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ABSTRACT 

We find topological models for the tiling dynamical systems corresponding to the chair and table 
rep-tiles. 

1. INTRODUCTION 

A rep-tile is a polygon that can be tiled by a finite number of smaller, congruent 
copies of itself. Two well known examples are shown in Figure 1. 

Figure 1. The chair and table rep-tiles. 

We call these the chair and the table. Both of these rep-tiles are alsopolyominoes 
(cf. [2]), meaning they are edge to edge unions of  squares. 

Given a rep-tile ~-, there is a corresponding set X of self-similar tilings of the 
plane. To get this, we decompose ~- into its small copies, obtaining a ~--shaped 
patch. Then we expand the small tiles in this patch back to their original size. 
Iterating this process, we obtain a sequence Xl, x2, x 3 . . .  of  larger and larger 
patches. 
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Figure 2. The patches xl, x2, x3, x4 of chairs. 

Figure 3. Part of a table tiling. 

We define X to be the set of all tilings x of N2 such that, up to a translation, any 
patch in x is also a patch in xn for some n. 

We denote the sets of self-similar chair tilings and table tilings by X,. and Xr re- 
spectively. 

Sets X of tilings of  N2 can be equipped with a natural compact  metric topol- 
ogy in which the translation action T of N-~ on X is continuous. One can study 
this action, called a tiling dynamical system, using the methods of ergodic the- 
ory and topological dynamics (cf. e.g. [11], [10], [14], [9]). For the table and chair 
tilings, these tiling dynamical systems were first studied by Solomyak [14]. He 
showed that the chair tiling dynamical system is strictly ergodic, and has pure 
discrete spectrum, with 'eigenvalues' equal to the dyadic rational points m N-'. 
By the Halmos von Neumann Theorem (cf. [16]), this shows that the chair tiling 
dynamical system is metrically isomorphic to a Kronecker system (an action by 
rotations on a compact  abelian group). Solomyak [14] showed that the table 
tiling system has the same eigenvalues as the chair tiling system, but that it also 
has a continuous component  in its spectrum. Hence the table is not metrically 
isomorphic to the chair. 
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For the well known Penrose tilings a more detailed result is known. Like the 
chair, the Penrose tiling dynamical system has pure discrete spectrum [10]. It is 
metrically isomorphic to a Kronecker  system with E2 acting on -II -4, but this 
metric isomorphism is not a topological conjugacy. Instead, it is realized by a 
continuous almost 1 to 1 factor mapping [10]. We say ]]-4 is a topological model 
for the space of Penrose tilings, and that the Penrose tiling dynamical system is 
almost topologically conjugate to a Kronecker  system on q] -4. It turns out that 
the points where the factor mapping fails to be 1 to 1 are precisely the 'excep- 
tional' Penrose tilings, namely those with infinite worms and the cartwheel 
Penrose tiling (cf. [10], [4]). Thus the exceptional Penrose tilings have dynamical 
significance. 

The purpose of this paper is strengthen Solomyak's results by obtaining 
topological models for the table and the chair tiling dynamical systems. For the 
chair, our result is directly analogous to the Penrose case. We show that the 
chair tiling system is an almost 1 to 1 extension o f a  Kronecker  system. For the 
table, we show that the corresponding dynamical system is an almost 4 to 1 
extension of  the same Kronecker  system. Then it is a relatively easy corollary 
that the table system has continuous component  in its spectrum. As in the 
Penrose case, the points where the factor mappings fail to be 1 to 1 (or 4 to 1) 
correspond to interesting tilings. In particular, we display structures in the 
chair tilings that are analogous to the worm and cartwheel Penrose tilings. 

While our results for tables and chairs resemble the results in the Penrose 
case, the proofs for these tilings are completely different. In particular, we use 
simple ideas from symbolic dynamics. These methods are quite general and 
apply to all polyomino rep-tiles. 

The author  wishes to thank Mike Boyle, Natalie Priebe, and Boris Solomyak 
for helpful conversations. 

2. DYNAMICS B A C K G R O U N D  

For a locally compact  abelian group (or semigroup) G, a G-dynamical system 
(X, G, T) is a continuous action T of G on a compact  metric space X. For 
simplicity, we sometimes denote this dynamical system by X. 

A Borel set E C_ X is invariant if TgE = E for all g E G. The dynamical sys- 
tem (X, G, T) is minimal if there are no proper  closed invariant sets. A point x E 
X is called almost periodic if for any U C_ X open, {g : Tgx E U} c C~ is rela- 
tively dense (cf. [16]). By a well known theorem of Gottschalk [3], X is minimal 
if and only if every point is almost periodic and some point has a dense orbit. 

An invariant measure for (X, G, T) is a Borel probability measure # on X 
such that # (T-gE)  = #(E) for all Borel E c_ X and all g E G. If  the invariant 
measure is unique, then the dynamical system is called uniquely ergodic (cf. 
[16]). Minimality together with unique ergodicity is called strict ergodicity. 

Given (X, G, T) and ( Y, G, S), suppose ~ : X ~ Y is a continuous surjection 
such that ~(Tgx) = sg(~(x)).  We say X is an extension of  Y via the factor 
mapping ~. If  qo is also 1 to 1 then it is called a topological conjugacy. If  X and Y 
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are strictly ergodic  and  there ex i s t sy  E Y so tha t  I~ -1 (Y)I = 1, then I~ l(Y)l = 1 
for  all y in some  invar ian t  dense G~ set Y0 c_ y ,  and we say ~ is an almost 1 to 1 
extension.  I f  IV-l (y)[ = K for all y in a dense G~ set Y0, we say cp is almost K to 1. 
I f  [~ I(y)l < L < oc we say ~ is un~)rmly bounded to 1. I f ~  is a lmos t  1 to 1 and 
u(Y0) = 1, where  u is the unique invar iant  measu re  for Y, we say X and Y are 
almost topologically conjugate. This  implies metric isomorphism (cf. [16]). 

N o w  let (; = [R 2 or 7/2, and let (X, G, T) be strictly ergodic  with unique in- 
var ian t  measu re  #. The  dualgroup G of  G is I1R 2 i f G  = ~2 and  is y2  = N2/7/_, if 

G = 7/2. A c o m ~ e x  Borel funct ion f on X is called an eigenJunction for the 
'eigenvalue' w E G if for  # a.e. x ~ X, 

(2.1) f ( T g x )  = e 27ri (g'")f(x), 

where (g,w) denotes  the 'dot '  p roduct .  The  set ~ of  eigenvalues is a lways a 
coun tab le  discrete subg roup  o f  ~ ([16]). The  zero e lement  0 c ~ co r re sponds  
to the cons tan t  funct ions,  and all e igenvalues are simple (cf. [16]). I f  P~\{0} ¢ f) 
then X is said to have nontrivial discrete ,spectrum. I f  the e igenfunct ions  have 
dense span  in L 2 (Y,  #), then X is said to have pure discrete spectrum. Otherwise ,  
X is said to have a continuous component in its spectrum. The  ext reme case, 

= {0}, cal led weak mixing, does not  occur  for the examples  cons idered  in this 
paper .  

A Kronecker system (X, G, T) is a strictly ergodic  ac t ion  T of  G by ro ta t ions  
on a c o m p a c t  abel ian  g roup  X. K r o n e c k e r  systems always have pure  discrete 
spec t rum,  and  for any coun tab le  subgroup  ~ c_ G, there is a unique Kronecke r  
sys tem with e igenvalue g roup  Y: (cf. [16]). By the Halmos-von Neuman theorem, 
a G dynamica l  sys tem X with pure  discrete spec t rum,  having eigenvalue g roup  
Z, is metr ica l ly  i somorph i c  to this canonica l  K r o n e c k e r  system (cf. [16]). 

For  a 7/2 dynamica l  system (Jr ' ,  7/2, S) we cons t ruc t  an R e dynamica l  sys tem 
(X,[R 2, T), called the suspension, as follows. Let  X = X ' x  [0, 1) 2. Given  
t + r E N2, write t + r = n + s uniquely where  n E 7/2 and  s ¢ [0, 1 )2. We define 
Tt(x,  r) = (S"x, s). Mos t  o f  the proper t ies  that  we are interested in here (e.g. 
strict  ergodicity,  pure  discrete spec t rum,  having a con t inuous  c o m p o n e n t  in the 
spec t rum,  being an a lmos t  1 to 1 extension,  etc.) are preserved by this con- 
s t ruct ion.  In par t icular ,  a 7/2 system is K r o n e c k e r  if  and only if its suspension is 
an ~2 K r o n e c k e r  system. The  suspens ion of  a 7/2 dynamica l  system X' ,  with 
e igenvalue g roup  E c_ 1] -2, is an [~2 system with eigenvalue g roup  2 c ~2, where 

is the lift o f  P, to [~2. We write ~2 = e 2~i~. 

3. T I L I N G  D Y N A M I C A L  S Y S T E M S  

A tile (in this paper )  is a connec ted  po lygon  in N2. We say two tiles are equiva- 
lent if  they differ by a t ranslat ion.  A finite col lect ion rc o f  inequivalent  tiles is 
called a prototile set. There  are four  chair  protot i les  (four ro ta t ions  of  the chair) 
and  two table protot i les  (two ro ta t ions  of  the table). 

Let  X be the set o f  all tilings of  ~2 by tiles equivalent  to tiles in re. We assume  
X ¢ ~. A patch is a finite set o f  tiles with a connec ted  union. Two patches  are 
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equivalent if they differ by a t ransla t ion.  We always a s sume  X satisfies thefinite 
local pictures condi t ion:  for all tilings x E X, and for all k C ~, there are finitely 
many equivalence classes of  k tile patches. We call X a full  7r-shift. For  tilings by 
chai r  or  table protot i les ,  we will satisfy the finite local pictures  condi t ion  by 
requir ing that  the squares  in the protot i les  fit 'edge to edge'. Let  Ttx  denote  the 
t rans la t ion  of  x E X by t c N2. Note  that  the full 7r-shift X is T- invar ian t .  

The  tiling topology on a full 7r-shift X is defined as follows. Two tilings 
x , y  E X are "e-close" if  for  some t E It~ 2 with IItl[ < e, Ttx  and y agree in a ! x ± 
square  a round  the origin. A comple te  met r ic  d is defined by put t ing  d(x,y)  
equal  to the in f imum of  all such e (cf. [12]). No te  tha t  the finite local pictures  
condi t ion  is equivalent  to X being total ly bounded .  It  follows tha t  X is c o m p a c t  
(cf. [12]). Clear ly  the ac t ion  T o f  ~2 by translation is cont inuous .  A tiling dy- 
namical system is a tr iple (X0, ~2, T) where  X0 c_ X is closed and T- invar iant .  
We call X0 a tiling space. 

4. R E P - T I L E  SETS 

The  sets Xc and X, o f  chai r  and  table  tilings are closed and T- invar ian t ;  they 
define the chair and table tiling dynamica l  systems.  Let  us now descr ibe  their  
cons t ruc t ion  a bit m o r e  precisely. 

Let  7r be a set o f  protot i les  in N2 and let A > 1. Suppose  for  each tile 7- c 7r, 
a(7-) is a tiling o f  AT by t rans la tes  o f  the tiles in 7< We call (Tr, a) a rep-tile set. A 
single rep-t i le  7- defines a rep-ti le set p rov ided  the g roup  of  ro ta t ions  genera ted  
by the ro ta t ions  o f  the copies  7- in ~r(7-) is finite I. We define the substitution ma- 
trix M to be the 17r] x lTr] ma t r ix  with entries m~,~ equal  to the n u m b e r  o f  copies 
of  u E 7r a p p e a r i n g  in c~(7-). We assume  M is primitive, i.e., M k > 0 for some 
k _> 1. We define the inflation mapping ~ : X ~ X on the full 7r-shift as follows: 
Firs t  we expand  x l inearly by X fixing the locat ion  of  0 c N2, and then we sub- 
divide each 7- E x c X accord ing  to the rep-t i le  re la t ion a. 

O u r  next  goal is to define X~ C_ X. By induct ion  we define a sequence o f  
pa tches  x, ,  pu t t ing  xl = {7-} for  some  7- E 7r, and  xn+l = cr(x,). We define 
X~ c_ X to be the set o f  all tilings x E X o f  ~2 such that  any pa tch  in x is 
equivalent  to a pa tch  in xn for  some n. A simple c o m p a c t n e s s  a r g u m e n t  (cf. [13]) 
shows X~ # 13. Since M k > 0, X~ is independen t  o f  the initial tile 7-. Clear ly  X~ is 
closed and T- invar ian t ,  so (X~, T, N2) is a tiling dynamica l  system. 

It  is easy to see tha t  any x c X~ is an a lmos t  per iodic  point .  Geomet r ica l ly ,  
this means  tha t  any pa tch  tha t  occurs  in x occurs  again  within a bounded  dis- 
tance  f rom an a rb i t r a ry  point  in x. We call such a tiling an almost periodic tiling 
(cf. [11], [10], [14]). U p  to equivalence,  any two tilings in X~ have the s ame  
patches ,  so (X~, T, [R 2) is a lways minimal .  One  can also show, using an argu-  
men t  based  on the Pe r ron -Froben ius  Theo re m,  tha t  (X~, T, N2) is uniquely er- 
godic  (cf. [14]). We denote  the unique invar iant  measu re  by #. In general ,  we 
want  to avoid the possibi l i ty  tha t  x c X~ is periodic, in which case T is a t ran-  

i The pinwheel tiling [8] is an example wi thout  this property. 
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sitive ac t ion o f  ~2 on X~ = 3 -2, (cf. [11]). Aper iodic i ty  is equivalent  to the bi- 
jectivity o f  the inflation mapp ing  ~r : X~ ---+ X~ [15]. In specific examples,  adhoc 

a rgument s  are needed establish this. However ,  it is easy to see that  invertibility 
holds for cr in the case o f  the table and chair  rep-tiles. Hence all table and chair  
tilings are aperiodic.  

5. D I S C R E T I Z A T I O N  

Let X be a full n-shift for a set n o f  po lyomino  prototiles. Cons ider  the decom- 
posi t ion o f  the tiles in n into their underlying squares. Let g be a map  that  as- 
signs a label f rom a finite a lphabet  .4 to each such square. I f  g is bijective we say 
the labeling is maximal. For  any x ¢ X, there is t C I0, 1) 2 such that the squares 
in x induce the par t i t ion { [0, 1) 2 + t + v : v ¢ 7/:} o f  ~2. We assign each of  these 

squares a label g([0, 1) 2 4- t + v) accord ing  to how it is tiled in x by 7r. We define 
5 : X ~ .4 - by ~5(x)v = g([0, 1) 2 + t + v). Lett ing S denote  the 7/-" shift on .4~-', 
we have that  X ~ = ~5(X) c_ .4~-' is S-invariant ,  so (X' ,  7/2, S) is a 7/2 dynamical  
system. We call g faithful  if (X, ~2, T) is the suspension of  (X' ,  7/2, S). Any  
maximal  labeling is faithful, but  a faithful labeling need not  be maximal ,  as we 
will see below• Figure 4 shows a maximal  labeling for the tables, with .4 = 
{p, q, r,s}. 

p r 

-~ s s I s p r s 
.---> ] p r -.--> 

q q q p r q 

p r 

Figure 4. A maximal labeling for the tables and the derivation of or,. 

Given a rep-tile set (~r, n) and a faithful labeling g, there is an al ternative way to 

cons t ruc t  X2 = 5(X): as a Z%substitution space. A 2 x 2 substitution is a map-  
ping a : ,4 ~ ,4 {°'1}2, where .4 is a finite alphabet .  Figure 4 shows how to obtain  
the subst i tut ion crt associated with the table rep-tile. It is given by 

s p  q q  r s  p r  
(5.1) p~--~ q~--* r H  s~--~ 

q p  p r  r q  s s  

N o w  we describe how to cons t ruc t  a substitution space X'~ C .4 z: f rom a sub- 
st i tut ion or. A mapp ing  x : B --~ .4, where B c 7/2 is finite, is called a block, and 
B is called the locus of  the block• Blocks that  are translates o f  each other  are 
called equivalent. We define X"  c_ X to be the set o f  all points  x so that  each 
block in x is equivalent  to a block in an(a)  for some n E N and a ¢ .4. This is just  
the discrete version of  the cons t ruc t ion  o f  X~. When  cr comes f rom a rep-tile set 

t (or, n), we have X'~ = O(X~,). In part icular,  for the table we obtain  X t = 
6(Xt) = X '  . We call (Xtt, 7/2, S) the table substitution system. 
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For chair tilings the maximal labeling g results in an inconvenient 12 letter 
alphabet. To avoid this we use the 'arrow' labels shown in Figure 5. 

p=[] 0=N 

Figure 5. The arrow labels, their replication, and the leners thal replace them. 

This labeling is faithful since a vertex point in a chair tiling is the 'convex' ver- 
tex of a chair tile if and only if it has three arrows pointing directly at it. Any 
arrow participates in exactly one such triple. We call this the three arrow rule. 
After replacing arrows with letters, as shown in Figure 5, we obtain the chair 
substitution crc 

s p  q ~ _ _ q r  s r  s r  ( )  rw--~ s ~ - +  . 5 . 2  P~--'p q p q r q p s 

Note the similarity between (5.2) and (5.1); only the positions of  the letters are 
different. As with the table, we obtain X,~ = ~5(X,) = X'  . We call (X~, 7/2, S )  the ~c 

chair substitution system. 

6. G R A P H S  OF A S U B S T I T U T I O N  

Given a 7/2 substitution cr over ,A, we define two associated directed graphs and 
the corresponding 1-dimensional shifts of finite type. The forward substitution 
graph G + is defined as follows: The vertex set is ¢4, and a directed edge goes 
from a to each symbol in ~r(a). The edges are labeled according to the position 
of  the target symbol in c~(a). We label these positions 1 , . . . ,  4 going from left to 
right, top to bottom. The graph G +, called table forward, corresponds to the 
table substitution. 

A second graph, called the reverse substitution graph, is obtained from the 
forward substitution graph by reversing the arrows. 

4 2 

3 

1 4 

1 

F igure  6. T h e  T a b l e  f o r w a r d  - t a b l e  r e v e r s e  graph.  
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Lemma 6.1. G/~ = G r ,  i.e. table fo rward  = table reverse. 

One sided infinite paths through the table reverse graph can be labeled in two 
ways: a vertex labeling Yt C {p ,q , r , s }  ~, or an edge labeling Z C {1,2,3,4} ~. 
Since each vertex has an out-edge with each label, Z = {l, 2, 3, 4} ~ is the fu l l  

1-sided4-shift .  However, Yt is a proper  subshift of  {p, q, r, sy ~. It is a subshift of  
finite type (cf. [6], [5]) and we call it the table subshiJ?. Let R denote the left shift 
on Z and on Yz, and let ~ : Yt -~ Z denote the factor mapping that reads the 
edge labels of fa  given vertex path. 

Lemma 6.2. For any z E Z and a E {p, q, r, s}, there exists unique y E YI starting 

at a and ~)llowing the edges in z. In particular, ~'~ is everywhere 4 to 1. 

Since each vertex has an out-edge with each label, the proof  is clear. 
Now we consider the chair f o rward  and the chair reverse graphs, G¢7- and G,7. 

These are not the same! In particular, the vertices in chair reverse do not have 
out-edges with each possible label. 

I 3 4 

2 P I  4 3 

. 4 2 I 3 2 

2 I 

3 2 
f ir_._../ (,5) 

Figure 7. The chair forward (a) and chair reverse (b) graphs. 

Here we let Yc c_ {p, q, r,s} ~ denote the chair-reverse shift and, as above, let 
: II, ---+ Z be the edge label reading map. 

We call the blocks 12, 21,14, 41,34, 43, 13 and 31 good blocks. We say z c Z is 
a goodpoin t  if it has infinitely many good blocks, and we denote the set of  good 
points by Z1. Any transitive point  (i.e., a point with a dense orbit  in (Z, N, R)) is 
good, so ZI contains a dense G~ set in the product  topology on Z. 

Proposition 6.3. The mapping ~ : Y~ ---* Z a fac tor  map (i.e, it is onto), which is 
almost  1 to 1. In particular, I~/~-l(z)l = 1 i f  and only ( f  z c Zb  I f  z ~ Z 1 then 
I~ '(z)l C {1,2}. 

Proof. I f  we reverse a right-infinite path through chair reverse we get a left- 
infinite path through chair forward. It can be labeled either by vertices or by 
edges. Let z -~ be the reversal of  a good point z E Z~. Since the good blocks are 
reversible, z -  also has infinitely many  good blocks. 
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Consider  any good  block, say 12, which occurs  at some time - j  < 0 in z . 
N o t e  that  fol lowing the path  12 in G~ + always leads to the vertex r. It follows 

that  if y -  is a vertex path co r respond ing  to the edge path z - ,  then y is com-  
pletely de termined  f rom time - j  + 1 up th rough  time 0. This is because each 
vertex in chair forward  has exactly one out-edge with each label. All o f  the other  
good  blocks have this same ' synchron iza t ion '  property,  a l though  they lead to 

different vertices. 
N o w  since z E Z1, we have a sequence - j i  ~ - o o  such that  there is a good  

block at time - j i  in z . For  each i, y -  is de te rmined  f rom - j i  + 1 to 0. In  the 

limit, this determines  a unique y , and its reverse y satisfies ~(y)  = z. 
Next,  suppose z E Z has only finitely many  good  blocks. Wi thou t  loss o f  

generality, by applying R ", we can assume z has no good  blocks. Then  z has only 
the blocks 11, 44, 14, and 41, or  only the blocks 22, 33, 23, and 32 (we canno t  
switch wi thout  creat ing a good  block). In  the first case we have y = . qqqqq . . .  or 

y = . sssss . . .  and in the second y = . ppppp . . .  or y = .rrrrr . . . .  [] 

7. T H E  A L G E B R A I C  M O D E L :  T H E  A D D I N G  M A C H I N E  

Let [I) -- {0, l} ~ = {.dl  d2 d3 . . . }  provided  with the p roduc t  topo logy  and the 
opera t ion  + defined as coordinate-wise  addi t ion with right carry. Then  D is 
a c o m p a c t  abelian g roup  called the dyadic integers. For  b = .100000 . . .  we 

define A : [ D - ~ D  by A ( d ) = b + d .  Then  (1) ,Z,A) is a strictly ergodic 
Kronecke r  system called the Kakutani-von Neumann  adding machine. We de- 
note  the eigenvalue g roup  e 2~riZ[½] ---- {e 2~rik/2" : k E Z ,n  E [~}. Here 7/[½] = 

{ j / 2  n : j  E Y,n E [~} is the g roup  of  dyadic rationals. 

We use d E [D to code block structures o n Z .  A block s t ructure  is a collect ion 
o f  par t i t ions  o f  7 / in to  sets called loci. A l- locus consists o f  a pair  o f  adjacent  

points  in 7/. There  are two choices: if 0 is on the left side o f  the l - locus con-  
ta ining it, then d l =  0. Otherwise we put  d l =  1. Given a par t i t ion  o f  7/ into 
(n - 1)-loci, we define the n-loci to each consist  o f  two adjacent  (n - 1)-loci. 

The n-locus con ta in ing  0 is called the principal n-locus. I f  the principal  (n - 1)- 
locus is on the left side o f  the principal  n-locus we put  d n =  0, and otherwise we 

put  d,  = 1. A key observat ion  is the following. 

Lemma 7.1. The action o f  A on • implements a left shift o f  the block structure. 

Figure 8. Part of the block structure for z - .3321 ... in the notation of (7.1). 
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N o w  we cons ider  the p roduc t  g roup  

[D 2 = D x ~ = {.(0,0)(0, 1 ) ( 1 , 0 ) . . . }  = ({0, 1}2) ~ 

and  define A1,A2 : ~2 ___+ D Z b y  

A~d = d + . ( 1 , 0 ) ( 0 , 0 ) ( 0 , 0 ) . . .  

A2d = d +  .(0, 1)(0,0)(0,0)  . . . .  

Then  Al and  A2 genera te  a 77 2 act ion A on D 2 by A" ,~ ,,2 = A  t A 2 where n =  
(nl, n2). We call the strictly ergodic  K r o n e c k e r  dynamica l  system (~)2 7/2 A) 
the 7/2 adding machine. It  has  e igenvalue g roup  

e 2~iy[½12 = {(e2~ik/Zm, e2zij/2") : j , k  E 77, m,n E ~}  C y2. 

It  will be conven ien t  to identify ~2 with the full 4-shift  Z via the code 

(7.1) (0~ 1) ~ 1 (1, 1) ~+ 2 (0,0) ~-~ 3 (1,0) +--, 4. 

F r o m  here on, we denote  the 772 adding mach ine  by (Z, 772~ m). Note  that  this is 
a different ac t ion  on Z than  the full 4-shift  (Z, ~ ,  R). 

As in the 1-dimensional  case, we think o f  a point  in z C Z as a 7/2 block 
structure. Here ,  an n-locus consists  o f a  2 ~ x 2 ~ square  in 7/2. Each  (n + 1)-locus 
consists  o f  four  n-loci. The principal n-locus, which is the one conta in ing  0 E 77 2, 
will be deno ted  B,,(z). For  z c Z, the ent ry  zl tells which e lement  of  the l - locus  
is 0, and  z= tells which of  the four  ( n -  1)-loci in the pr incipal  n-locus is the 
pr inc ipa l  (n - l )- locus.  Par t  o f  a b lock s t ruc ture  is i l lustrated in Figure  8. By 
the discussion of  1-dimensional  b lock s t ruc tures  above,  it follows that  the 
mapp ings  Aj and A2 co r r e spond  to the left-shift and the down-shi f t  respec-  
tively. 

8. M A I N  R E S U L T S  

In this sect ion we state our  ma in  results for the chair  and table dynamica l  sys- 
tems. We begin with the discrete (i.e., subst i tut ion)  cases. 

Theorem 8.1. The chair  subst i tu t ion system (X~.,772,S) is a strictly ergodic 
almost 1 to 1, uniformly bounded to 1, extension of the 7/2 adding machine 
(Z, 77 2, A). In particular, (X~c, 7/2, S) is almost topologically conjugate to the Z 2 
adding machine, and thus has a lmos t  topological  pure  discrete spec t rum with 
eigenvalue group e27riz[~] 2. MoreoveJ; for any z E Z, 

(8.1) [~--l(z)[ c {1,2,5},  

where 9~ denotes the factor mapping. 

Theorem 8.2. The table subs t i tu t ion  system (X't, Z 2, S) is a strictly ergodic al- 
most 4 to 1, uniformly bounded to 1 extension of the 77 2 adding machine ( Z, Z 2, A ). 
In particular, (X't, W 2, S) has eigenvalue group e2~i~[½ ]2, but it also has a continuous 
component in its spectrum. 
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Next we state the corresponding results for table and chair tiling dynamical 
systems. These involve the idea of the R2-adding machine dynamical system, 
which we denote by (Z, R 2, A). We will not describe this dynamical system ex- 
plicitly, but we note that it is uniquely defined in two equivalent ways: (i) as the 
suspension of the 7/2 adding machine, and (ii) as the unique R 2 Kronecker 
system with eigenvalue group 7/[½] 2 c_ ~2. 

Theorem 8.3. The chair tiling system (X,, ~2, T) is a strictly ergodic almost 1 to 
1, uniformly bounded to 1 extension o f  the R 2 adding machine (Z, 1~2, A ). In par- 
ticular, (At,, [K 2, T) is almost topologically conjugate to the ~2 adding machine, 
and thus has almost topological pure discrete spectrum with eigenvalues 7/[~]1 2. 
Moreover, for any z E Z, 1~ '(z) l { 1,2, 5}, where ~ denotes the factor mapping. 

Theorem 8.4. The table tiling system (At, ~:~2, T) is a strictly ergodic almost 4 to 1, 
uniformly bounded to 1, extension of  the ~2 adding machine (Z, R2,A). In par- 
ticular, (At, •2, S) has eigenvalue group 7/[½] 2, but it also has eontinuous compo- 
nent in its spectrum. 

Theorems 8.3 and 8.4 follow directly from Theorems 8.1 and 8.2 using the re- 
marks at the end of Section 2. The proofs of Theorems 8.1 and 8.2 occupy the 
next four sections. 

Comment. The underlying group in the IR 2 adding machine dynamical system 
is Z = ~ x ID, where D is the group known as the solenoid (it is the suspension 
of D). One can show that the inflation mapping ~rc on the space Xc of chair 
tilings is an almost 1 to 1 extension, via ~, of an ergodic group automorphism 
B x B of D x ~. Here B is the hlverse limit (or equivalently the natural exten- 
sion) of the mapping z H z 2 on the unit circle in C. 

9. C O M P L E T E  B L O C K  S T R U C T U R E S  

The first step in the proofs of Theorems 8.2 and 8.1 is to describe the process of 
filling in block structures (in the tiling literature, this construction is called 'up 
down generation of tilings', cf. [13]). 

A 2 x 2 substitution ~r on .4 induces a mapping, also denoted a, on .4~2. This 
is obtained by applying cr to each symbol in x E .4~2 and 'concatenating' to- 
gether a new sequence or(x) E .4z2. To be well defined, we must say where to put 
the origin. We put it at the lower left symbol (i.e., in position 3) of or(x0). Note 
that er(X') = X" C_ .4 z2. 

Lemma 9.1. Let c~ be a 2 x 2 substitution on ,,4 with X~ the corresponding sub- 
stitution space. Assume X~ is aperiodic. Then there exists a factor mapping 
~ :  (X' ,  Z 2, S) ~ (Z, 7/2, A). 

Proof. It will be convenient to work with the suspension X~ of X'~, letting ~r 
also denote the inflation mapping corresponding to the substitution c~. In par- 
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t icular,  given x '  E X'~ we cons t ruc t  x E X,  out o f  squares  [i, i +  1) × [ j , j  + 1) 
labeled x '  (we th ink  of  these as labeled tiles). Since X "  is aper iodic ,  so is X, ,  (i,j) 
and it follows f rom [15] tha t  c~ res t r ic ted to X~ is invertible. The  l-loci in x are 
the c~ images  of  the tiles in ¢ l(x). Each l- locus consists  o f a  2 × 2 a r r a n g e m e n t  
o f  four  tiles. Similarly, the n-loci in × a r e  the the c," images  of  the tiles in v "(x). 
K n o w i n g  the n-loci for  each n, al lows us to find the pr incipal  n-locus for each n. 
This  gives a b lock s t ruc ture  on x, which restr icts  to a block s t ructure  on x '  in 
the obvious  way. We denote  this b lock s t ruc ture  by ~;(x') E Z Clear ly the 
m a p p i n g  ~ is cont inuous ,  and it is equivar ian t  since A implemen t s ' t he  shift ac- 
t i o n o n Z .  T h e f a c t t h a t ~ i s o n t o f o l l o w s f r o m t h e m i n i m a l i t y o f ( Z ,  7/2,A). [] 

Given  a block s t ruc ture  z E Z, we define 

(9.1) B(z) = 0 B,,(z). 
n 1 

We call a b lock s t ruc ture  z C Z complete if B(z) = 7/2. We denote  the set o f  
comple te  b lock s t ruc tures  by Z0. This  set is dense G~. 

N o w  we descr ibe  how to fill in a comple te  block s tructure.  For  z E Z, let 
y E Y be such that  ~ (y)  = z. We cons t ruc t  a sequence  x,,(y) as follows: We put  
xo(y) = yl ,  which we locate  at the origin in y2. Then  we define x,,0, ) to be the 
b lock equivalent  to cr"(y,,+ 1) with locus B,,(z). 

L e m m a  9.2. The restriction of×,, + 10') to B,, (z) is x,, (y). 

Proof .  Let us denote  the four  n-loci in the pr incipal  (n + 1)-locus Bn + 1 (z) by 
B~, B, 2, B,~, B,~. Note  that  one of  these, namely  B,~", is the pr inc ipa l  n-locus. 
We have 

(9.2) x " 0 ' ) ~ c r " 0 ' " + ' ) =  c~" ' tcr(y, ,+l)3 ) ~" ' (c ,0 ' , ,+,)4 ) 

The  edge in G~ f rom yn to yn + j is labeled z,, so 

~(y,,+l)_-, = y,,, 

which means  tha t  the mat r ix  (9.2) has the block 

crn I(°'(Y,,+I)z,,)=°-" I(Y,+)~Xn I(Y) 

in the pos i t ion  co r r e spond ing  to z., namely  in the the locus Bn(z). [] 

Proposition 9.3. Let z E Zo. Then for each y C ~ I (z) there exists xO' ) E X'~ so 
that ~(x)  = z. 

ProoL We define x(y)  E .A;2 by put t ing  X(Y)m = Xn(Y)m for  any n large enough  
tha t  m E Bn(z). This  is well defined by L e m m a  9.2. N o w  x(y)  E X'~, since all 
its blocks are blocks  in x n ( y ) ~ c T " ( y , , t l )  for  some n. Clear ly we have 
~(x)  = z .  [ ]  
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Corollary 9.4. For the chair substitution system, the factor mapping ~ : X,f ~ Z 
is almost 1 to 1. 

Proof. The set Z0 N Z1 is dense G6, and for z ¢ Zo N Z1, y = ~ 1 (z) is unique 
and x(y)  = ~- l ( z )  is also unique. [] 

Corollary 9.5. For the table substitution system, the factor mapping ~ : X /  ~ Z 

is almost 4 to 1. 

Proof. The set Zo is dense G6, and each z C Zo has four preimages y ¢ ~ I (z). 
Each of these gives a different x(y)  C ~ -  l (z). [] 

10. T H E  CASE Z E Zo\ZI 

This case occurs only for the chair. It corresponds to those z E Z that are 
complete, but where z0 is not 1 to 1. Let us suppose z has only the blocks 22, 33, 
23 and 32, so that ~ l(z) --- {yl,y2} where yl = . pppp . . .  andy2  = .rrrr . . . .  We 
obtain two points x (y l ) ,x (y  2) C ~ l(z) that differ only along their diagonal. 
These points correspond to tilings part  of  which are shown in Figure 9 (a) and 
(b). 

Figure  9. F l ipp ing  an  infinite worm:  (a) and  (b). The  Ferris wheel tiling: (c). 

It follows that for these cases, [~-l(z)l = I{x(yj) ,x(y2)} l  = 2. Note  that the 
infinite stack of chair tiles along the diagonal in Figure 9 (a) and (b) can be 
'flipped' leaving all the other tiles in the tiling intact. We call this configuration 
an infinite worm by analogy with the similar structures found in some Penrose 
tilings (cf. [4]). Any two such tilings Xl and x2 have the property that 
d ( T t " x l ,  T t " x 2 )  ---+ 0 as n ~ o~, provided ][tn][ -~ cxD and the distance from tn to 
the worm is unbounded.  Such pairs of  points are called proximal  or homo- 
clinic. 

11. I N C O M P L E T E  B L O C K  S T R U C T U R E S  

There are eight kinds of  incomplete block structures z ¢ Z \ Z o .  We characterize 
them as either ¼-plane types or ½-plane types, according to B(z). It suffices 
to consider these block structures up to equivalence (i.e., translation). The 
¼-plane types - those where B(z) is one of  the four quadrants  of  7/2-correspond 
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to z k = . k k k k . . .  for k = 1,2, 3, 4. Up to equivalence, each of them is unique. 
The four 1-plane types correspond to z having only entries k and g, and in- 
finitely many of each, where (k, g) is one of the pairs (1,2), (3, 4), (1,3) or (2, 4). 
There are infinitely many equivalence classes of each of  these types, and each 
class has another  class as its reflection. For example, the reflection of a (1,2) 
upper ½-plane type is the lower ½-plane (3, 4) type that is obtained via the 
transformation 1 ~ 3, 2 ~ 4. We denote the reflection o f z  c Z \ Z o  by z*. 

If  z E Z \ Z o  and y C ~ l(z), we construct x (y )  c .A el: / in the same way that 
we constructed whole plane points for complete z. A point xO, ) E .A B(:/can be 
extended to x E ,,4 Z2 by pasting it together with other points of the same type 
(i.e., two ½-plane points or four k-plane points). 

We consider the ¼-plane case first, and for concreteness we assume 
z = z I = .  111 . . . .  For each a = 1,2, 3, 4, let y~' E 0.-1 (za). To get x, we paste to- 
gether the points x(y l ) ,  x(y2), x(y3), and x(y4) (we need to translate x0'2), 
x(y3), and x0'4) first). A priori, there are 1~, l(z)]4 possible versions of  x, but as 
we will see below, not all these points belong to X~. However, whenever such an 
x does belong to X',  we have ~(x) = z. It follows that 

(11.1) I~-l(z)l < ['~ 1(2)[4. 

By Lemma 6.2, the right hand side of  (11.1) for the table is _< 44 = 256, and by 
Proposit ion 6.3, it is _< 24 = 16 for the chair. 

The argument for the ½-plane cases is nearly the same. Given z, we let y c 
l(z) and let y* E ~ l(z*). We construct x by pasting together x(y )  and (a 

translate of)  x(y*). Again, not all such points x are in X~, but we have 

(li.2) I~ ~(z)l_~ I~-~4:)12 
Combining (11.1) and (11.2), we have the following. 

Proposition 11.1. For an), aperiodic substitution X~ the .factor mapping 
: X~ -~ Z is un(formly bounded to 1. 

Now we want to improve the estimates (11.1) and (11.2). We start with the chair. 
The ½-plane cases all belong to Z~, so these points all have unique preimages. 
For the ¼-cases, we note that it suffices to specify a single symbol at each 

n corner, since then we can apply ~r c, n = 1 ,2 , . . . .  There are a priori  44 choices. 
Without loss of generality, we can take the corners to be z k =  . k k k k  . . . .  

k = 1 , . . . , 4 .  Looking at vertex paths in G c that correspond to the corners 
z k = . k k k k  . . . .  just 16 possibilities remain: 

pqOr s p or r 
or r q or s 

However, only five of  these actually occur, since the others violate the three 
arrow rule. The corresponding tiling patches around the origin are shown in 
Figure 10. 

It follows that for the ¼-plane block structures, in the case of the the chair, we 
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Figure 10. Allowable ¼-plane types for the chair. 

have 1~ l(z)[ = 5. Four of these tilings are congruent via a rotation. We refer 
this (congruence class) as the cartwheel chair tiling, by analogy with the cart- 
wheel Penrose tiling (cf. [4]). Near  the origin these look the same as Figure 9 (a) 
and (b). In particular, such tilings have an infinite worm, but unlike the tilings 
discussed in Section 10, they also have two 'half-infinite worms'. The fifth tiling, 
which is not congruent to the others, has no direct Penrose analogue. We refer 
to this tiling, shown in Figure 9 (c), as the Ferris wheel. It has 4-fold rotational 
symmetry and four half-infinite worms. Note that all five of these tilings are 
proximal, and they can be interconverted by 'flipping' the infinite X-shaped 
configuration of  chair tiles along the diagonal and the reverse-diagonal. We 
have now proved (8.1). 

Now we turn to the case of table tilings. We will prove the following. 

Theorem 11.2. For the table tilings and table substitution, [~-1 (z)[ E {4, 10, 24}. 

Proof. By Proposit ion 9.3, we know that for complete block structures 

I~-~(z)l = 4 .  

Let us consider a pair left and right 1-plane types, z and z* pasted together 
along the y-axis, and the pair of  adjacent symbols on either side of the y-axis at 
0. Note that a p  on the left must be paired with an r on the right, but all of  the 32 
combinations of other symbol pairs are allowed. Thus we have I~-l(z)l = 
1 + 32 = 10. The upper and lower 1-plane cases are the same. 

For  the ¼-plane cases, we consider the allowed vertex types at the origin. All 
possible vertex types in the full table shift (modulo rotation and reflection) are 
shown in Figure 11. However, the types (g) and (h) do not occur in any tiling 
x c Xt (i.e., in any table tiling) since they are not blocks in any cr/'(T). 

(a) 

[ ~ 

(c) 

I 

(b) 

(f) (e) (g) 

(d) 

I 
(h) 

Figure 11. Vertex types for the full table shift. 
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We can enumerate  the l_planes cases by counting the rotations and reflections 
of  each allowed picture: (a) 2, (b) 4, (c) 2, (d) 8, (e) 4, and (f) 4, for a total of  24. 
Thus in the ~-plane table case, ]~-I(z)] = 24. [] 

Comment.  By iterating the inflation mapping o-t on one of the non-occurring 
configurations (g) or (h), one can obtain a tiling x that is a fixed point for c~, but 
that does not belong to Xt. Such a tiling is not almost  periodic since it has a 
vertex configuration (i.e., (g) or (h)) that occurs in just one place. It follows that 
the orbit  closure is not minimal. This illustrates why we define rep-tiling spaces 
the way we do in this paper. The definition as the orbit closure of  a fixed point 
for or, which is com m on  for 1-dimensional substitutions, does not always work 
in this case. 

12. T H E  S P E C T R U M  OF T H E  T A B L E  

The purpose of this section is to give a simple direct p roof  of  the following re- 
sult, complet ing the proof  of  Theorem 8.2. We include this argument  for the 
sake of completeness.  

Proposition 12.1 [14]. The table substitution system (Xlt, 77 2, S) has a continuous 
component in its spectrum. 

In the 1-dimensional case, a similar result holds for bijective substitutions (cf. 
[7]). Our  p roof  of  Proposit ion 12.1 rests on the following lemma. 

Lemma 12.2 [14]. The table substitution system (Xrt,772 S) has e27riY[½ ]2 as its 
eigen value group. 

Proof of Proposition 2.1. Let "7 denote Haa r  measure on Z -- ])2. For g ¢ 
L2(Z, q') we define J ' ¢  L2(X/, #) by f ( x )  = (~ o g)(x). We denote the space of  
all s u c h f  by H0, and note that H0 is T-invariant.  Since ~ is at least 4 to 1, it 
follows that Hi = L2(X/, #) @ H0 is nontrivial. Now let w be an eigenvalue for 
( X / , Z : , S ) ,  and let g 6 L z ( Z ,  7) be the corresponding eigenfunction for 
(Z, Z 2, A). Then f = ~ o g is an eigenfunction for (X/, ?72, S). By Lemma 12.2, 
all the eigenfunctions arise this way, so it follows that H0 is the closure of  the 
span of the eigenfunctions. Since Hi # {3, there exists a continuous component  
in the spectrum. [] 

Now we proceed to the p roof  of  Lemma  12.2. For this we use the following 
lemma, whose p roof  follows from expressing numbers  in base 2. 

Lemma 12.3. Suppose 2nw--~ 0 m o d  1. Then w C 771½ ]. 

Proof of Lemma 12.2. Let E,, be the set of  x E X '  t such that in ~?(x) the origin 
is the lower left corner of  its k-locus for k =  1 , . . . , n .  In particular, 
~(x) = . 3 " * * *  . . . .  For a c A ,  let C , , = { x ] x o = a }  c_X/, and let K,,,~-- 
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En N Ca. Cons ider  the locus B n = { 0 , . . . , 2 "  - 1} 2 g 7/2. Then Pn = 

{ K  . . . .  . = S " K n , ~  : a ¢ A , n  E Bn} is a par t i t ion  o f  X', with gn = diam(Kn,~,.) 

satisfying gn --+ 0. 
Let f be an e igenfunct ion with eigenvalue w for (X't ,  7/2, S), and assume 

Il l  = 1, s o l ( x )  = e 2rrih(x). We call a p p r o x i m a t e f  in measure  by a funct ion f '  

cons tan t  on the sets o f  Pn. In  part icular,  for some sequence en --+ 0 there exist 

sets K',~,, o C_ Kn,~,,o, with #(K'~,0 ) _> (1 - en)#(Kn,~,o) and for x E K ' ~ , , o , f ' ( x  ) = 
' ~ n K '  for any e 2~ih .... where Ih(x)  - hn,~] < e~. No te  that  for x ¢ K .... . = ~" n,a.o, 

n E B~, we h a v e f ' ( x )  = e2rri{n'w)ft(T nx) = e 2~i(h"''+(n'w)). We let en(x)  = h ( x ) -  

hn,a.  

For  n E t~, consider  the four blocks (equivalent to) crn(p), an(q),  an(r)  and 
an(s). Let us place such a block so the lower left corner  is 0 E 7/2. We denote  

tha t  block with a at posi t ion 0 by/3n(a). Note  that  Kn,~,0 is the cy l i nder  se t  for this 
block: the set o f  all points  x with/3n(a) at the locus B,,. For  m E N and any 
z E {1,2, 3,4} m, let a :  denote  the vertex in G + obta ined by star t ing at a and 

fol lowing z. We have 

= 
3 ~ 3"  )3) 

and by a simple induct ion,  there exist an, j, an,2, an.3, an,4 such that  

9,,(an,,) 9n(an.2). 
9n+,Ia/=  n(an,3) /3.(an4) 

In  part icular ,  an,k = a t (a )k  for n odd,  and a , , k  = a[(a)  k for n even, where a[ 

given by 

p p  s q  r s  q r  
p ~-+ q ~-+ r F--+ s H . 

q r  p q  r p  s s  

This shows that  the (n + 1)-blocks /3n+t(a) are each obta ined  by past ing to- 
gether  four  n-blocks. This is what  is known  in ergodic theory  as a r a n k - 4  con-  

s t ruc t i on .  
! ! 

For  n sufficiently large, there exists x E K£,s, o with S(2" '°)x  E K~,s, o. For  such 

an x we have 

f ( S(2",O) x )  = e2~ih(S(2"'°L~) = e2~ri(hn,,~ +e.(S(2"'°lx) ). 

We also have 

f (S (2 , ,O)x )  = e2rri(((2'LO),w)+h(x)) = e2rr i({(2~ 0 ) , w ) + h . . ~ + e , , ( x ) ) .  

Since [en(S(2"'°)x) - en(X)l < 2en, it follows that  {(2n,0),w) -+ 0 m o d  1. Lett ing 
w = (wl,w2), we have 2nWl -'~ 0 m o d  1, and thus by L e m m a  12.3, wl E 7/[1]. 

I ! Similarly, there exists x E K,~.r 0 such that  T(°,2")x E K~,s, O, and by the same ar- 
gumen t  2nw2 -+ 0 m o d  1, so w2 E 77[½]. [ ]  
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' "  

Figure 12. The modified table. 

13. A D I F F E R E N T  TABLE 

If  we replace the table rep-tile with the following modified rep-tile set we obtain 
a new set of tilings Xf, that we call the modified table. Using the same coding as 
for the table, we obtain the substitution o 7 

k '°~)~'~.'~ P~-' s s q H  q q r H  p I" p r SF-+ 
q q  p r  p r  s s  

One can check that in the forward substitution graph for this example, the path 
31424 always leads to the vertex r. It follows that corresponding tiling dynam- 
ical system is an almost 1 to 1 extension of  the •2 adding machine. Thus the 
modif ied table tiling dynamical  sys tem is almost topologically conjugate (and 
hence metrically isomorphic) to the chair. Since this implies that the modified 
table tiling dynamical system has pure discrete spectrum, it is not metrically 
isomorphic to the original table tiling dynamical system. Rather, it is me- 
trically isomorphic to the chair. 

We claim, however, that the modified table is not topologically conjugate to 
the chair. To see this, we note that in the tilings x E X r, the vertex types (c), (d), 
and (e) in Figure 11 that do not occur (all the other types do occur). Thus the 
number of ¼-plane cases is 2 + 4 + 4 + 2 + 8 = 20. One can also show that the 
number of  ½-plane cases is 7. Hence for the the modified table, [~-l(z)l c 
{1,7,20} ~ { 1 , 2 , 5 } .  

14. C O M M E N T S  

The good blocks that are used in the proof  of  Lemma 6.3 are what are called 
magic words' in [5] or synchronizing blocks in [6]. In particular, the proof  of 
Lemma 6.1 follows from a basic result in symbolic dynamics. Lemma 6.1 im- 
plies the factor map ~ is both left and right closing (cf. e.g. [6], [5]). Essentially 
the same argument - but very different looking - occurs in the work of Dekking 
[1] on 1-dimensional substitutions (and later generalized to tilings in [14]) where 
it is called coincidence. 
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