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ABSTRACT

We find topological models for the tiling dynamical systems corresponding to the chair and table
rep-tiles.

1. INTRODUCTION

A rep-tile is a polygon that can be tiled by a finite number of smaller, congruent
copies of itself. Two well known examples are shown in Figure 1.

Figure 1. The chair and table rep-tiles.

We call these the chair and the table. Both of these rep-tiles are also polyominoes
(cf. [2]), meaning they are edge to edge unions of squares.

Given a rep-tile 7, there is a corresponding set X of self-similar tilings of the
plane. To get this, we decompose T into its small copies, obtaining a 7-shaped
patch. Then we expand the small tiles in this patch back to their original size.
Iterating this process, we obtain a sequence x|, x»,x3 ... of larger and larger
patches.
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Figure 2. The patches xy, x3, x3, x4 of chairs.
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We define X to be the set of all tilings x of R? such that, up to a translation, any
patch in x is also a patch in x, for some n.
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Figure 3. Part of a table tiling.

We denote the sets of self-similar chair tilings and rable tilings by X. and X, re-
spectively.

Sets X of tilings of R? can be equipped with a natural compact metric topol-
ogy in which the translation action T of R? on X is continuous. One can study
this action, called a tiling dynamical system, using the methods of ergodic the-
ory and topological dynamics (cf. e.g. [11], [10], [14], [9]). For the table and chair
tilings, these tiling dynamical systems were first studied by Solomyak [14]. He
showed that the chair tiling dynamical system is strictly ergodic, and has pure
discrete spectrum, with ‘eigenvalues’ equal to the dyadic rational points in R
By the Halmos von Neumann Theorem (cf. [16]), this shows that the chair tiling
dynamical system is metrically isomorphic to a Kronecker system (an action by
rotations on a compact abelian group). Solomyak [14] showed that the table
tiling system has the same eigenvalues as the chair tiling system, but that it also
has a continuous component in its spectrum. Hence the table is not metrically
isomorphic to the chair.
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_For the well known Penrose tilings a more detailed result is known. Like the
chair, the Penrose tiling dynamical system has pure discrete spectrum [10]. It is
metrically isomorphic to a Kronecker system with R? acting on T*, but this
metric isomorphism is not a topological conjugacy. Instead, it is realized by a
continuous almost 1 to 1 factor mapping [10]. We say T* is a topological model
for the space of Penrose tilings, and that the Penrose tiling dynamical system is
almost topologically conjugate to a Kronecker system on T*. It turns out that
the points where the factor mapping fails to be 1 to 1 are precisely the ‘excep-
tional’ Penrose tilings, namely those with infinite worms and the cartwheel
Penrose tiling (cf. [10], [4]). Thus the exceptional Penrose tilings have dynamical
significance.

The purpose of this paper is strengthen Solomyak’s results by obtaining
topological models for the table and the chair tiling dynamical systems. For the
chair, our result is directly analogous to the Penrose case. We show that the
chair tiling system is an almost 1 to 1 extension of a Kronecker system. For the
table, we show that the corresponding dynamical system is an almost 4 to 1
extension of the same Kronecker system. Then it is a relatively easy corollary
that the table system has continuous component in its spectrum. As in the
Penrose case, the points where the factor mappings fail tobe 1 to 1 (or 4 to 1)
correspond to interesting tilings. In particular, we display structures in the
chair tilings that are analogous to the worm and cartwheel Penrose tilings.

While our results for tables and chairs resemble the results in the Penrose
case, the proofs for these tilings are completely different. In particular, we use
simple ideas from symbolic dynamics. These methods are quite general and
apply to all polyomino rep-tiles.

The author wishes to thank Mike Boyle, Natalie Priebe, and Boris Solomyak
for helpful conversations.

2. DYNAMICS BACKGROUND

For a locally compact abelian group (or semigroup) G, a G-dynamical system
(X,G, T) is a continuous action T of & on a compact metric space X. For
simplicity, we sometimes denote this dynamical system by X.

A Borel set E C X is invariant if TBE = E for all g € G. The dynamical sys-
tem (X, G, T) is minimal if there are no proper closed invariant sets. A point x €
X is called almost periodic if for any U C X open, {g: T8x € U} C G is rela-
tively dense (cf. [16}). By a well known theorem of Gottschalk [3], X is minimal
if and only if every point is almost periodic and some point has a dense orbit.

An invariant measure for (X,G,T) is a Borel probability measure p on X
such that u(T8E) = u(E) for all Borel E C X and all g € G. If the invariant
measure is unique, then the dynamical system is called uniquely ergodic (cf.
[16]). Minimality together with unique ergodicity is called strict ergodicity.

Given (X, G, T)and (Y, G, S), suppose ¢ : X — Y is a continuous surjection
such that o(7%x) = S%(p(x)). We say X is an extension of Y via the factor
mapping . If pis also 1 to 1 then it is called a topological conjugacy. If X and Y
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are strictly ergodic and there exists y € ¥ so that |~ !(p)| = 1, then [~ ! (y)| = 1
for all y in some invariant dense G;s set Yy C Y, and we say ¢ is an almost 1 to |
extension. If | ™! (y)| = K for all y in a dense G; set Y, we say ¢ is almost K to 1.
If o' (¥)| € L < oo we say g is uniformly bounded to 1. If o is almost 1 to 1 and
v(Yy) = 1, where v is the unique invariant measure for ¥, we say X and Y are
almost topologically conjugate. This implies metric isomorphism (cf. [16]).

Now let G = R? or Z?, and let (X, G, T) be strictly ergodic with unique in-
variant measure p. The dual group G of G is R2if G = R2and is T? = R?/Z? if
G=27 A complex Borel function f on X is called an eigenfunction for the
‘eigenvalue’ w € Gif for pa.e. x € X,

(1) S(T%) = e 8% (x),

where (g, w) denotes the ‘dot’ product. The set ¥ of eigenvalues is always a
countable discrete subgroup of G ([16]). The zero element 0 € ¥ corresponds
to the constant functions, and all eigenvalues are simple (cf. [16]). If Z\{0} # @
then X is said to have nontrivial discrete spectrum. If the eigenfunctions have
dense span in L?(X, 1), then X is said to have pure discrete spectrum. Otherwise,
X is said to have a continuous component in its spectrum. The extreme case,
¥ = {0}, called weak mixing, does not occur for the examples considered in this
paper.

A Kronecker system (X, G, T) is a strictly ergodic action T of G by rotations
on a compact abelian group X. Kronecker systems always have pure discrete
spectrum, and for any countable subgroup ¥ C @, there is a unique Kronecker
system with eigenvalue group ¥ (cf. [16]). By the Halmos—von Neuman theorem,
a G dynamical system X with pure discrete spectrum, having eigenvalue group
3, 1s metrically isomorphic to this canonical Kronecker system (cf. [16]).

For a Z? dynamical system (X', Z>, S) we construct an R? dynamical system
(X,R2,T), called the suspension, as follows. Let X = X' x [O 1)*. Given
t+r e R2, write t+r = n+s uniquely where n € Z2 and s € [0, 1)*. We define
7T'(x,r) = (S"x,s). Most of the properties that we are interested in here (e.g.
strict ergodicity, pure discrete spectrum, having a continuous component in the
spectrum, being an almost 1 to | extension, etc.) are preserved by this con-
struction. In particular, a Z? system is Kronecker if and only if its suspension is
an R? Kronecker system. The suspension of a Z? dynamical system X', with
elgenvalue group ¥ C T2, is an R? system with eigenvalue group ¥ C R2 where
3 is the lift of ¥ to R2 We write & = ¢27'%,

3. TILING DYNAMICAL SYSTEMS

A tile (in this paper) is a connected polygon in R2. We say two tiles are equiva-
lent if they differ by a translation. A finite collection 7 of inequivalent tiles is
called a prototile set. There are four chair prototiles (four rotations of the chair)
and two table prototiles (two rotations of the table).

Let X be the set of all tilings of R? by tiles equivalent to tiles in . We assume
X # 0. A patch is a finite set of tiles with a connected union. Two patches are
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equivalent if they differ by a translation. We always assume X satisfies the finite
local pictures condition: for all tilings x € X, and for all k € N, there are finitely
many equivalence classes of k tile patches. We call X a full m-shift. For tilings by
chair or table prototiles, we will satisfy the finite local pictures condition by
requiring that the squares in the prototiles fit ‘edge to edge’. Let T *x denote the
translation of x € X by t € R Note that the full 7-shift X is T-invariant.

The tiling topology on a full w-shift X is defined as follows. Two tilings
x,y € X are “e-close” if for some t € R? with [|t|| < ¢, T'xand yagreeina ! x !
square around the origin. A complete metric d is defined by putting d(x,y)
equal to the infimum of all such ¢ (cf. [12]). Note that the finite local pictures
condition is equivalent to X being totally bounded. It follows that X is compact
(cf. [12]). Clearly the action T of R? by translation is continuous. A tiling dy-
namical system is a triple (X, R?, T') where Xp C X is closed and T-invariant.
We call Xy a tiling space.

4. REP-TILE SETS

The sets X. and X, of chair and table tilings are closed and T-invariant; they
define the chair and table tiling dynamical systems. Let us now describe their
construction a bit more precisely.

Let 7 be a set of prototiles in R? and let A > 1. Suppose for each tile 7 € =,
o(7) is a tiling of A7 by translates of the tiles in 7. We call (7, ) a rep-tile set. A
single rep-tile 7 defines a rep-tile set provided the group of rotations generated
by the rotations of the copies 7 in () is finite'. We define the substitution ma-
trix M to be the || x |x| matrix with entries m.,, equal to the number of copies
of v € m appearing in (7). We assume M is primitive, i.e., M¥ > 0 for some
k > 1. We define the inflation mapping o : X — X on the full w-shift as follows:
First we expand x linearly by ), fixing the location of 0 € R?, and then we sub-
divide each 7 € x € X according to the rep-tile relation o.

Our next goal is to define X, C X. By induction we define a sequence of
patches x,, putting x; = {7} for some 7 €x, and x,.| = o(x,). We define
X, C X to be the set of all tilings x € X of R? such that any patch in x is
equivalent to a patch in x, for some n. A simple compactness argument (cf. [13])
shows X, # 0. Since M* > 0, X, is independent of the initial tile 7. Clearly X, is
closed and T-invariant, so (X,, T, R?) is a tiling dynamical system.

It is easy to see that any x € X, is an almost periodic point. Geometrically,
this means that any patch that occurs in x occurs again within a bounded dis-
tance from an arbitrary point in x. We call such a tiling an almost periodic tiling
(cf. [11], [10], [14]). Up to equivalence, any two tilings in X, have the same
patches, so (X,, T, R?) is always minimal. One can also show, using an argu-
ment based on the Perron-Frobenius Theorem, that (X,, T, R?) is uniquely er-
godic (cf. [14]). We denote the unique invariant measure by u. In general, we
want to avoid the possibility that x € X, is periodic, in which case T is a tran-

! The pinwheel tiling [8] is an example without this property.
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sitive action of R? on X, = T2, (cf. [11]). Aperiodicity is equivalent to the bi-
jectivity of the inflation mapping ¢ : X, — X, [15]. In specific examples, ad hoc
arguments are needed establish this. However, it is easy to see that invertibility
holds for o in the case of the table and chair rep-tiles. Hence all table and chair
tilings are aperiodic.

5. DISCRETIZATION

Let X be a full 7-shift for a set 7 of polyomino prototiles. Consider the decom-
position of the tiles in # into their underlying squares. Let £ be a map that as-
signs a label from a finite alphabet A to each such square. If /£ is bijective we say
the labeling is maximal. For any x € X, thereist € [0, 1)2 such that the squares
in x induce the partition {[0, 1) + t + v : v € Z2} of R%. We assign each of these
squares a label £([0, 1)* + t + v) according to how it is tiled in x by 7. We define
§: X — AT by 6(x), = ([0, 1}2 + t+v). Letting S denote the Z2 shift on A%,
we have that X’ = §(X) C A% is S-invariant, so (X',Z%,S) is a Z* dynamical
system. We call ¢ faithful if (X,R?, T) is the suspension of (X', Z? S). Any
maximal labeling is faithful, but a faithful labeling need not be maximal, as we
will see below. Figure 4 shows a maximal labeling for the tables, with A =

{p,q,r.s}.

p T
s s | s s | P 1 | s
—> pr | =
q q|a a |P 1 |q
pr

Figure 4. A maximal labeling for the tables and the derivation of o,.

Given a rep-tile set (o, 7) and a faithful labeling ¢, there is an alternative way to
construct X/, = §(X): as a Z2-substitution space. A 2 x 2 substitution is a map-
ping o : A — A where A s a finite alphabet. Figure 4 shows how to obtain
the substitution o, associated with the table rep-tile. It is given by

(5.1) p|—>s P q»—>q 9 r—? sis P T

qg p pr roq s s

Now we describe how to construct a substitution space X! C A7 from a sub-
stitution o. A mapping x : B — A, where B C Z? is finite, is called a block, and
B is called the locus of the block. Blocks that are translates of each other are
called equivalent. We define X! C X to be the set of all points x so that each
block in x is equivalent to a block in ¢”(a) for some n € Nand a € A. This s just
the discrete version of the construction of X,. When & comes from a rep-tile set
(o,m), we have X =6(X,). In particular, for the table we obtain X/ =
8(X,) = X/, .We call (X}, Z?,S) the table substitution system.
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For chair tilings the maximal labeling ¢ results in an inconvenient 12 letter
alphabet. To avoid this we use the ‘arrow’ labels shown in Figure 5.

N4 p= Q=

iy - D
- NNy
ANAN s=[N] =[]

Figure 5. The arrow labels, their replication, and the letters that replace them.

This labeling is faithful since a vertex point in a chair tiling is the ‘convex’ ver-
tex of a chair tile if and only if it has three arrows pointing directly at it. Any
arrow participates in exactly one such triple. We call this the three arrow rule.
After replacing arrows with letters, as shown in Figure 5, we obtain the chair
substitution o,

s p q r s r
5.2 p— — r— S5 )
( ) P q 7 P 4 rq p s

Note the similarity between (5.2) and (5.1); only the positions of the letters are
different. As with the table, we obtain X/ = §(X.) = X, . We call (X/, 72,S) the
chair substitution system.

6. GRAPHS OF A SUBSTITUTION

Given a Z? substitution o over 4, we define two associated directed graphs and
the corresponding 1-dimensional shifts of finite type. The forward substitution
graph G is defined as follows: The vertex set is A, and a directed edge goes
from a to each symbol in o(a). The edges are labeled according to the position
of the target symbol in o(a). We label these positions 1, ..., 4 going from left to
right, top to bottom. The graph G}, called table forward, corresponds to the
table substitution.

A second graph, called the reverse substitution graph, is obtained from the
forward substitution graph by reversing the arrows.

Figure 6. The Table forward = table reverse graph.
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Lemma 6.1. G,;" = G, i.e. table forward = table reverse.

One sided infinite paths through the table reverse graph can be labeled in two
ways: a vertex labeling Y, C {p,q,r, S}N, or an edge labeling Z C {1,2, 3,4}N.
Since each vertex has an out-edge with each label, Z = {1,2,3,4}" is the full
1-sided 4-shift. However, Y, is a proper subshift of {p, g, r, s}N. It is a subshift of
finite type (cf. [6], [S]) and we call it the table subshift. Let R denote the left shift
on Z and on Y,, and let ¢ : Y, — Z denote the factor mapping that reads the
edge labels off a given vertex path.

Lemma 6.2. Foranyz € Zanda € {p,q,r,s}, there exists unique y € Y, starting
at a and following the edges in z. In particular, 1 is everywhere 4 to 1.

Since each vertex has an out-edge with each label, the proof is clear.

Now we consider the chair forward and the chair reverse graphs, G and G
These are not the same! In particular, the vertices in chair reverse do not have
out-edges with each possible label.

Figure 7. The chair forward (a) and chair reverse (b) graphs.

Here we let Y. C {p,q,r,s}” denote the chair-reverse shift and, as above, let
1 Y. — Z be the edge label reading map.

We call the blocks 12,21, 14,41,34,43, 13 and 31 good blocks. We say z € Z is
a good point if it has infinitely many good blocks, and we denote the set of good
points by Zy. Any transitive point (i.e., a point with a dense orbit in (Z,N, R)) is
good, so Z; contains a dense G, set in the product topology on Z.

Proposition 6.3. The mapping ¢ : Y, — Z a factor map (i.e, it is onto), which is
almost 1 to 1. In particular, | '(z)| =1 if and only if z € Z\. If = & Z, then
[w'(=)] € {1,2}.

Proof. If we reverse a right-infinite path through chair reverse we get a left-
infinite path through chair forward. It can be labeled either by vertices or by
edges. Let = ! be the reversal of a good point = € Z,. Since the good blocks are
reversible, z ™ also has infinitely many good blocks.
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Consider any good block, say 12, which occurs at some time —j < 0in z™.
Note that following the path 12 in G always leads to the vertex r. It follows
that if y~ is a vertex path corresponding to the edge path z~, then y~ is com-
pletely determined from time —j + 1 up through time 0. This is because each
vertex in chair forward has exactly one out-edge with each label. All of the other
good blocks have this same ‘synchronization’ property, although they lead to
different vertices.

Now since z € Z;, we have a sequence —j; — —oo such that there is a good
block at time —j; in z~. For each i, y~ is determined from —j; + 1 to 0. In the
limit, this determines a unique y~, and its reverse y satisfies ¥(y) = z.

Next, suppose z € Z has only finitely many good blocks. Without loss of
generality, by applying R”, we can assume z has no good blocks. Then z has only
the blocks 11, 44, 14, and 41, or only the blocks 22, 33, 23, and 32 (we cannot
switch without creating a good block). In the first case we have y = .gqqqq . . . or
y = .sssss...and in the second y = .ppppp...ory = .rrrrr.... O

7. THE ALGEBRAIC MODEL:. THE ADDING MACHINE

Let D = {0, 1}N = {.d) d> d3 ...} provided with the product topology and the
operation + defined as coordinate-wise addition with right carry. Then D is
a compact abelian group called the dyadic integers. For b = .100000... we
define 4:D—D by A4(d)=b+d Then (D,Z,4) is a strictly ergodic
Kronecker system called the Kakutani-von Neumann adding machine. We de-
note the eigenvalue group 272l = {27%/2" .k € 7 n e N}. Here Z[1] =
{j/2" :j € Z,n € N} is the group of dyadic rationals.

We use d € D to code block structures on Z. A block structure is a collection
of partitions of Z into sets called /oci. A 1-locus consists of a pair of adjacent
points in Z. There are two choices: if 0 is on the left side of the 1-locus con-
taining it, then d; = 0. Otherwise we put d; = 1. Given a partition of Z into
(n — 1)-loci, we define the n-loci to each consist of two adjacent (n — 1)-loci.
The n-locus containing 0 is called the principal n-locus. If the principal (n — 1)-
locus is on the left side of the principal n-locus we put d, = 0, and otherwise we
put d, = 1. A key observation is the following.

Lemma 7.1. The action of A on D implements a left shift of the block structure.

o |

Figure 8. Part of the block structure for z = .3321... in the notation of (7.1).
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Now we consider the product group
D? =D x D = {.(0,0)(0,1)(1,0)...} = ({0, 1})M
and define 41, 4, : D2 — D? by

Ayd = d + .(1,0)(0,0)(0,0) ...
Asd = d + .(0,1)(0,0)(0,0) .. .

Then A4; and A, generate a Z* action 4 on D? by A" = A" 4)* where n =
(n1,n2). We call the strictly ergodic Kronecker dynamical system (D?,7Z2, 4)
the 72 adding machine. It has eigenvalue group

2R = {(2 Y 7Y k€ Z, mon e N} C T2,
It will be convenient to identify D? with the full 4-shift Z via the code
(7.1)  (0,1) < 1 (1,1) &2 (0,0) <> 3 (1,0) < 4.

From here on, we denote the Z? adding machine by (Z,Z2, 4). Note that this is
a different action on Z than the full 4-shift (Z,N, R).

As in the l-dimensional case, we think of a point in z € Z as a Z? block
structure. Here, an n-locus consists of a 2" x 2" square in Z2. Each (n + 1)-locus
consists of four n-loci. The principal n-locus, which is the one containing 0 € Z2,
will be denoted B, (z). For z € Z, the entry z; tells which element of the 1-locus
is 0, and z, tells which of the four (n — 1)-loci in the principal n-locus is the
principal (n — I)-locus. Part of a block structure is illustrated in Figure 8. By
the discussion of l-dimensional block structures above, it follows that the
mappings 4, and A4, correspond to the left-shift and the down-shift respec-
tively.

8. MAIN RESULTS

In this section we state our main results for the chair and table dynamical sys-
tems. We begin with the discrete (i.e., substitution) cases.

Theorem 8.1. The chair substitution system (X',Z2%,S) is a strictly ergodic
almost 1 to 1, uniformly bounded to 1, extension of the Z° adding machine
(Z,7%, A). In particular, (X'1,Z2,8) is almost topologically conjugate 1o the Z2
adding machine, and thus has almost topological pure discrete spectrum with
eigenvalue group e*™Z131'. Moreover, for any = € 7,

81) o) e{1.2,5),

where @ denotes the factor mapping.

Theorem 8.2. The table substitution system (X,Z2,S) is a strictly ergodic al-
most 4 to 1, uniformly bounded to | extension of the Z* adding machine (Z,7°, A),
In particular, (X', 2%, S) has eigenvalue group e2miZl}

component in its spectrum.

I, but it also has a continuous
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Next we state the corresponding results for table and chair tiling dynamical
systems. These involve the idea of the R2-adding machine dynamical system,
which we denote by (Z, R2, 4). We will not describe this dynamical system ex-
plicitly, but we note that it is uniquely defined in two equivalent ways: (i) as the
suspension of the Z? adding machine, and (ii) as the unique R? Kronecker
system with eigenvalue group Z[%]2 C R2.

Theorem 8.3. The chair tiling system (X,, R2, T) is a strictly ergodic almost 1 to
1, uniformly bounded to 1 extension of the R? adding machine (Z,R?, A). In par-
ticular, (X,,R?, T) is almost topologically conjugate to the R* adding machine,
and thus has almost topological pure discrete spectrum with eigenvalues Z[%]z.
Moreover, forany z € Z, |~ (z)| € {1,2,5}, where o denotes the factor mapping.

Theorem 8.4. The table tiling system (X,, R?, T) is a strictly ergodic almost 4 to 1,
uniformly bounded to 1, extension of the R? adding machine (Z R?, 4). In par-
ticular, (X,,R2, S) has eigenvalue group Z[%]z, but it also has continuous compo-
nent in its spectrum.

Theorems 8.3 and 8.4 follow directly from Theorems 8.1 and 8.2 using the re-
marks at the end of Section 2. The proofs of Theorems 8.1 and 8.2 occupy the
next four sections.

Comment. The underlying group in the R? adding machine dynamical system
is Z = D x D, where D is the group known as the solenoid (it is the suspension
of D). One can show that the inflation mapping o, on the space X, of chair
tilings is an almost 1 to 1 extension, via ¢, of an ergodic group automorphism
B x Bof D x D. Here Bi 1s the inverse limit (or equivalently the natural exten-
sion) of the mapping z — z2 on the unit circle in C.

9. COMPLETE BLOCK STRUCTURES

The first step in the proofs of Theorems 8.2 and 8.1 is to describe the process of
filling in block structures (in the tiling literature, this construction is called ‘up
down generation of tilings’, cf. [13]).

A 2 x 2 substitution ¢ on 4 induces a mapping, also denoted ¢, on A% This
is obtained by applying o to each symbol in x € A% and ‘concatenating’ to-
gether a new sequence o(x) € A%’ To be well defined, we must say where to put
the origin. We put it at the lower left symbol (i.e., in position 3) of o(xg). Note
that o(X") = X', C AT

Lemma 9.1. Let o be a 2 x 2 substitution on A with X' the corresponding sub-
stitution space. Assume X' is aperiodic. Then there exists a factor mapping
: (X!, 7% 8) — (Z,Z% A).

Proof. It will be convenient to work with the suspension X, of X', letting o
also denote the inflation mapping corresponding to the substitution ¢. In par-
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ticular, given x’ € X/ we construct x € X,, out of squares [i,i+ 1) x [j,j+ 1)
labeled x(’i_j) (we think of these as labeled tiles). Since X' is aperiodic, so is X,
and it follows from [15] that o restricted to X, is invertible. The 1-loci in x are
the o images of the tiles in o~ !(x). Each 1-locus consists of a 2 x 2 arrangement
of four tiles. Similarly, the n-loci in x are the the o” images of the tiles in o7"(x).
Knowing the n-loci for each s, allows us to find the principal #-locus for each a.
This gives a block structure on x, which restricts to a block structure on x' in
the obvious way. We denote this block structure by ¢(x’) € Z. Clearly the
mapping ¢ is continuous, and it is equivariant since 4 implements‘the shift ac-
tion on Z. The fact that  is onto follows from the minimality of (Z,Z°, 4). O

Given a block structure - € Z, we define

9.1 B(z) = Ul B,(z2).

n=
We call a block structure z € Z complete if B(z) = Z>. We denote the set of
complete block structures by Z;. This set is dense G.

Now we describe how to fill in a complete block structure. For z € Z, let
¥ € Y be such that ¥(y) = z. We construct a sequence x,(y) as follows: We put
xo(y) = »1, which we locate at the origin in Z2. Then we define x,(y) to be the
block equivalent to o”(y, 1 1) with locus B,(z).

Lemma 9.2. The restriction of x,,, 1(y) to B,(z) is x,(y).

Proof. Let us denote the four s#-loci in the principal (n + 1)-locus B, {(z) by
Bl, B2, B}, B}. Note that one of these, namely B, is the principal n-locus.

We have

(9.2) Xp(¥) ~ 0" (yni1) =

a”léo(yﬂH)I) a"“Eo(ynmz),

o ! 0'(yn+1)3) o ! 0'(}’11%—1)4)

The edge in G, from y, to y, ., is labeled z, so
(Va1 )_—,, = Vn;

which means that the matrix (9.2) has the block
" Yo (usn)s,) =" ) ~ X1 (¥)

in the position corresponding to z,, namely in the the locus B,(z).

Proposition 9.3. Let z € Zy. Then for each y € y'(z) there exists x(y) € X', so
that p(x) = z.

Proof. We define x(y) € AT by putting x(y),, = x.(y),, for any n large enough
that m € B,(z). This is well defined by Lemma 9.2. Now x(y) € X/, since all
its blocks are blocks in x,(y) ~c"(y,.|) for some n. Clearly we have

elx)=z. 0O
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Corollary 9.4. For the chair substitution system, the factor mapping ¢ : X! — Z
isalmost 1 to 1.

Proof. The set Z, N Z, is dense G, and for z € ZyN Z;, y = ¢~ '(z) is unique
and x(y) = ¢~ !(z) is also unique. [J

Corollary 9.5. For the table substitution system, the factor mapping ¢ : X — Z
is almost 4 to 1.

Proof. The set Z; is dense G, and each z € Z; has four preimages y € ¢ '(z).
Each of these gives a different x(y) € o~!(z). O

10. THE CASE z € Zp\Z)

This case occurs only for the chair. It corresponds to those z € Z that are
complete, but where ¢ is not 1 to 1. Let us suppose z has only the blocks 22, 33,
23 and 32, so that ¢! (z) = {p',»?} where y! = pppp...and y> = .rrrr.... We
obtain two points x(»'), x(y%) € ¢~'(z) that differ only along their diagonal.
These points correspond to tilings part of which are shown in Figure 9 (a) and

(b).

i

i
{&% :

=
E’J (@) o (b) (©

o

i

Figure 9. Flipping an infinite worm: (a) and (b). The Ferris wheel tiling: (c).

It follows that for these cases, |o~!(z)| = |{x(31), x(32)}| = 2. Note that the
infinite stack of chair tiles along the diagonal in Figure 9 (a) and (b) can be
‘flipped’ leaving all the other tiles in the tiling intact. We call this configuration
an infinite worm by analogy with the similar structures found in some Penrose
tilings (cf. [4]). Any two such tilings x; and x; have the property that
d(T'xy, T'x;) — 0as n — oo, provided ||t,|| — oo and the distance from t, to
the worm is unbounded. Such pairs of points are called proximal or homo-
clinic.

11. INCOMPLETE BLOCK STRUCTURES

There are eight kinds of incomplete block structures z € Z\ Z,. We characterize
them as either %-plane types or %-plane types, according to B(z). It suffices
to consider these block structures up to equivalence (i.e., translation). The
L-plane types — those where B(z) is one of the four quadrants of Z*-correspond
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to z¥ = .kkkk ... for k =1,2,3,4. Up to equivalence, each of them is unique.
The four ——plane types correspond to z having only entries k and ¢, and in-
finitely many of each, where (k, ¢) is one of the pairs (1,2}, (3,4), (1, 3) or (2,4).
There are infinitely many equivalence classes of each of these types, and each
class has another class as its reflection. For example, the reflection of a (1,2)
upper i-plane type is the lower i-plane (3,4) type that is obtained via the
transformation 1 «» 3, 2 «— 4. We denote the reflection of z € Z\Z, by z*.

If z € Z\Zy and y € v '(z), we construct x(y) € A® in the same way that
we constructed whole plane points for complete z. A point x(») € A% can be
extended to x € AT by pasting it together with other points of the same type
(i.e., two L-plane points or four }-plane points).

We COIlSldCI‘ the —-plane case first, and for concreteness we assume
z=:z'=.111.... Foreacha = 1,2,3,4, let y¢ € ¢~1(z9). To get x, we paste to-
gether the pomts x(»1), x(y2), x(¥3), and x(y4) (we need to translate x(y1),
x(y3), and x(y4) first). 4 priori, there are [¢p~! (z)|4 possible versions of x, but as
we will see below, not all these points belong to X . However, whenever such an
x does belong to X/, we have ¢(x) = z. It follows that

(L) '@l <@

By Lemma 6.2, the right hand side of (11.1) for the table is < 4* = 256, and by
Proposition 6.3, it is < 2% = 16 for the chair.

The argument for the ——pldne cases is nearly the same. Given z, we let y €
¢~ '(z) and let y* € ¢¥~!(z*). We construct x by pasting together x( ) and (a
translate of ) x(y*). Again, not all such points x are in X/, but we have

(11.2) e '@l <l @I
Combining (11.1) and (11.2), we have the following.

Proposition 11.1. For any aperiodic substitution X' the factor mapping
@ : X — Z is uniformly bounded to 1.

Now we want to improve the estimates (11.1) and (11.2). We start with the chair.
The 1 -p]ane cases all belong to Z, so these points all have unique preimages.
For the —-cases we note that it suffices to specify a single symbol at each

corner, since then we can apply o7, n = 1,2,.... There are a priori 4* choices.

Without loss of generality, we can take the corners to be & = kkkk ...,

k=1,...,4 Looking at vertex paths in G that correspond to the corners
= .kkkk ..., just 16 possibilities remain:

gors porr
porr gqgors

However, only five of these actually occur, since the others violate the three
arrow rule. The corresponding tiling patches around the origin are shown in
Figure 10.

It follows that for the §-plane block structures, in the case of the the chair, we
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O (b & Ok

Figure 10. Allowable %-plane types for the chair.

have |¢~!(z)| = 5. Four of these tilings are congruent via a rotation. We refer
this (congruence class) as the cartwheel chair tiling, by analogy with the cart-
wheel Penrose tiling (cf. [4]). Near the origin these look the same as Figure 9 (a)
and (b). In particular, such tilings have an infinite worm, but unlike the tilings
discussed in Section 10, they also have two ‘half-infinite worms’. The fifth tiling,
which is not congruent to the others, has no direct Penrose analogue. We refer
to this tiling, shown in Figure 9 (c), as the Ferris wheel. It has 4-fold rotational
symmetry and four half-infinite worms. Note that all five of these tilings are
proximal, and they can be interconverted by ‘flipping’ the infinite X-shaped
configuration of chair tiles along the diagonal and the reverse-diagonal. We
have now proved (8.1).
Now we turn to the case of table tilings. We will prove the following.

Theorem 11.2. For the table tilings and table substitution, |¢~'(z)| € {4,10,24}.

Proof. By Proposition 9.3, we know that for complete block structures
o™ (2)] = 4.

Let us consider a pair left and right 1-plane types, z and z* pasted together
along the y-axis, and the pair of adjacent symbols on either side of the y-axis at
0. Note that a p on the left must be paired with an r on the right, but all of the 32
combinations of other symbol pairs are allowed. Thus we have |p~!(z)| =
1 + 32 = 10. The upper and lower 3-plane cases are the same.

For the 1-plane cases, we consider the allowed vertex types at the origin. All
possible vertex types in the full table shift (modulo rotation and reflection) are
shown in Figure 11. However, the types (g) and (h) do not occur in any tiling
x € X, (i.e., in any table tiling) since they are not blocks in any o/'(7).

C T ] |

(a) (b) © (d)

(e) U] (9) (h)

Figure 11. Vertex types for the fuil table shift.
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We can enumerate the %-planes cases by counting the rotations and reflections
of each allowed picture: (a) 2, (b) 4, (¢) 2, (d) 8, (¢) 4, and (f) 4, for a total of 24.
Thus in the }-plane table case, [¢~'(z)] =24. O

Comment. By iterating the inflation mapping o, on one of the non-occurring
configurations (g) or (h), one can obtain a tiling x that is a fixed point for ¢,, but
that does not belong to X,. Such a tiling is not almost periodic since it has a
vertex configuration (i.e., (g) or (h)) that occurs in just one place. It follows that
the orbit closure is not minimal. This illustrates why we define rep-tiling spaces
the way we do in this paper. The definition as the orbit closure of a fixed point
for ¢, which is common for 1-dimensional substitutions, does not always work
in this case.

12. THE SPECTRUM OF THE TABLE

The purpose of this section is to give a simple direct proof of the following re-
sult, completing the proof of Theorem 8.2. We include this argument for the
sake of completeness.

Proposition 12.1 [14]. The table substitution system (X', 7>, S) has a continuous
component in its spectrum.

In the l-dimensional case, a similar result holds for bijective substitutions (cf.
[7]). Our proof of Proposition 12.1 rests on the following lemma.

Lemma 12.2 [14]. The table substitution system (X',Z2,S) has ™27 as its
eigenvalue group.

Proof of Proposition 2.1. Let v denote Haar measure on Z = D2 For g €
L*(Z,~) we define f € L*(X/, 1) by f(x) = (¢ 0 g)(x). We denote the space of
all such /" by Hy, and note that Hy is T-invariant. Since ¢ is at least 4 to 1, it
follows that Hy = L*(X/, 1) © Hy is nontrivial. Now let w be an eigenvalue for
(X/,Z%.S), and let g€ L*(Z,v) be the corresponding ecigenfunction for
(Z.Z%,4). Then [ = p o g is an eigenfunction for (X/,Z% S). By Lemma 12.2,
all the eigenfunctions arise this way, so it follows that Hy is the closure of the
span of the eigenfunctions. Since H, # 0, there exists a continuous component
in the spectrum. [

Now we proceed to the proof of Lemma 12.2. For this we use the following
lemma, whose proof follows from expressing numbers in base 2.

Lemma 12.3. Suppose 2"w — Omod 1. Thenw € Z[}].

Proof of Lemma 12.2. Let E, be the set of x € X’ such that in o(x) the origin
is the lower left corner of its k-locus for k=1,...,n. In particular,

o(x)=3"xxx.... For ac€ A, let C,={x|xp=a} C X/, and let K,, =
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E,NC, Consider the locus B"={0,...,2" ~1}*CZ% Then P,=
{Kpun=S"K,,:a€ Ane B,} is a partition of X} with ¢, = diam(K, 4n)
satisfying £, — 0.

Let f be an eigenfunction with eigenvalue w for (X/,Z% S), and assume
|f] =1, so f(x) = e>™), We can approximate f in measure by a function f”
constant on the sets of P,. In particular, for some sequence ¢, — 0 there exist
sets K| o C Kn a0, With p( na0) > (1 — ex)u(Knap) and for x € K 4, f'(x) =

e where |A(x) — Iyl < €5 Note that for x€ K, ,, = S"K} 4, for any
n € B,, we have f'(x) = 20w/ (T 2x) = 2t (0W) We let e,(x) = h(x)—
[

For n € N, consider the four blocks (equivalent to) o"(p),c"(q),c"(r) and
o”(s). Let us place such a block so the lower left corner is 0 € Z2. We denote
that block with @ at position 0 by 3,(a). Note that K,, , 9 is the cylinder set for this
block: the set of all points x with 3,(a) at the locus B,. For m € N and any
z€{1,2,3,4}", let a* denote the vertex in G," obtained by starting at a and
following z. We have

— "t g3y = ‘7;'(‘71(03”)1) Urn(Ur(aS")z)
Buy1(a) = t (a ) U;Z(U,(aB”)3) 0'"(0,(613")4)
) e

Q

Bu(@®3") B, (a¥")
’ 3"33" Bu(@® ") |

and by a simple induction, there exist @, 1,a,.2, 443, @4 such that

Bu(any) Bulanz)
Bu(ans) Bulana) |

In particular, a,x = o,(a), for n odd, and a, = o/(a), for n even, where o,
given by

n(03"3) VO' ”4”4
t

ﬂn+l(a) =

p}_}p[) qqu r'_)rs s+—>q 7'.

q r P q rop s s
This shows that the (r + 1)-blocks 3, (a) are each obtained by pasting to-
gether four n-blocks. This is what is known in ergodic theory as a rank-4 con-
struction.

For n sufficiently large, there exists x € K, ., with $@"9x € K/ o. For such
an x we have

LSO x) = 2HSTO) _ 2millhnen( S U0)

We also have

LSO x) = O+ o 20t k)
Since |e,(S?"Vx) — e,(x)| < 2, it follows that {(2",0),w) — 0 mod 1. Letting
w = (wy,w2), we have 2"w; — Omod 1, and thus by Lemma 12.3, w; € Z{l]

Similarly, there exists x € K, o such that T®*)x € K, o, and by the same ar-
gument 2"w, — 0 mod 1, sow, € Z[4]. O
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m I

Figure 12. The modified table.

13. A DIFFERENT TABLE

If we replace the table rep-tile with the following modified rep-tile set we obtain
a new set of tilings X r, that we call the modified table. Using the same coding as
for the table, we obtain the substitution oy

(13.1) p»—»s 5 qr—»q 4 r P T s—?
q 9

pr pr s s

One can check that in the forward substitution graph for this example, the path
31424 always leads to the vertex r. It follows that corresponding tiling dynam-
ical system is an almost 1 to 1 extension of the R? adding machine. Thus the
modified table tiling dynamical system is almost topologically conjugate (and
hence metrically isomorphic) to the chair. Since this implies that the modified
table tiling dynamical system has pure discrete spectrum, it is not metrically
isomorphic to the original table tiling dynamical system. Rather, it is me-
trically isomorphic to the chair.

We claim, however, that the modified table is not topologically conjugate to
the chair. To see this, we note that in the tilings x € X, the vertex types (c), (d),
and (e) in Figure 11 that do not occur (all the other types do occur). Thus the
number of 1-plane cases is 2 + 4 + 4 4 2 + 8 = 20. One can also show that the
number of 1-plane cases is 7. Hence for the the modified table, |o~!(z)] €

{1,7,20} # {1,2,5}.

14. COMMENTS

The good blocks that are used in the proof of Lemma 6.3 are what are called
magic words in [5] or synchronizing blocks in [6]. In particular, the proof of
Lemma 6.1 follows from a basic result in symbolic dynamics. Lemma 6.1 im-
plies the factor map v is both left and right closing (cf. e.g. [6], [5]). Essentially
the same argument - but very different looking - occurs in the work of Dekking
[1] on 1-dimensional substitutions (and later generalized to tilings in [14]) where
it is called coincidence.
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