv (dB), (b) center of mass (m), (c) dispersion (m2), and (d) aggregation (m�1), with Admiralty Inlet in blue and the Fall of
Warness in red.

Table 2
Means and standard deviations of biological characteristics at Admiralty Inlet (AI) and the Fall of Warness (FoW). All p-values for the mean are from t-tests,
while those for the standard deviation are from F-tests, except tests using aggregation index values. For the aggregation index, the p-value for the mean is from
a Kolgomorov-Smirnov test and the p-value for the standard deviation is from a Bartlett’s test.

Mean Standard Deviation

AI FoW p-Value AI FoW p-Value

Mean Sv (dB) �76.52 �76.94 2.04e�01 3.869 2.524 2.46e�09
Center of Mass (m) 11.35 14.07 2.2e�16 2.27 1.93 1.62e�06
Aggregation (m�1) 0.062 0.064 5.12e�06 0.047 0.047 9.96e�01
Dispersion (m2) 46.13 41.97 2.21e�05 10.46 8.96 2.80e�02

L.E. Wiesebron et al. / International Journal of Marine Energy 16 (2016) 235–249 241
Daily patterns in metric values also varied between sites. On average there was greater variability between day and night
mean Sv at Admiralty Inlet than at the Fall of Warness (Admiralty Inlet, difference = 2.63 dB, p = 9.15e�07; the Fall of War-
ness difference = 1.35 dB, p = 5.54e�04). This may be due to the difference in day (Admiralty Inlet: 06:00–20:00, the Fall of
Warness: 04:00–22:00) and night (Admiralty Inlet: 22:00–04:00, the Fall of Warness: 00:00–02:00) lengths. At Admiralty
Inlet, the average center of mass descended from 13.8 m above the seabed at night to 10 m during the day (Fig. 5b). The
opposite pattern was observed at the Fall of Warness where the center of mass ascends from 13.8 m at night to 15.2 m during
the day. Dispersion was significantly different between night and day at Admiralty Inlet (difference = 4.25 m2, p = 2.6e�03),
but not at the Fall of Warness (difference = 0.15 m2, p = 0.972).

Biomass distribution was predicted to vary with tidal speed. Tides were stronger at the Fall of Warness (mean
speed = 1.58 ms�1) compared to Admiralty Inlet (mean speed = 1.18 ms�1). At Admiralty Inlet, mean tidal speeds ranged
between 0.5 and 2 ms�1, compared to 0 and 3 ms�1 at the Fall of Warness. At Admiralty Inlet, mean Sv increased with tidal
speed (slope = 0.64), but the relationship was not significant (p = 0.481) (Fig. 6a). At the Fall of Warness, biomass density
increased significantly with tidal speed, and at a greater rate than at Admiralty Inlet (slope = 1.033, p = 7.28e�5). The center
of mass decreased significantly with increased tidal speed at Admiralty Inlet (slope = �1.47, p = 0.0153), but not at the Fall of
Warness (slope = 0.04, p = 0.947). Aggregation index values did not change with increasing tidal speed at either site



Fig. 5. Mean (solid lines) and positive standard deviation (shaded) values of (a) mean Sv (dB), (b) center of mass (m), (c) dispersion (m2), and (d) aggregation
(m�1) metrics by hour of day for Admiralty Inlet (blue) and the Fall of Warness (red).
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(slope = �0.004, slope = �0.005). Dispersion increased at the Fall of Warness (slope = 2.048, p = 0.028) but not at Admiralty
Inlet, where it decreased slightly with increasing tidal speed (slope = �0.659, p = 0.779).

Metric values at both sites had many of the same dominant periodicities, though not always with similar amplitudes
(Fig. 7). For mean Sv, 24 h was the dominant periodicity (amplitude = 2.5), perhaps highlighting the importance of diel pro-
cesses at this site. At the Fall of Warness, the importance of the 12 h (amplitude = 0.9) and 4 h frequencies (amplitude = 0.6)
indicates the potential importance of tidal over diel processes at this site (Table 3). We discounted the 404 h period as its
significance may be due to edge effects [31]. However, amplitudes of the 12 and 4 h frequencies were small compared to
the 24 h period amplitude at Admiralty Inlet. Coherence between the two mean Sv metrics was the highest (0.997) among
all metrics.

Similarities in amplitudes and values of the significant frequencies for the center of mass at both sites were consistent
with the coherence for this metric (0.923). The sites did not share any similar significant periods for aggregation index
(Table 3), and aggregation metrics at the two sites had the lowest coherence of all metric pairs (0.378). The two dispersion
series did not share any significant periods (Table 3), but the coherence for the dispersion metrics was higher (0.903) than
that of the aggregation indices.

Overall, common significant periods were 24 h, 12 h, and 4 h. These periods were used as covariates in linear regressions
(Table 4). Amplitudes of significant periods had similar values between sites with the exception of the 24 h period. The
greater amplitudes for the 24 h frequency component in the mean Sv and center of mass periodograms at Admiralty Inlet
indicate a greater dominance of diel processes at Admiralty Inlet than at the Fall of Warness, which is supported by the pat-
tern in hourly variability (i.e. greater variability at Admiralty Inlet between day and night) of these metrics (Fig. 5).

All linear regression models of the metrics, except for aggregation index, included the 24 and 12 h periods (Table 4).
Regression models for Admiralty Inlet and the Fall of Warness mean Sv shared these two covariates, and the Fall of Warness
model included two more significant covariates. The mean Sv models for both sites were the only models that included Julian
day. Besides the 24 and 12 h periods, the center of mass model for Admiralty Inlet included tidal speed, while the Fall of War-
ness model included the 4 h period. The aggregation model was the only regression model where the two sites did not have
any covariates in common (Table 4). The dispersion model was the same for Admiralty Inlet and the Fall of Warness with the
addition of tidal speed in the Fall of Warness model. All model residuals formed a random pattern indicating good model fit.
No VIF for any model covariates was above 5, indicating no severe multicollinearity.



Fig. 6. Regression lines of best fit for (a) mean Sv (dB), (b) center of mass (m), (c) dispersion (m2), and (d) aggregation (m�1) as a function of tidal speed for
Admiralty Inlet (blue) and the Fall of Warness (red).
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3.3. EVA results comparison

The GPD fit did not differ greatly between sites for the mean Sv or aggregation index variables (Figs. 8 and 9). Metric
thresholds were similar between sites (Table 5), especially for the aggregation index metric. Scale and shape parameters
for both metrics were of the same order of magnitude, with shape parameters positive for mean Sv and negative for aggre-
gation index. The sums of squares between the GPD and the metric density function were used to evaluate the fit of the GPD.
The mean Sv and aggregation index from Admiralty Inlet had a better GPD fit (i.e. lower sums of squares) than those of the
Fall of Warness (Table 5). It should be noted that there were small differences in the numbers of datapoints over the thresh-
old for the metrics between Admiralty Inlet and the Fall of Warness (difference of 4 datapoints for mean Sv, 1 data point for
aggregation), which may have affected the sums of squares.

Shapes of return level plots for the two sites were similar for mean Sv (Fig. 8) but not for the aggregation index (Fig. 9). The
temporal range between the data (2 weeks) and the maximum prediction interval (up to 10 years) is offered as an explana-
tion of why credible intervals spread quickly.
4. Discussion

4.1. Site comparison

Patterns in pelagic nekton density and distribution between tidal energy sites have not been previously compared. Tidal
energy sites are expected to have similar physical characteristics and are chosen because of high tidal flows. However, com-
mon physical traits do not assure similarity in biological features. While there are biological dissimilarities between Admi-
ralty Inlet and the Fall of Warness, many features are similar at both sites. To illustrate by example, with the exception of
aggregation, linear regression models of metrics from each site always shared two or more covariates. Density means and
coherence values were very similar at both sites. Coherence values for the center of mass and dispersion metrics were similar
between sites, suggesting that temporal patterns of pelagic nekton are in phase. Both sites had significant periodicities in
metrics that reflected tidal and diel processes, although significant metrics at each site were not consistently associated with



Fig. 7. Periodograms for the suite of metrics (mean Sv (dB), center of mass (m), dispersion (m2) aggregation (m�1)) at Admiralty Inlet and the Fall of
Warness. Significant frequencies (purple dots) occur above the red noise spectrum (red line).

Table 3
Significant periods in periodograms (i.e. values exceeding a red noise spectrum) rounded to the
nearest hour with corresponding amplitudes in parentheses.

Admiralty Inlet The Fall of Warness

Mean Sv 24 (2.5), 4 (0.8) 12 (0.9), 4 (0.6)
Center of Mass 24 (1.9), 12 (0.9), 7 (0.7) 12 (0.8), 24 (0.7), 6 (0.6), 4 (0.5)
Aggregation 24 (0.02), 4 (0.01), 9 (0.01) 12 (0.01), 8 (0.01)
Dispersion 12 (3.3) 4 (3.1), 135 (2.8), 6 (2.7), 9 (2.6), 24 (2.5)
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the same process at each site (Table 6). Observed similarities in the two sites suggest that a common suite of metrics may be
used in biological monitoring programs at tidal turbine MRE sites.

Characterizing the three primary biological attributes (composition, structure, and function [37]) of an ecosystem is chal-
lenging. Composition is not an attribute that can be well-addressed using single-frequency, active acoustic data without
direct samples such as midwater trawls to identify species. Metrics used in this study enable an assessment of biological
structure and function, and are appropriate indices for comparison of two or more sites. This comparative indicator approach



Table 4
Covariate and corresponding p-values from linear regressions for the Admiralty Inlet and the Fall of Warness data series. The number of stars indicates the
significance level of p-values (0 < *** < 0.001 < ** < 0.01 < * < 0.05).

Covariate Admiralty Inlet Fall of Warness

Estimate p-Value Estimate p-Value

Mean Sv
Tidal speed – – 0.94398 0.000116***
Julian day 2.52E�01 1.31e�06*** �0.06301 0.063581
24 h period 9.36E�01 3.37e�12*** 1.04186 0.007225**
12 h period 1.053 0.051458 0.9324 0.000238***
4 h period – – 1.04538 0.007193**

Center of Mass
Tidal speed �2.5532 2.77e�07*** – –
24 h period 1.116 2e�16*** 0.999 3.68e�05***
12 h period 0.9933 9.07e�06*** 0.9932 2.93e�05***
4 h period – – 0.996 0.00233**

Aggregation
24 h period 0.976273 3.89e�05*** – –
12 h period – – 0.999509 0.00413**
4 h period 0.976719 0.000734*** – –

Dispersion
Tidal speed – – 2.0279 0.020892*
24 h period 0.9753 0.03587* 1.0065 0.002647**
12 h period 0.9786 0.00119** 1.0965 0.023284*
5 h Period 0.976 0.04177* 1.0125 0.000186***
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could be extended to include physical metrics, such as tidal speed or tidal range, to complete an environmental monitoring
program.

Even though species composition was not compared between the two sites, taxonomic composition can be inferred from
other studies. Historic studies of fauna around the Fall of Warness are scarce, but fish species likely to be present during the
summer spawning season include Atlantic mackerel (Scomber scombus), Atlantic herring (Clupea harengus), and sprat (Sprat-
tus sprattus) [38]. Other species that are likely to be in the vicinity are haddock (Melanogrammus aeglefinus), ling (Molva
molva), saithe (Pollachius limanda), and Atlantic cod (Gadus morhua). The Environmental Statement [38] for the Fall of War-
ness also identifies butterfish (Pholis gunnellus) and scorpion fish (Taurulus bubalis) as non-commercial but important fish
species. In the North Sea, long-term data from the Continuous Plankton Recorder show large inter-annual fluctuations in
zooplankton biomass [39,40]. The zooplankton community is composed primarily of copepod taxa that serve as the primary
prey for commercial fish species such as herring [41]. In comparison, trawls conducted during mobile acoustic surveys at
Admiralty Inlet [42], consistently caught Pacific sand lance (Ammodytes hexapterus), northern lampfish (Stenobrachius leucop-
sarus), copper rockfish (Sebastes caurinus), and Pacific herring (Clupea pallasii). Documented zooplankton taxa at Admiralty
Inlet are similar to those at the Fall of Warness, including copepods, hydromedusae, and larval stages of fish and small pela-
gic crustaceans [43]. Relative species’ abundances at the two sites are unknown. Pelagic fish species at both sites (mackerel,
sprat, and herring at the Fall of Warness; Pacific sand lance, and Pacific herring at Admiralty Inlet) provide a prey base sup-
porting piscivorous fish and apex predators in upper trophic levels [44,45]. Additional data on site-specific species abun-
dance and distribution are necessary for a complete species characterization and comparison of the macrofauna at the
two sites.

One primary difference between the two sites is the magnitude of variance in metric values. With the exception of the
aggregation index, variance values were greater at Admiralty Inlet than at the Fall of Warness. A possible explanation for
the difference is that water flow at Admiralty Inlet is more complex than at the Fall of Warness. Admiralty Inlet is located
near the entrance of Puget Sound at the confluence of Deception Pass, the Hood Canal Basin, and the Puget Sound main basin
[46,47]. These three water sources have different oceanographic properties (e.g. ocean water from the Strait of Juan de Fuca,
fresh water from the Fraser River) and potentially host different fish and zooplankton species, which may increase variability
in the species composition between ebb and flood tides at Admiralty Inlet. Conversely, the Fall of Warness is located on an
open ocean coast, making water sources during ebb and flood tides more uniform. An alternative explanation is that differ-
ences in tidal speeds (mean tidal speeds were significantly greater at the Fall of Warness) could affect biomass distribution
variability. Nekton mobility is partially dependent on flow speed of the surrounding medium, with the ratio of nekton
locomotory velocity to fluid velocity increasing with body length [48]. Greater flow speeds may result in smaller nekton
(especially micronekton < 5 mm [48]) acting as passive particles, possibly causing metric patterns at the Fall of Warness
to be more uniform than those observed at Admiralty Inlet. Significant positive relationships between tidal speed and both
density and dispersion at the Fall of Warness, which are not seen at Admiralty Inlet, support this hypothesis.



Fig. 8. (a) Mean Sv (dB) GPD fit and (b) return levels at Admiralty Inlet; and (c) GPD fit and (d) return levels at the Fall of Warness. The solid line is the best
fit, and gray colors indicate credible intervals, from 10% (darkest gray), 40%, 80%, to 90% (lightest gray).
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4.2. Sampling frequency and the generality of EVA applicability

This study allowed an examination of the proportion of data necessary for conducting an EVA on baseline biological data
from MRE sites. As the proportion of data from a series increases when determining a GPD threshold, the precision of a
threshold estimate should increase because of the higher percentage of extreme values included in the threshold estimate
[9]. As predicted, a higher proportion of data included in the analysis reduced variability in the threshold estimate
(i.e. threshold estimates from 10% of the data were most variable; threshold estimates from 90% of the data were least
variable). At a data proportion of 70% or greater, the mean threshold estimate remained stable. This exercise and its result
is used as justification to recommend lowering the sampling frequency of data collection for monitoring variables, as a
greater percentage of data inclusion did not change the mean threshold estimate. When sampling at low (i.e. between
10% and 70% of continuous data sampling) frequency, the standard deviation of the threshold estimate was greater than
0.1 dB over 500 draws, so the precision of the threshold estimate from any single sample will be low at low sample
frequencies. If accuracy of the threshold estimate is a monitoring objective, then sampling should be the equivalent of at
least 70% of continuous data sampling.

Even though return levels and GPD threshold values differed between sites, the process of applying the POT EVA method
was successful in each case. This paper illustrates analyses of high extreme values, but the same approach can be used to
model low extreme values in physical or biological monitoring data. A shift in an EVA threshold derived using operational
monitoring data, compared to that based on baseline data, indicates an increase or decrease in the probability of an extreme



Fig. 9. (a) Aggregation index (m�1) GPD fit and (b) return levels at Admiralty Inlet; and (c) GPD fit and (d) return levels at the Fall of Warness. Solid lines
indicate best model fit, and gray colors indicate credible intervals, spanning 10% (darkest gray) 40%, 80%, to 90% (lightest gray).

Table 5
Summary of Generalized Pareto Distribution fit for mean Sv and aggregation index metrics from Admiralty Inlet (AI) and the Fall of Warness (FoW), with: the
GPD threshold, median estimates and 95% credible intervals (lower, upper) for scale and shape parameters, and sums of squares for the GPD fit.

Mean Sv Aggregation Index

AI FoW AI FoW

Threshold �74.0 �75.6 0.1148 0.1137
Scale 2.87 (1.80, 4.43) 1.08 (0.69, 1.64) 0.25 (0.08, 0.56) 0.15 (0.07, 0.29)
Shape 0.02 (�0.29, 0.47) 0.35 (0.05, 0.82) �0.65 (�1.79, 0.94) �0.13 (�0.61, 0.60)
Sums of Squares 0.000985 0.02576 0.715408 1.783951
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event. A relevant example is an increase in the threshold of the Sv metric, indicating an increase in high density events,
which may result from the turbine acting as a biological aggregating device. As EVA has not been previously used for bio-
logical monitoring at MRE sites, it was important to determine if results from the application of EVA could be applied to
a second, independent site using the same approach. A similar proportion of the density and aggregation index datasets were
fit to the GPD at both sites. The MCMC diagnostics showed that convergence to a stationary distribution of GPD parameters
was achieved at both sites for both metrics. The sums of squares results were also of the same order of magnitude for both
sites, demonstrating that the GPD fit the data at both sites. We conclude that EVA can be used as a generic monitoring tool to
determine change and biological impacts, defined as relevant change as a consequence of human activity, in monitoring data
from tidal energy sites.



Table 6
Comparison of Admiralty Inlet (AI) and the Fall of Warness (FoW) ecosystem attributes (mean, variance, significant periodicities), and coherence of metric pairs
between sites.

Structure Function

Density Center of Mass Aggregation Dispersion

Mean AI = FoW AI > FoW AI < FoW AI > FoW
Variance AI > FoW AI > FoW AI = FoW AI > FoW
Significant periodicities (hours) Same: 4

Different: (AI) 24
Different: (FoW) 12

Same: 24, 12
Different: (AI) 7
Different: (FoW) 6, 4

Different: (AI) 24, 9, 4
Different: (FoW) 12, 8

Different: (AI) 12
Different:(FoW) 135, 24, 9, 6, 4

Coherence 0.997 0.923 0.378 0.903
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4.3. Standardizing MRE monitoring

Because tidal energy is a relatively new technology, regulators are unsure of its biological impacts, and decisions on what
to monitor have largely focused on site-specific concerns (e.g. salmon and Southern resident killer whales at Admiralty Inlet;
harbor seals, Atlantic salmon, and seabirds at Scottish sites). While regulators are unsure of generic monitoring targets, there
is also uncertainty around how to monitor environmental variables. The three monitoring plans for current marine hydroki-
netic energy projects in the US (Admiralty Inlet, Roosevelt Island, and Cobscook Bay) share broad objectives. For example,
fish monitoring includes distribution, abundance, and diversity. Differences in the monitoring plans include the choice of
monitoring technologies and the spatial and temporal scales of monitoring. Differences in monitoring methods may reflect
differences in objectives but also reflect perceptions, preferences, and knowledge of those proposing the monitoring plans.
Results from monitoring of early tidal energy projects will be useful in identifying important spatiotemporal scales at which
to monitor [18], and the optimal sampling frequency and instrumentation to use when sampling. Standardization of tools
and techniques will allow for streamlining project development, especially during project application, which currently is
long and expensive (e.g. [49]).

Comparing results among tidal sites is one reason why standardization of data acquisition methods and analysis is so
important to MRE monitoring. The primary justification for comparing the Fall of Warness to Admiralty Inlet was that both
datasets were collected with seabed-mounted echosounders. It was therefore relatively simple to subsample the Fall of War-
ness data to match the Admiralty Inlet sample design. This comparison would not have been possible, and certainly would
have been less powerful, if data collection had not been so similar. Comparison among sites once tidal energy projects are
operational will be crucial in determining whether there are generic impacts from tidal energy development. Site-specific
monitoring plans are motivated by the idea that sites differ and need to have monitoring plans tailored to the biology of each
site. This study suggests that not all biological characteristics of tidal energy sites are site-specific. While tidal energy is still
in the developmental stage, standardization of monitoring objectives and methods is a viable and necessary goal to facilitate
project development and the detection of environmental impacts.
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