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Abstract

In this paper nonlinear partial di1erential equations of the elliptic type with the Dirichlet boundary data are
investigated. Some su3cient conditions under which the solutions of considered equations depend continuously
on parameters and boundary conditions are proved. The proofs of main results are based on variational
methods. In the 5nal part of the paper we give a short survey of the results and methods related to the
question of stability of the boundary value problems.
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1. Introduction

In this work we investigate the elliptic systems of partial di1erential equations with variable
distributed parameters and variable boundary conditions. The systems considered are of the form

9z(x) = ’(x; z(x); !(x)); (1.1)

z(x) = v(x) on 9�; (1.2)

where x∈� ⊂ Rn; n¿ 2; � is a bounded domain with Lipschitzian boundary 9�; z(·)∈H 1(�;RN ).
We shall assume that the distributed parameter !(·) varies in the space Lp(�;Rm) and the variable
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boundary data belong to the space of traces H 1=2(9�;RN ); N; p; m¿ 1 (for details see Section 2).
In the theory of boundary value problems and its applications we consider, 5rst of all, the problem
of the existence of a solution, next the question of stability, uniqueness, smoothness, etc. Following
Hadamard, Courant and Hilbert, we say that a given problem is well-posed if this problem possesses
at least one solution which continuously changes together with variable parameters of the system.
Courant and Hilbert in their monograph write: “A mathematical problem which is to correspond

to physical reality should satisfy the following basic requirements: (1) The solution must exist. (2)
The solution should be uniquely determined. (3) The solution should depend continuously on the
data (requirement of stability)” and, next, they write: “The third requirement, particularly incisive,
is necessary if the mathematical formulation is to describe observable natural phenomena. Data in
nature cannot possibly be conceived as rigidly 5xed: the mere process of measuring them involves
small errors...” (cf. [5, Vol. II, Chapter III, Section 6.2]).
Further by stability of a boundary value problem we mean the continuous dependence of the

solution of the problem on boundary data and parameters.
A problem is said to be ill-posed if it does not possess at least one of properties (1)–(3). However,

the theory of ill-posed problems pays most attention to the third requirement. Hadamard gave a simple
example of an ill-posed initial value problem for partial di1erential equations. Namely, consider the
Laplace equation zxx + zyy = 0; x∈ (0; �); y∈ (−1; 1) with the initial conditions z(x; 0) = ’k(x) =
(1=k2) sin(kx); zy(x; 0) =  k(x) = (1=k) sin(kx); z(·; ·)∈C2. By a direct inspection and Carleman’s
theorem, we can show that the function zk(x; y) = (1=k2) exp(ky) sin(kx) is the unique solution of
the above problem for k = 1; 2; : : : . Passing with k to in5nity, we see that ’k and  k tend to zero
uniformly, but the sequence zk does not converge to the function z0(x; y) = 0 which is the unique
solution of the Laplace equation with homogeneous initial data. Thus the above initial value problem
is ill-posed.
Next, let us consider the boundary value problem

9z(x; y) + 2z(x; y) = �; (1.3)

z(x; y) = 0 for (x; y)∈ 9�̃; (1.4)

where �̃ = (0; �)× (0; �), �∈R.
It is easy to see that for �=0 any function of the form z(x; y)=C sin x sin y; C ∈R, is a solution

of boundary problem (1.3)–(1.4). But for � �= 0 the above problem has no solutions in the space
H 2((0; �)× (0; �);R). Indeed, multiplying (1.3) by sin x sin y and using the Fubini theorem, we get

∫ �

0

[∫ �

0
zxx sin x dx

]
sin y dy +

∫ �

0

[∫ �

0
zyy sin y dy

]
sin x dx

+2
∫ �

0

∫ �

0
z sin x sin y dx dy = �

∫ �

0
sin x dx

∫ �

0
sin y dy:

Integrating by parts we obtain 0 = 4�, a contradiction. We see that for � = 0 the boundary value
problem (1.3)–(1.4) possesses in5nite many solutions, but if we change a little the parameter � that
� �= 0, then a solution does not exist. Thus the boundary value problem (1.3)–(1.4) is ill-posed.
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In this paper we prove some su3cient conditions under which the considered boundary value
problems possess at least one solution which continuously depends on distributed parameters and
the boundary data.
In Section 3 we consider system (1.2)–(1.3) with the variable boundary data and parameters. Using

some variational methods we prove that this system is stable with respect to the norm topology in the
space of distributed parameters Lp(�;Rm), norm topology in the space of boundary data H 1=2(9�;RN )
and norm topology in the space of solutions H 1(�;RN ). Not going into details, we can formulate
the main result of Section 3 as follows: if vk → v0 in H 1=2(9�;RN ), !k → !0 in Lp(�;Rm), then
zk → z0 in H 1(�;RN ) where zk is the solution of the boundary value problem (1.1)–(1.2) with 5xed
!= !k and v= vk ; k = 0; 1; 2; : : : .
In the case when system (1.1) is linear with respect to !, we can relax the topology in the space

Lp(�;Rm). In Section 4, we prove that zk → z0 in H 1(�;RN ) provided that vk → v0 in H 1=2(9�;RN )
and !k → !0 weakly in Lp(�;Rm).
In the 5nal part of the paper we give some physical interpretation of the considered problem and

a short survey of the results and methods related to the stability of the boundary value problems for
the second-order partial and ordinary di1erential systems with the variable boundary conditions and
parameters.

2. Formulation of the problem and basic assumptions

To begin with, we recall some de5nitions and notations.
By H 1(�;RN ); N ∈N; N ¿ 0 (H 1(�) for short), we shall denote the Sobolev space of functions

u= u(x) de5ned on a bounded domain � ⊂ Rn; n¿ 2, such that u(·)∈L2(�;RN ), whose (distribu-
tional) derivatives ∇u are elements of the space L2(�;RNn). The norm in H 1(�;RN ) is de5ned by
formula

‖u‖2H 1(�) =
∫
�
(|∇u(x)|2 + |u(x)|2) dx:

By H 1=2(�;RN ) we denote the space of all functions u(·)∈L2(�;RN ) for which

I0(u) =
∫
�

∫
�

|u(x)− u(y)|2
|x − y|n+1 dx dy¡∞;

equipped with the norm

‖u‖2H 1=2(�) = ‖u‖2L2(�) + I0(u)

(cf. [14, De5nition 6.8.2]).
Covering 9� by coordinate patches, we de5ne the space H 1=2(9�;RN ) as before via such charts

(cf. [14, Section 6]) with an analogous norm.
H 1=2(9�;RN ) is said to be the space of traces (boundary values) of functions from the space

H 1(�;RN ). Throughout the paper, we shall assume that � satis5es any condition which guarantees
a compact embedding of H 1(�;RN ) into Ls(�;RN ) with s∈ (1; 2∗) where 2∗ = 2n=(n− 2) if n¿ 3
and 2∗ =∞ if n= 2; for example, 9� may be Lipschitzian, i.e., �∈C0;1 (see [14]).
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By R :H 1(�;RN ) → H 1=2(9�;RN ) we shall denote the linear and continuous operator such that
Rz=z|9� for all z ∈C∞( P�). According to Theorem 6.8.13 (cf. [14]) there exists such operator and is
uniquely determined. The value Rz is usually referred to as the trace of function z on the boundary
9� and we often write z instead Rz. Further, we shall understand the boundary condition z(x)= v(x)
for x∈ 9�, in the sense of the trace. We denote by H 1

0 (�;RN ) the subspace of H 1(�;RN ) consisting
of all functions z such that z(x)=0 for x∈ 9� a.e., (in the sense of the trace). A norm in H 1

0 (�;RN )
can be de5ned by equality

‖z‖2H 1
0
=
∫
�
|∇z(x)|2 dx:

In our further considerations, an essential role is played by the inverse operator T :H 1=2(9�;RN )→
H 1(�;RN ). Theorem 6.9.2 (cf. [14]) implies that there exists a continuous linear mapping T de5ned
on the space H 1=2(9�;RN ) such that Tv= z ∈H 1(�;RN ) for any v∈H 1=2(9�;RN ) and the trace of
z is equal to v, i.e., Rz = R(Tv) = v.
Since the operator T is continuous, we have

‖Tv‖H 16 c‖v‖H 1=2 ; (2.1)

where the constant c¿ 0 depends only on T and the description of 9�.
Further, in this paper we consider the case when the mapping ’ :�×RN×Rm → RN , which de5ned

system (1.1), represents a potential vector 5eld, i.e., there exists a scalar function � :�×RN ×Rm →
R such that

’(x; z; !) =∇z�(x; z; !) = �z(x; z; !);

where x∈� a.e., z ∈RN , !∈Rm; ∇z�= (�z1 ; �z2 ; : : : ; �zN ).
In this case the boundary value problem (1.1)–(1.2) may be written in the form

9z(x) = �z(x; z(x); !(x)); (2.2)

z(x) = v(x) for x∈ 9� a:e:; (2.3)

where !(·)∈Lp(�;Rm) and v(·)∈H 1=2(�;RN ); N; p; m¿ 1. It is easy to see that system (2.2)
represents the Euler–Lagrange equation for the following functional of action

F!;v(z) =
∫
�
[ 12 |∇z(x)|2 + �(x; z(x); !(x))] dx; (2.4)

where z(·)∈H 1(�;RN ); z(x) = v(x) for x∈ 9� a.e., v(·)∈H 1=2(9�;RN ); !(·)∈Lp(�;Rm); p¿ 1.
We shall impose the following conditions on the function �:

(2.5) the functions � and �z are measurable with respect to x for any (z; !)∈RN × Rm and con-
tinuous with respect to (z; !) for x∈� a.e.
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(2.6) if p∈ [1;∞), we assume that there exists a constant c¿ 0 such that

|�(x; z; !)|6 c(1 + |z|s + |!|p);
|�z(x; z; !)|6 c(1 + |z|s−1 + |!|p(1−(1=s)));

for x∈� a.e., !∈Rm, z ∈RN , where s∈ (1; 2∗);
if p=∞, we assume that for any bounded set W ⊂ Rm there exists a constant c¿ 0 such

that

|�(x; z; !)|6 c(1 + |z|s);
|�z(x; z; !)|6 c(1 + |z|s−1);

for x∈� a.e., !∈W; z ∈RN and some s∈ (1; 2∗), where 2∗=2n=(n−2) if n¿ 3 and 2∗=+∞
if n= 2.

(2.7) there exists a constant b∈R and some functions �(·)∈L2(�;RN ), "(·)∈L1(�;R), such that

�(x; z; !)¿− b|z|2 − 〈�(x); z〉 − "(x);

for x∈� a.e., !∈Rm, z ∈RN , where # − 2b¿ 0 and # is the principal eigenvalue of the
Laplace operator −9z de5ned on the space H 1

0 (�;RN ).

Remark 2.1. The principal eigenvalue # is given by the equality

#= inf
{∫

� |∇z(x)|2 dx∫
� |z(x)|2 dx ; z ∈H 1

0 (�;RN ); z �= 0
}

(cf. [6, Chapter 6.5.1]) and, in general, it is not easy to 5nd # if � is an arbitrary domain in Rn.
One can show that #¿ 1=d2 where d is the diameter of � (cf. [25, Appendix A]).

Under assumptions (2.5)–(2.6) the functional of action given by formula (2.4) is well-de5ned and
Frechet di1erentiable. The derivative of F!;v(·) acting on h∈H 1

0 (�;RN ) is de5ned by the formula

DzF!;v(z)h=
∫
�
[〈∇z(x);∇h(x)〉+ 〈�z(x; z(x); !(x)); h(x)〉] dx: (2.8)

3. Continuous dependence of the solutions on parameters and boundary data: the case of the strong
topology

Let {!k} and {vk} be some sequences of distributed parameters and boundary data, respectively.
Denote by Zk; k = 0; 1; 2; : : : the set of all minimizers of the functional F!k ;vk (·), i.e.,

Zk = {z ∈H 1(�;RN ); F!k ;vk (z) = min F!k ;vk (y); y∈H 1(�;RN ) and

y(x) = vk(x) for x∈ 9�}; k = 0; 1; 2; : : : :

Since the functional F!;v(·) is di1erentiable, it follows that each minimizer Pz ∈Zk is a critical point
of F!k ;vk (·), i.e., DzF!k ;vk ( Pz)h = 0 for any h∈H 1

0 (�;RN ) (cf. (2.8)) and consequently Pz is a weak
solution of system (2.2)–(2.3). Inversely, if Pz is a weak solution of Eqs. (2.2)–(2.3), then Pz ∈Zk

provided the functional F!k ;vk (·) is convex.
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Of course, in general, the set Zk is not singleton and hence the boundary value problem (2.2)–(2.3)
has no unique solution.
We say that a set Z̃ ⊂ H 1(�;RN ) is an upper limit of the sets Zk; k = 1; 2; : : : i1 any point z̃ ∈ Z̃

is a cluster point of some sequence {zk} (with respect to the norm topology of H 1(�;RN )) where
zk ∈Zk for k=1; 2; : : : . We will denote by Lim supZk= Z̃ the upper limit of the sets Zk; k=1; 2; : : : .
Now, we can formulate and prove the main result of this paper.

Theorem 3.1. Assume that

(1) the integrand � satis7es conditions (2.5)–(2.7),
(2) the sequence of distributed parameters !k; k = 1; 2; : : : tends to !0 in Lp(�;Rm),
(3) the sequence of boundary conditions vk ; k = 1; 2; : : : tends to v0 in H 1=2(9�;RN ).

Then
(a) for any !k and vk the set Zk; k = 0; 1; 2; : : : is a nonempty subset of H 1(�;RN ),
(b) there exists a ball B(0; )) ⊂ H 1(�;RN ) such that Zk ⊂ B(0; )) for k = 0; 1; 2; : : : ,
(c) any sequence {zk}; zk ∈Zk is relatively compact in the norm topology of H 1(�;RN );

Lim supZk = Z̃ is a nonempty set and Lim supZk ⊂ Z0, where Z0 is the set of all minimizers
of the functional F!0 ;v0(·).

If Zk is a singleton, i.e., Zk = {zk}; k = 0; 1; 2; : : : , then zk tends to z0 in the norm of
H 1(�;RN ).

In other words, if Z(F!;v)=Z!;v denote the set of all minimizers of the functional F!;v(·) de5ned
by (2.4), then assertion (c) of Theorem 3.1 states that the set valued mapping (!; v)∈Lp(�;Rm)×
H 1=2(9�;RN ) → Z!;v ⊂ H 1(�;RN ) is upper semicontinuous with respect to the norm topology of
the spaces Lp(�;Rm); H 1=2(9�;RN ) and H 1(�;RN ).

Proof. Step 1: In the 5rst step we prove assertions (a) and (b) of our theorem.
Consider the functional

PF!k ;vk (y) =F!k ;vk (y + Tvk)

=
∫
�
[ 12 |∇y(x) +∇(Tvk)(x)|2 + �(x; y(x) + Tvk(x); !k(x))] dx; (3.2)

where T :H 1=2(9�;RN ) → H 1(�;RN ) is an inverse operator to R as introduced in Section 2 and
y(·)∈H 1

0 (�;RN ). Assumptions (2) and (3) of our theorem imply that ‖!k‖6C0 and ‖vk‖6C0 for
some C0¿ 0 and k = 0; 1; 2; : : : . By PZk denote the set of all minimizers of the functional PF!k ;vk (·),
i.e.,

PZk = { Py∈H 1
0 (�;RN ): PF!k ;vk ( Py) = min PF!k ;vk (y); y∈H 1

0 (�;RN )}: (3.3)

It is easily seen that Zk = PZk + Tvk . By (2.7) and (3.2), we have

PF!k ;vk (y)¿
∫
�
[ 12 |∇y(x) +∇(Tvk)(x)|2 − b|y(x) + Tvk(x)|2

−〈�(x); y(x) + Tvk(x)〉 − "(x)] dx:



D. Bors, S. Walczak / Journal of Computational and Applied Mathematics 164–165 (2004) 117–130 123

Applying the PoincarRe inequality and inequality (2.1), we get

PF!k ;vk (y)¿ (#− 2b)‖y‖2 − C1‖y‖ − C2 = p(y) (3.4)

with # − 2b¿ 0 (by (2.7)), where C1; C2 are some constants independent of !k and vk . It is a
well-known fact that under conditions (2.5) and (2.6) the integral functional PF!k ;vk (·) is weakly
lower semicontinuous on H 1

0 (�;RN ). Since this functional is coercive (cf. (3.4)), we infer that the
set PZk is nonempty and weakly closed.
Putting y = 0 in formula (3.2) and applying assumption (2.6), we get the following estimates:

PF!k ;vk (0)6
∫
�
[ 12 |∇(Tvk)(x)|2 + c(1 + |Tvk(x)|s + |!k(x)|p)] dx6D1 if p¡∞;

PF!k ;vk (0)6
∫
�
[ 12 |∇(Tvk)(x)|2 + c(1 + |Tvk(x)|s)] dx6D2 if p=∞; (3.5)

where the constants D1 and D2 are independent of !k and vk . Directly from inequalities (3.4), (3.5)
and formulas (3.3) it follows that

PZk ⊂ {y∈H 1
0 (�;RN : p(y)6D} ⊂ PB(0; P)) for some P)¿ 0; (3.6)

where PB(0; P))={y∈H 1
0 (�;RN ); ‖y‖6 P)}. Since Zk = PZk +Tvk and ‖Tvk‖6C, for all vk and some

C ¿ 0, we get the inclusion

Zk ⊂ B(0; )) = {z ∈H 1(�;RN ); ‖z‖6 )} for some )¿ 0:

We have thus proved assertions (a) and (b) of our theorem.
Step 2: Denote by P*k the minimal value of the functional PF!k ;vk (·), i.e.,

P*k = min
y∈H 1

0

PF!k ;vk (y) = PF!k ;vk ( Py); k = 0; 1; 2; : : : ;

where Py∈ PZk . We shall observe that

lim P*k = P*0 (3.7)

provided that !k → !0 and vk → v0.
We begin by proving that the sequence PF!k ;vk (y) tends to PF!0 ;v0(y) uniformly on any ball PB(0; )) ⊂

H 1
0 (�;RN ). By (3.2), we have

| PF!k ;vk (y)− PF!0 ;v0(y)|6
∣∣∣∣
∫
�
〈∇y(x);∇(Tvk)(x)−∇(Tv0)(x)〉 dx

∣∣∣∣
+ 1

2

∣∣∣∣
∫
�
(|∇(Tvk)(x)|2 − |∇(Tv0)(x)|2) dx

∣∣∣∣
+

∣∣∣∣
∫
�
[�(x; y(x) + Tvk(x); !k(x))

−�(x; y(x) + Tv0(x); !0(x))] dx
∣∣∣∣ : (3.8)
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Using the HSolder inequality, we can estimate the 5rst integral I 1k in (3.8) as follows:

|I 1k (y)|6
(∫

�
|∇y(x)|2 dx

)1=2(∫
�
|∇(Tvk)(x)−∇(Tv0)(x)|2 dx

)1=2

6 )
(∫

�
|∇(Tvk)(x)−∇(Tv0)(x)|2 dx

)1=2
:

Hence I 1k (y) tends to zero uniformly on PB(0; )), because ∇(Tvk)→ ∇(Tv0) in L2(�;RNn). The same
reasoning applies to the second integral I 2k leads to the conclusion that I

2
k tends to zero.

Now, suppose that the last integral I 3k (y) does not tend to zero uniformly on PB(0; )). It means
that there exists +0¿ 0 and a sequence {yk} ⊂ PB(0; )) such that |I 3k (yk)|¿+0. Passing, if necessary,
to a subsequence, we can assume that yk tends to some Py weakly in H 1

0 (�;RN ). From the Sobolev
embedding theorem (cf. [14]) we deduce that yk+Tvk tends to Py+Tv0 in Ls(�;RN ). By assumption,
we know that !k tends to !0 in Lp(�;Rm). Using the Krasnosielskii theorem (cf. [10,33]) and
assumption (2.6) we infer that I 3k (yk) → 0. Thus we have got a contradiction with the inequality
|I 3k (yk)|¿+0. It means that I 3k (y) tends to zero uniformly on PB(0; )). Taking into account inequality
(3.8), we see that PF!k ;vk (y) converges to PF!0 ;v0(y) uniformly on PB(0; )) provided that !k → !0 in
Lp(�;Rm) and vk → v0 in H 1=2(9�;RN ).
From this, for any +¿ 0 and k su3ciently large, we have

P*k = min
y∈H 1

0

PF!k ;vk (y) = min
y∈ PB(0; P))

PF!k ;vk (y)6 min
y∈ PB(0; P))

PF!0 ;v0(y) + +

= min
y∈H 1

0

PF!0 ;v0(y) + += P*0 + +;

where PB(0; P)) is the ball given in (3.6).
Similarly, P*06 P*k + +. We have thus proved equality (3.7).
Step 3: Finally, we shall prove assertion (c). Let {yk}; k = 1; 2; : : : be a sequence of minimizers,

i.e., yk ∈ PZk . Since PZk ⊂ PB(0; P)) for k = 0; 1; 2; : : : , we infer that the sequence {yk} is weakly
relatively compact. Passing, if necessary, to a subsequence, we can assume that yk tends to some
Py∈ PB(0; P)) in the weak topology of H 1

0 (�;RN ). Let us prove that Py∈ PZ0, i.e., Py is a minimizer of the
functional PF!0 ;v0(·). Indeed, suppose that Py does not belong to PZ0. The set PZ0 is nonempty therefore
there exists some y0 ∈ PZ0. Obviously, PF!0 ;v0( Py)− PF!0 ;v0(y0) = �¿ 0 and we have

P*k − P*0 = PF!k ;vk (yk)− PF!0 ;v0(y0) = PF!k ;vk (yk)− PF!0 ;v0( Py) + �:

Since yk → Py in Ls(�;RN ); !k → !0 in Lp(�;Rm) and vk → v0 in H 1=2(9�;RN ), the growth
condition (2:6) and the Krasnosielskii theorem imply that PF!k ;vk (yk)− PF!0 ;v0( Py)→ 0. Thus we have
got a contradiction with (3.7). It means that Py∈ PZ0. Note that we have just proved that Lim sup PZk

is a nonempty set with respect to the weak topology of H 1
0 (�;RN ) and Lim sup PZk ⊂ PZ0.
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To complete the proof, we shall show that the sequence yk converges to Py in the norm of
H 1
0 (�;RN ). By (2.8), we have

0=
〈
9
9y

PF!k ;vk (yk)− 9
9y

PF!0 ;v0( Py); yk − Py
〉

=
∫
�
|∇yk(x)−∇ Py(x)|2 dx +

∫
�
〈∇(Tvk)(x)−∇(Tv0)(x);∇yk(x)−∇ Py(x)〉 dx

+
∫
�
〈�z(x; yk(x) + Tvk(x); !k(x))− �z(x; Py(x) + Tv0(x); !0(x)); yk(x)− Py(x)〉 dx: (3.9)

By assumption (3) of our theorem, ∇(Tvk) tends to ∇(Tv0) in L2(�;RNn). Meanwhile, ∇yk → ∇y0
weakly in L2(�;RNn). Hence the second integral in equality (3.9) tends to zero. Using the HSolder
inequality and the growth condition (2.6), we can estimate the last integral Ik in (3.9) as follows:

Ik 6
(∫

�
|�z(x; yk(x) + Tvk(x); !k(x))− �z(x; Py(x) + Tv0(x); !0(x))|s=(s−1) dx

)(s−1)=s

×
(∫

�
|yk(x)− Py(x)|s dx

)1=s

6C4

(∫
�
(1 + |yk(x) + Tvk(x)|s + | Py(x) + Tv0(x)|s + |!k(x)|p + |!0(x)|p) dx

)(s−1)=s

×‖yk − Py‖Ls if p¡∞;

and in a similar manner

Ik 6C5

(∫
�
(1 + |yk(x) + Tvk(x)|s + | Py(x) + Tv0(x)|s) dx

)(s−1)=s
‖yk − Py‖Ls if p=∞;

where C4 and C5 are some positive constants. We have just assumed that yk converges to Py weakly
in H 1

0 (�;RN ). It implies that yk tends to Py in Ls(�;RN ) which together with assumptions (2) and
(3) lead to the conclusion that the last integral in formula (3.9) converges to zero. Consequently,
the 5rst integral ‖yk − Py‖2H 1

0
=
∫
� |∇yk(x)−∇ Py(x)|2 dx tends to zero. Thus, we have shown that the

weak convergence of the minimizers yk ∈ PZk to Py∈ PZ0 implies the strong convergence in H 1
0 (�;RN ).

Since Zk= PZk+Tvk and Tvk → Tv0 strongly in H 1(�;RN ), we obtain assertion (c), which completes
the proof.

Let us return to the boundary value problem (2.2)–(2.3). Denote by Sk ; k = 0; 1; 2; : : : the set of
the solutions of the problem which correspond to the parameter !k and to the boundary data vk . It
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is a well-known fact (see for instance [17,18]) that for the convex functional of action the set of
minimizers Zk coincides with the set Sk . Hence Theorem 3.1 implies the following:

Corollary 3.1. If

(1) the integrand � and the sequences {!k} and {vk} satisfy assumptions (1–3) of Theorem 3.1,
(2) the functional of action (2.4) is convex,

then the sequence Sk ; k=0; 1; 2; : : : satis7es assertions (a–c) of Theorem 3.1 with Zk=Sk ; k=
0; 1; 2; : : : .

If the functional of action is strictly convex, then problem (2.2)–(2.3) possesses uniquely
determined solution zk ; k = 0; 1; 2; : : : and lim zk = z0 in H 1(�;RN ).

4. Continuous dependence of the solutions on parameters and boundary data: the case of the weak
topology in the space of distributed parameters

In this section, we shall assume that the integrand � is linear with respect to the distributed
parameter !, i.e.,

�(x; z; !) = �1(x; z) + 〈�2(x; z); !〉; (4.1)

where �1 :�×RN → R; �2 :�×RN → Rm and !(·)∈L∞(�;Rm). In this case, the boundary value
problem (2.2)–(2.3) takes the form

9z(x) = �1z (x; z(x)) + 〈�2z (x; z(x)); !(x)〉 (4.2)

z(x) = v(x) on 9� (4.3)

and the functional of action is given by the equality

F1!;v(z) =
∫
�
[ 12 |∇z(x)|2 + �1(x; z(x)) + 〈�2(x; z(x)); !(x)〉] dx; (4.4)

where z(·)∈H 1(�;RN ); z(x) = v(x) on 9�, !(·)∈L∞(�;Rm); v(·)∈H 1=2(9�;RN ).
Let {!k} and {vk} be sequences of the distributed parameters and the boundary conditions, re-

spectively. Denote by Z1k a set of all minimizers of the functional of action (4.4) with != !k and
v= vk . We shall prove:

Theorem 4.1. Suppose that

(1) the integrand � is of the form (4.1) and satis7es conditions (2.5)–(2.7),
(2) the sequence of distributed parameters !k; k = 1; 2; : : : tends to !0 in the weak ∗ topology of

the space L∞(�;Rm),
(3) the sequence vk ; k = 1; 2; : : : tends to v0 in H 1=2(9�;RN ).

Then the sequence Z1k ; k=0; 1; 2; : : : satis7es assertions (a–c) of Theorem 3.1 with Zk replaced
by Z1k ; k = 0; 1; 2; : : : .
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Proof. As in the proof of Theorem 3.1, we put

PF1!k ;vk (y) = F1!k ;vk (y + Tvk)

=
∫
�
[ 12 |∇y(x) +∇(Tvk)(x)|2 + �1(x; y(x) + Tvk(x))

+ 〈�2(x; y(x) + Tvk(x)); !k(x)〉] dx; (4.5)

where !k ∈L∞(�;Rm), vk ∈H 1=2(9�;RN ), k = 0; 1; 2; : : : and y(·)∈H 1
0 (�;RN ).

Since the integrand � de5ned by (4.1) satis5es conditions (2.5)–(2.7), Theorem 3.1 implies
immediately that the sequence Z1k ; k = 0; 1; 2; : : : ful5lls assertions (a) and (b).
Let us notice that the weak ∗ convergence of !k to !0 in L∞(�;Rm) and the strong convergence

of vk to v0 in H 1=2(9�;RN ) imply that the sequence PF1!k ;vk (·) converges to PF1!0 ;v0(·) uniformly on
any ball PB(0; )) ⊂ H 1

0 (�;RN ). By (4.5), we have

| PF1!k ;vk (y)− PF1!0 ;v0(y)|6
∣∣∣∣
∫
�
〈∇y(x);∇(Tvk)(x)−∇(Tv0)(x)〉 dx

∣∣∣∣
+ 1

2

∣∣∣∣
∫
�
[|∇(Tvk)(x)|2 − |∇(Tv0)(x)|2] dx

∣∣∣∣
+

∣∣∣∣
∫
�
[�1(x; y(x) + Tvk(x))− �1(x; y(x) + Tv0(x))] dx

∣∣∣∣
+

∣∣∣∣
∫
�
[〈�2(x; y(x) + Tvk(x)); !k(x)〉

− 〈�2(x; y(x) + Tv0(x)); !0(x)〉] dx
∣∣∣∣ : (4.6)

The same reasoning as in the proof of Theorem 3.1, Step 2, gives that the 5rst three integrals in
(4.6) converge to zero uniformly on the ball PB(0; )).
Suppose that the last integral I 4k (y) does not tend uniformly on PB(0; )) to zero. It means that

there exists +0¿ 0 and a sequence {yk} ⊂ PB(0; )) such that |I 4k (yk)|¿+0. Passing, if necessary, to
a subsequence, we can assume that yk tends to some Py weakly in H 1

0 (�;RN ) and we have

I 4k (yk) =
∣∣∣∣
∫
�
[〈�2(x; yk(x) + Tvk(x)); !k(x)〉 − 〈�2(x; Py(x) + Tv0(x)); !0(x)〉] dx

∣∣∣∣ :
By the Sobolev embedding theorem yk tends to Py in Ls(�;RN ). From assumption (3) Tvk tends
to Tvk in H 1(�;RN ) and consequently Tvk tends to Tvk in Ls(�;RN ). Furthermore, due to the
growth conditions (2.6) and the Krasnosielskii theorem both sequences �2(x; yk(x) + Tvk(x)) and
�2(x; yk(x) + Tv0(x)) tend to �2(x; Py(x) + Tv0(x)) in L1(�;Rm) and by assumption (2), !k tends
to !0 in the weak ∗ topology of L∞(�;Rm). Therefore, the last integral in (4:6) tends to zero,
which contradicts the inequality |I 4k (yk)|¿+0. It means that I 4k (y) tends to zero uniformly on the
ball PB(0; )) and, in consequence, the sequence PF1!k ;vk (y) tends to PF1!0 ;v0(y) uniformly on any ball
from H 1

0 (�;RN ) provided that !k → !0 in the weak ∗ topology of L∞(�;Rm) and vk → v0 in
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H 1=2(9�;RN ). Using this fact, one can prove, quite similarly as in the proof of Theorem 3.1 (see
Step 3), assertion (c).

Theorem 4.1 implies the following:

Corollary 4.1. If the integrand �(x; z; !)=�1(x; z)+ 〈�2(x; z); !〉 and the sequences {!k} and {vk}
satisfy the assumptions of Theorem 4.1 and the functional of action de7ned by (4.4) is convex,
then the sequence S1k of solutions of problem (4.2)–(4.3) satis7es conditions (a–c) of Theorem 4.1
with Z1k = S1k . If the functional of action is strictly convex, then the set S1k is a singleton, i.e.,
S1k = {zk} and zk → z0 in H 1(�;RN ) provided that !k → !0 weakly ∗ in L∞(�;Rm) and vk → v0
in H 1=2(9�;RN ).

Now, we give an example of applications of Theorems 3.1 and 4.1.

Example 4.1. Suppose that � is a three-dimensional block heated from outside by radiant heater
which generates some temperature v=v(x) on the surface 9�. Next, assume that there is a compressor
inside the block � which generate the pressure ! = !(x) at the point x∈�. In this case, the
temperature inside the block � is given by the function z= z(x) which satis5es the elliptic equation
of the form (1.1) with the boundary condition (1.2) (cf. [5,27]). Suppose that system (1.1)–(1.2) is
of the form

9z(x) = �|!(x)|2|z(x)|2z(x)− 1
4 z(x) + !(x);

z(x) = v(x) on 9� (4.7)

with the boundary data

z(x) = v(x) on 9�:

We assume that x∈� = {x∈R3; |x|6 1
2}; �¿ 0; z(·)∈H 1(�;R); !(·)∈L∞(�;R); v(·)∈H 1=2

(9�;R).
It is easy to see that the functional of action for system (4.7) takes the form

F!;v(z) =
∫
�
[ 12 |∇z(x)|2 + �

4 |!(x)|2|z(x)|4 − 1
8 |z(x)|2 + !(x)z(x)] dx

and is strictly convex for any distributed parameter !(·)∈L∞(�;R). Thus, for any ! = !k and
v= vk , there exists exactly one solution zk(·)∈H 1(�;R) of system (4.7). By Theorem 3.1 it follows
that zk → z0 in H 1(�;R) provided that !k → !0 in L∞(�;R) and vk → v0 in H 1=2(9�;R). Next,
let us put !0 ≡ 1, v0 ≡ 4 and � = 0. It is easy to verify that in this case z0(x) ≡ 4 and Theorem
4.1 implies that ‖zk − z0‖2 =

∫
� [|zk(x)− 4|2 + |∇zk(x)|2] dx tends to zero provided that !k tends to

!0 = 1 weakly ∗ in L∞(�;R), i.e.,
∫
�〈a(x); !k(x)− 1〉 dx → 0, for any a(·)∈L1(�;R) and vk → 4

in H 1=2(9�;R). It means that the function z0(x) = 4 is a “good” approximation of a solution of the
boundary value problem

9z(x) =− 1
4z(x) + !k(x);

z(x) = vk(x) for x∈ 9�
with !k and vk su3ciently close to !0 = 1 and v0 = 4, respectively, in appropriate topologies.
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5. Historical and bibliographical notes

The question of the existence of a solution for the initial value problem and its continuous de-
pendence on the parameters and boundary data was investigated many years ago. Under simple
and natural assumptions one can prove that the Cauchy problem for ODE of the form ẏ(t) =
’(t; y(t); !k(t)); y(t0)=ak possesses a unique solution y=yk(t), for any !k and ak , and yk(·) con-
verges to y0(·) provided that !k tends to !0 and ak tends to a0 in appropriate spaces and topologies
(cf. for e.g., [4,7,21,22]).
In the case of the Cauchy problem for PDE of the 5rst order the similar results have been proved

in papers [21,26,32].
The question of the existence of a solution for the boundary value problem of the Dirichlet type,

periodic, homocyclic type etc. was investigated in many papers and monographs. A wide survey
of results and research methods can be found in monographs [6,17,18,23,25,33] and the references
given there.
The literature on stability issues for the boundary value problems described by the ODE and PDE

of the elliptic type is not very extensive. The stability of solutions of second-order ODE’s with
two-point boundary conditions was considered in the 1970s in papers [11,12,16,24,28] (see also the
references therein).
All this works are dealt with the scalar equations and based on some direct methods related to

the implicit function theorem.
The question of the continuous dependence of solutions of the linear elliptic equations with the

variable Dirichlet boundary data and parameters was investigated, 5rst time, in paper [20]. In this
work su3cient conditions for stability of the linear PDE de5ned in the classical spaces are given.
Similar results for scalar linear PDE with the Dirichlet boundary conditions de5ned in the Sobolev
spaces H 1(�;R) and H 1=2(9�;R) are proved in paper [13]. The 5rst results related to the stability of
N -dimensional nonlinear boundary value problems with variable parameters appeared in the 1990s.
In papers [1–3,8,9,19,29,31] ordinary di1erential equations with two-point boundary conditions and
variable functional parameters were investigated, and the stability conditions with respect to the
strong and weak topology have been proved.
Similar results for PDE with distributed parameters are given in papers [15,30].
In this paper we have investigated the stability problem for N -dimensional elliptic systems de5ned

in the Sobolev space H 1(�;RN ) with distributed parameters !(·) from the space Lp(�;Rm) and
variable boundary data v(·) from the space of traces H 1=2(9�;RN ).
All the above works related to the N -dimensional nonlinear elliptic systems are based on the

variational methods.
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