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Abstract: Empirical data for the polynomial confirm the efficiency of exploring function structure as a means of 
isolating the zeros of a scalar analytic function defined on a disk (Klip, 1985). In exceptional cases the tracing is not 
complete which means that certain arcs may not have been traced. A mathematical basis for the algorithm which 
investigates and restores completeness, the so-called completeness algorithm, is presented. The main theorem is that 
completeness of the tracing, as verified at the isolated zeros, is sufficient for completeness of the tracing. Its proof 
evolves along various lemmas, one of which provides a new condition for the location of the critical points. The paper 
concludes with a brief description of the completeness algorithm. 

Keywords: Simultaneous zero isolation, zeros of analytic functions, polynomial solution, critical points, graphs and 
structure of analytic functions 

Introduction 

The search for the zeros of an analytic function as directed by the zero curves of its real part 
(r-arcs) and optionally those of its imaginary part (i-arcs) was applied to the complex polynomial 
and shown to be very efficient (Klip [6]). According to the Principle of the Argument, along the 
boundary of a disk C '=  (0, R) which contains n zeros, the total increment of the function 
argument is 2~rn (Ahlfors [1]). For the polynomial P of degree n this argument increment 
implies that the boundary of C is intersected alternatingly by arcs of Re(P) - u(x, y) --- 0 and 
arcs of Im(P) = o(x, y) = 0, which results in a total number of 4n intersection points. Since oo 
is a pole of P, the arcs stretch to infinity under equal angles. As is seen from the outline of the 
Main Algorithm in Appendix A, these 4n intersection points are isolated and each of these 
isolating intervals serves as a basis for a triangular tracing procedure. Since the function is 
defined by its real part only (except for an imaginary constant), it is sufficient for zero finding to 
trace one kind of arcs. If only r-arcs are traced, 2n triangular pathways--starting at the 
boundary--are constructed, while taking care of triangular bisecting if the new vertex yields a 
function value located in a different halfplane (the triangle has then been intersected by an 
adjacent i-arc). The calculations are done in floating-point arithmetic and the program is 
designed such that precision can be adjusted locally up to a certain maximum defined by the 
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user. In the vicinity of a zero (which is an intersection point of an r- and an i-arc) the triangle 
size becomes very small and the tracing terminates if a preset break-off criterion for the stepsize 
is met. 

Zero curves are piecewise Jordan arcs of steepest descent and therefore optimal among 
possible pathways. Stepsize is a measure for distance to the zero and thus for required precision. 
The self-correcting properties of curve tracing (see Klip [6]) allow stepsize as well as precision to 
be dynamically adjusted. A linear search for the zeros is much more efficient than the 
2-dimensional approach of older search algorithms reviewed by Henrici [4] and Collins [3], as 
was demonstrated in Klip [6]. We want to mention the linear algorithm for root solving of 
polynomial equations, recently described in a sequence of papers by Renegar, the latest of which 
is [10]. The homotopy algorithm amounts to a triangulation of space. In comparison our 
algorithm may be considered a triangulation of zero curves. The expression for the computa- 
tional complexity has the same order of magnitude as a function of n as our algorithm. Detailed 
comparison of the complexity will be given elsewhere. The homotopy algorithm does not have 
the advantages of zero curve tracing mentioned above. Also, in our algorithm multiple zeros do 
not present an impediment to efficiency, contrary to Renegar's approach and other algorithms 
for simultaneous zero isolation. Due to its analytic basis it naturally extends to analytic functions 
defined on a disk. 

This paper concentrates on the perfection of the algebraic results, i.e. on the mathematical 
basis of the subalgorithm which provides automatic verification (followed by restoration) of 
completeness of the tracing. From a practical point of view the 'main algorithm' is self-contained 
by virtue of the graph option combined with the possibility to analyze any region separately (see 
[6]). The latter method is even profitable when in regions containing a multiple zero or a cluster 
greater maximal precision is required than at other locations. The 'completeness algorithm' 
effects the partition of C by the zero curve structure into regions of equal function quadrant. Its 
efficient design is based on the fact that completeness, if verified at the zeros, is sufficient to 
ensure completeness of the traced structure. This is formulated in Section 2 by Theorem 1. 
Certain properties of the zero curve structure which are easy to verify, will be simply mentioned 
in the form of statements. More complex issues which are basic to the proof of the main theorem 
are stated in Lemmas 1 through 5. In Section 3 a brief account of the completeness algorithm is 
given, but technical details will be presented in a subsequent paper. The term 'uniqueness' used 
in Klip [6] has been replaced by 'completeness' in order to avoid confusion with the 'uniqueness 
theorem' of analytic functions found in Markushevich [8]. 

Throughout the text it is assumed that sufficient precision for the calculations is available to 
meet the objectives of the investigation. 

Outlines of the main algorithm and the completeness algorithm are given in Appendices A and 
B. A few examples of the traced structure can be found in Appendix C. 

1. Properties of the zero curve configuration 

General orientation 

A zero curve is a chain of piecewise Jordan arcs. The only points of discontinuity are possible 
zeros of f '  located on it. The concept of r-arc as it is referred to in the text is the following. 
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Definition 1. An r-arc of an analytic function f ( z ) =  u ( z ) +  iv(z) is a Jordan arc with the 
equation u(z(t)) = u(x(t) ,  y(t))  --- 0 on an interval of t-values, such that in the open interval u" 

P and uy do not vanish simultaneously. In addition the range of t-values is chosen such that the 
left endpoint z(t 0 is either an intersection point of u = 0 with the boundary of C or a zero of f ' .  
The fight endpoint z(t2) is either a zero of f '  (for which f ~  O) or a simple or multiple zero of f .  

With this restriction we can now state 

Lemma 1. A zero arc is a path of steepest descent. 

The proof is given in [6]. 
From the Taylor expansion of f at a zero z o of f '  located on an r-arc it is seen that 2m r-arcs 

converge at z o under equal angles, where m >I 2 is the multiplicity of z o as a zero of 
g(z)  :=f(z)  - iv(z0), z o is referred to as branch point of the structure. 

Definition 2. A branch point of the zero curve structure, briefly called branch point in this text, is 
an intersection point of r-arcs (or of i-arcs) in which f ~  O. 

The discontinuity of the arcs at possible branch points or multiple zeros is removable so that 
we can introduce the concept of branch. Although originally introduced for the polynomial, the 
local considerations hold for a general analytic function defined on a disk. 

Definition 3. A branch of the zero curve structure of an analytic function defined on a disk is a 
chain of zero arcs, where discontinuity of arg(z'(t)) at possible branch points or multiple zeros is 
removed by selecting for the continuation of 'h that arc ~'2 which fulfills 

lim a r g ( z ' ( t ) ) =  lim a r g ( z ' ( t ) ) + I r  (mod2'rr). 
t--t* Y2 trot* Yz 

Since the boundary of a disk C containing the zeros intersects the set of r-arcs (i-arcs) of a 
polynomial P of degree n in 2n distinct points, one may conclude: 

Lemma 2. The zero curve structure of a polynomial of degree n consists of n r-branches and n 
i-branches. 

Some branches may contain more than one zero, so that in this case there are branches which do 
not contain zeros. As an example we refer to Appendix C, Fig. 7, a polynomial with real roots 
only. For real polynomials the x-axis is an i-branch and an axis of symmetry. Since in this case 
all zeros are real, one i-branch (the x-axis) contains all zeros, so that the remaining n -  1 
i-branches do not contain a zero. They intersect the x-axis in a branch point, which is a zero of 
f ' .  Figures 7 and 8 of Appendix C are more extensively discussed below. 

With respect to ' the function f analytic on a disk', briefly referred to as f ,  we remark 
(1) the boundary aC cannot be part of an r- or i-arc, 
(2) if f contains n zeros in C, a c  may be intersected by more than 4n r- and i-segments. The 

number of intersection points is finite, because an infinite number would imply a limit point of 
the set { z] . . . .  } ~ aC for which u = 0, from which it follows Re( f )  -- 0 identically, so that f - -  c 
(c an imaginary constant). In case of the polynomial P, when scanning a C at regular intervals, 
the stepsize can be adjusted such that each interval of sequential points contains one intersection 
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point with a zero arc. The isolation of the 4n intersection points can be achieved, starting with 
any stepsize s, but it is profitable to choose "rrR/2n as basic value for s if the centroid of the 
zeros is in the origin. 

In general there will not be a simple way to know the number of zeros of f in C. Also. using 
an arbitrary stepsize, one may miss a descending arc, because 2 successive r-arcs may belong to 
the same branch and give a total quadrant increment 0. Moreover, the algorithm cannot 
distinguish between an increment - 1  and 3. At this time we will not pursue an investigation of 
the ability of the tracing algorithm to find all zeros of f in C. It is obvious that for f the main 
algorithm should include monitoring the position of each tracepoint relative to C (and abandon 
the tracing if it is outside C), since arcs of descent may lead to roots outside C. A precise 
analysis of the structure for f based on its order and the location of its zeros relative to 0C has 
still to be provided. However, due to the orthogonality of the converging arcs at each simple zero 
it is unlikely that the chosen stepsize is critical for a successful tracing of the structure. We state: 

Conjecture. The main algorithm combined with the completeness algorithm applied to a function 
analytic on a disk C will lead to successful tracing of  its zero curve structure, provided no zeros are 
located on the boundary ~ C. 

Univalent and multivalent regions 

The zero curve structure provides a partitioning of C into open regions relative to the 
boundary of C, i.e. each region contains at least one boundary segment. The polynomial function 
P is univalent or 'schlicht' in the open regions whose boundary contains one boundary segment 
of C. There is a 1-1 correspondence between the points in such a region and their image in the 
w-plane, which constitutes one quadrant. The remaining regions contain more than one boundary 
segment. It is obvious that the mapping is not 1-1. They form the multiple inverse image of one 
quadrant in the function plane. For later reference we define: 

Definition 4. A branch region B is a region in C in which u and v do not change sign and whose 
boundary contains more than one boundary segment of C. As its order we define the number of 
boundary segments it contains. 

The branch regions are the only possible locations of those zeros of P '  which are not part of the 
structure itself. In the absence of branch points a branch region is bounded by an equal number 
of boundary segments, r-arcs and i-arcs. We referred above to Appendix C, Fig. 7 in which the 
structure of the so-called 'Wilkinson's polynomial' is displayed, by means of tracepoints 
generated with our program. In Wilkinson [11] the instability was discussed of this polynomial in 
which all zeros are equally spaced. A very small change in the coefficients brings about a large 
shift of the larger zeros to the complex plane. The effect on the zero curve structure as a result of 
a small perturbation in the coefficient of z 19 is shown in Fig. 8 of Appendix C. The structure of 
the unperturbed polynomial consists merely of univalent regions, consistent with the fact that all 
zeros of the derivative are branch points. In Fig. 8 one discerns a branch point of r-arcs in each 
halfplane and two branch regions of order 3, indicated by I and II. The ability to partition C 
into univalent regions will play an important role when approaching the problem of solving a 
small system of non-linear equations on an analytical basis. 
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Incompleteness of the tracing 

We want to impose the condition that the zero curve configuration is completely covered by 
the triangular pathways. Pathways of traced r-arcs which bound the same branch region may 
intersect. They will intersect when approaching a branch point. Continuation of the tracing 
beyond a domain of adjacent or intersecting r-arcs depends on the geometric configuration of the 
tracing triangle and the converging arcs and is essentially a matter of chance. Thus it may 
happen that parts of arcs are multiply traced, while other segments are not traced. In Appendix 
C, Fig. 9 an example is given of a complex polynomial where one arc is not traced. This case is 
also discussed in [6]. In itself this will rarely be a cause of failure to isolate some zeros, since in 
general each zero is approached by at least one arc which bounds two contiguous univalent 
regions, so that an intersection of traced pathways cannot occur. 

The important contention is that completeness of the traced structure can be checked at the 
isolated zeros, i.e. distinctness of the pathways at the zeros implies completeness of the pathways. 

2. Main theorem of completeness of tracing 

The proof of Theorem 1 is based on the fact that 2 pathways of traced r-arcs (i-arcs) intersect 
at most once (Lemma 5). In this connection we have to look at the structure at the site of locally 
converging r-arcs in more detail. First, we show that a branch region contains at least one zero of 
f '  (Lemma 3). Next, we show (Lemma 4) that the discrete tracing cannot cause a step-over to a 
different branch region due to an unnoticed intersection with i-arcs. One thus concludes that the 
branch points and the branch regions are the only sites where a coincidence of pathways can be 
initiated. These two lemmas are basic to the proof of Lemma 5. 

We prove that a zero of f '  is located in a branch region B. In Fig. 1 a region D '  is sketched, 
whose boundary is a Jordan curve, which is intersected by 2 r-arcs a and a' .  We suppose that D '  

u=M 
ot(u=O) 

- -  ) 
I 

Fig. 1. The region D '  is intersected by r-arcs a and a' .  B is the branch region in part bounded by a and a ' .  Suppose 
that the boundary segment 7 of D := D' f~ B is intersected by distinct level arcs u = c. Let c > 0. Then, if p is small 
enough, u < M along aA, where A ..= (z0, p). Equality only holds in the 2 intersection points with u = M. The 
Theorem of the Mean for harmonic functions is thus violated for A. 
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O~ 
p* 

p** 

Q* 

D* 

Ul u . , t / \ ~ u . .  I . . I + ] 
u t u 1 

w-plane 

U 

Fig. 2. According to the conformal mapping properties each point of the marked subregion /~* of D * in the w-plane 
is taken twice in D. There is a subregion Dj* of b *  bounded by u = 0 and u ~ uj which has disjoint inverse images 
in D, whereas the inverse images of the region Dj* 1 bounded by u = 0 and u = uj+ 1 are not disjoint. According to 
Lemma 3 one can find u = ut* whose inverse image consists of 2 intersecting u-level arcs in the branch region B. 

is not intersected by i-arcs so that the region bounded in part by a and a '  is a branch region B. 
Let D "= D ' r3  B and let "y be one of the boundary segments of D. "y cannot be intersected 
exactly once by all u-level arcs of the set { u = c] c > 0} which cover D. Because if all u-level arcs 
which intersect "t would be distinct, there would be an arc with maximum value u = M. One then 
could construct a circle A .= (z0, P) centered on u = M and choose its radius p small enough so 
that u < M everywhere along its boundary except in the intersection points with u = M. This 
leads to M = U(Zo) > faau(z) dz, contrary to the Theorem of the Mean for harmonic functions. 

We show that "y is intersected by a pair of u-level arcs, which intersect in a zero of f ' .  In case 
the segments of a and a '  which bound D do not have an interval of v-values in common, one 
may extend D along one of the arcs to include such an interval, since an r-arc is a path of 
steepest descent. The possible inclusion of branch points in this extension does not alter the main 
argumentation. It is also no restriction to assume that each point of the image D* of D in the 
w-plane cannot be taken more than twice in D. Taking into account that open sets are mapped 
onto open sets [8], under these assumptions the image D* has a structure as sketched in Fig. 2. 
On the basis of the Argument  Principle [1] it is seen that each point of the inverse image of the 
r e g i o n / 3 "  bounded in part by the segment P*P'* is taken twice in D. With respect to u-level 
arcs this implies that D is intersected by pairs of arcs which have the same u-value. We show 
that there is a limit point, i.e. not all pairs can be distinct. Each point on the segment P * P ' *  in 
the w-plane is taken once on a and on a'. Due to the continuity of each analytic branch of the 
inverse function z "=f-X(w) there is a value u 1 > 0 such that the subregion D~* of D* bounded 
by u = 0, u --- ul is mapped on 2 disjoint regions in D. By continuing the process ofpartitiom~ng 
D* by equally spaced rectilinears u = u2, . . ,  one must encounter a subregion Dj*~ of D*,  
bounded by u = 0 and u = uj+ 1 such that its inverse image does not map on disjoint regions in 
D. However, since b ~  does map on disjoint regions DJ 1) and D) 2), the boundary line u--uj  
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S u=ut 

odu=O)~ 

D'I 

j~ '(u=Ol 
u=u/, 

Fig. 3. The set of u-level arcs in D is sketched. The pair u = u I intersects orthogonally in a simple zero of f ' .  

maps on 2 distinct u-level arcs in D, unless u -- uj is the least upperbound of the boundary lines 
of the regions whose inverse images are disjoint. 

We proceed to construct the least uppe rboundby  means_ of the process of bisection and define 
u~" = ½(uj + uj+l) so that u = ul* divides El* := Dj* ~ D~1 into 2 regions E*I.z and E1".2. Let E~t 
be the subregion closest to the v-axis whose inverse images in D are not disjoint and define 
E2* "=E*  Let u = u ~  divide E2* into 2 regions of equal width, etc. The width of the 1,1" 
subdivisions Ek* thus obtained tends to 0, so that the sequence u~* . . . .  tends to the limit uT. The 
inverse images of u = ut* are 2 u-level arcs, with the property that they cannot be disjoint, 
because in this case one could find c > 0, such that the region bounded by u = u~* and 
u = up + c projects onto two disjoint regions, contrary to the assumption that each region c b *  
to the fight of u = up does not map onto disjoint regions. Consequently, the inverse images of 
u = u 7 are 2 intersecting u-level arcs, whose intersection point z 0 is a zero of f ' .  Earlier 
investigation of the structure at a zero of f '  (see Section 1) accounts for the configuration 
sketched in Fig. 3. We have proven: 

L e m m a  3. I f  2 r-arcs intersect a region, whose image is contained in the upper (lower) half  plane, then 
the branch region bounded in part by these arcs contains at least one zero o f f ' .  

Since Lemma 3 holds for i-arcs as well, one may more formally state 

Corollary 1. A zero o f f '  is located in the intersection D "= D 1 ¢3 D2, where D k : =  L,I ( Oj. k I k = 1, 2; 
Dj, k := D~k ~ B }. Dj, k is any region, whose image is contained in one halfplane, which is intersected 
by at least 2 r-arcs (k  = 1) or i-arcs (k = 2) which bound B. 

In Figs. 8 and 9 of Appendix C a sketch is made of the location of the critical points, which in 
these examples are simple zeros of f ' .  Therefore they are found as the intersection points of one 
u-level and one v-level arc. These levels arcs intersect the converging i-arcs respectively r-arcs 
orthogonally. Due to the continued interest in the location of the critical points, e.g. see Marden 
[7], this result is of broader interest. 

It was mentioned in the introduction that a step-over to the other halfplane as shown by a 
third quadrant at the new tracepoint, induces reduction of the tracing triangle. We want to 
investigate now if the traced pathway could be affected by an unnoticed intersection with arcs of 
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the other kind. This means that we study the structure on the macrolevel, with the assumption 
that the sides of the triangle for an r-arc are intersected an even number  of times by i-arcs. We 
prove: 

Lemma 4. An unnoticed intersection of a tracing triangle of an r-arc a by i-arcs does not affect the 
traced pathway. 

Proof. Let T be the first triangle of the traced pathway of an r-arc a which is intersected by 
i-arcs and let its base b be the side where a enters. By virtue of the definition of T only its 
remaining sides can be intersected by i-arcs. Let T* be the next tracing triangle as defined by 
the exiting r-arc and let S := T t.) T*.  In general there will be just one i-arc/3 whose intersection 
with T is unnoticed and 13 will intersect a in a zero of f ,  as shown in Fig. 4. The 'main  
algorithm' discovers at V3* a quadrant different from those at V 1 and V 2, so that bisecting is 
undertaken (Step 4). It is likely that an 'inconsistency' is found (Step 4a), since at 1/2" a quadrant  
qx or q2 is expected. Backstepping combined with bisecting will eventually lead to the isolation 
of the zero. The situation as sketched in Fig. 4 must hold if all u-level arcs in S are distinct. 
Since a is one of them, a intersects/3, due to the orthogonality of the two kinds of level arcs. 

We therefore consider the case that not all u-level arcs in S have distinct values. Since/3 is an 
arc of descent, the u-level arcs which intersect/3 do have distinct values. Therefore there must be 
at least one pair of arcs which intersects in a zero z0 of f ' .  The set s:{ U(Zo) } of intersecting 
u-level arcs divides the region into sectors in which either u > U(Zo) or u < U(Zo). Suppose 
U(Zo) > 0. Then a is located in a sector in which u < U(Zo). This implies that z 0 is located in the 

Va(ql) 

-*T 
b 

V2(q V3(q 0 

~x~x / i  I" 

\ i 
'v 

V~(q4) 

Fig. 4. The traced r-arc a caters T at its base b. The intersection with i-arc f l  is not detected in V a because /~ 
intersects one side of T twice. I f  the level arcs of both kinds in T are distinct, a intersects f l  due to the orthogonadity 
of the 2 kinds of arcs. The Main Algor i thm finds an inconsistency at V2* but proceeds (Step 4a, Appendix A)  towards 
the isolation of zero z 1. 
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U1(ql)' 

Fig. 5. In the presence of a critical point z o in the branch region bounded in part by a and fl the position of the arcs 
can be described relative to the structure generated by z o. The case is sketched that T is intersected (unnoticedly) by 
ares fl and fl ' .  In the next step a third quadrant is found at V3*. The Main Algorithm eventually isolates z 1. 

branch region in part bounded by a and ft. At the same time this sector cannot be intersected by 
fl since we study the case that the arcs do not intersect. With just one arc fl which intersects T, in 
the next step fl is 'bypassed', which means that this intersection does not affect the traced 
pathway. Suppose now that there is another arc fl' which intersects T. Then, if z 0 is the only 
critical point in the branch region specified by the 3 arcs and if it is a simple zero of f ' ,  a must 
intersect fl', since there are only 2 sectors in which an i-arc can be located. Consequently, fl is 
intersected by a ' ,  the counterpart of a with respect to z o. This case is shown in Figs. 5 and 6. At 
z o one may write f ( z )  =f (zo )  + (z - z)2h(z) (h(zo) ~ 0) from which it follows that the 4 arcs 
form approximately a mutually orthogonal set of orthogonal hyperbolas: (x - x 0) 2 _ (y  _ Y0) 2 
= c cos "t respectively 2 ( x - x o ) ( y - y o ) = c  sin "t (c a real constant). In both cases a third 
quadrant is found at V3* and the 'main algorithm' takes proper action. In Fig. 5 'inconsistency' 
is found at bisecting, so that the previous triangle base b is bisected and eventually z 1 is isolated. 
In Fig. 6 the case is sketched that T is intersected by the other r-arc a' which belongs to the 
structure generated by z 0. In this case a 'step-over' takes place and the neighboring zero z 2 is 
isolated by the algorithm. 

Finally, if a does not intersect either of the i-arcs, then z 0 is either a multiple zero of f '  or 
there is another critical point in the branch region defined by this set of arcs. If in this case the 
side of continuation is intersected by fl then the unnoticed intersection is discovered in the next 
step and on the basis of the bisecting feature the algorithm will yield a tracing triangle for a 
which is not intersected by i-arcs. The branch region bounded by the arcs must then have at least 
order 3. This case can be studied in Fig. 9 of Appendix C. We have thus analyzed the structure 
on the macrolevel. [] 

The result can be expressed as follows. 
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Vz(qz )  - " 

;k 

V 3 ( q 4 )  
../, 

/ 
/ 

/ 
/ 

/ 
/ 

j - . - T  ~ 
I 

I 

V V3(qz)  

t~ 

Fig. 6. In a slightly different orientation of T relative to the structure, T is intersected by a second r-arc a', which 
leads to a step-over to this arc and the isolation of zero z2. 

Corollary 2. Each terminated pathway of  traced r-arcs (i-arcs) is contained in one open halfplane, 
except perhaps for an incidental and inconsequential intersection with an i-arc. 

The last in termediate  result is the following: 

Lemma 5. Two pathways S l and S 2 of  traced r-arcs can intersect only once. 

Proof.  The proof  is given by contradict ion.  S u p p o s e  that  there are two distinct sites of 
intersection, 121 and 122. According to Corollary 2, the images of Sx and S 2 can be considered to 
be conta ined in one halfplane. The  distinctness of the regions 12 t and  122 implies that there are 
segments a x and a2 on the respective traced arcs which are covered by just  one pathway.  Since 
I2x and 122 are distinct regions, being the intersection of pairs of distinct tracing triangles, it 
follows f rom L e m m a  3 that each- -poss ib ly  after ex tens ion- -con ta ins  a zero of f ' ,  z7 respec- 
tively z~'. One may  then consider the closed curve 7 which outside I2~ and ~22 coincides with the 
distinct arcs a I and a 2 and inside 121 and 122 with the level arcs v 1 = v ( z T )  respectively 
v 2 = v(z~) ,  which intersect ax and a2 orthogonally.  We apply to V a theorem named  after 
R iemann  [50, p. 156]. 

u d v =  u - -  d x +  d y =  + d x d y  ax Iay } ] 

= f f li'l dxdy>O. 
In the derivation Green 's  theorem has been applied. G is the region enclosed by 7. However,  7 
consists of the arcs a 1 and ~2 along which u vanishes, and the level arcs o x and v 2 along which 
d 0 vanishes. Therefore iv u d v = 0, which can only be true if f is constant .  [] 
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We are now prepared to prove that if the terminal pathways are distinct, the structure has 
been completely traced, Distinctness of the terminal r-pathways can be verified by establishing 
the sector in which they are located, as defined by the converging i-arcs at each zero (see Step I 
of the Completeness Algorithm, Appendix B). 

Theorem 1. The tracing of the zero curve structure is complete if and only if the tracing, as verified at 
the isolated roots, is complete. 

Proof. Since for the polynomial the number of r-arcs intersecting the boundary of the root 
enclosing disk C is known in advance, completeness of the tracing as expressed by distinctness of 
the terminal pathways, implies completeness of the traced structure. For the general function one 
should in addition verify that all terminal arcs at each zero have been traced. The necessity of the 
condition is self-evident. We prove the sufficiency relative to the traced r-arcs, and notice on the 
basis of Corollary 2 that only one branch region B needs to be considered. The proposition 
implies that there is a site of step-over 121. Let $1 and $2 be the corresponding traced pathways, 
so that 121 := $1 f~ $2 ~ J .  It is no restriction to assume that the pathways of traced r-arcs 
entering 121 are all disjoint, because otherwise one can follow from 121 a pair of coinciding 
pathways in upward direction (increasing I v l -values) until an earlier incident of a step-over. Of 
course, such backstepping terminates, since I vl attains its maximal value at the boundary and 
each arc is initially singly traced. Due to the supposed step-over of one of the entering pathways 
at 121, at least one descending arc 131, emanating from 121, is not traced. If 131 terminates at a root, 
the proposition is proven. We thus suppose that 131 enters a different site 122 of intersecting 
pathways. If the entering pathways are disjoint, there is at least one exiting arc at 122 which is not 
traced, since /31 is an entering arc for 122. We therefore suppose that some of the entering 
pathways at 122 trace the same arc, so that it may happen that as a result of a step-over at 122 all 
exiting arcs are traced. We again follow a pair of coinciding pathways upwards until the site 123 
is reached where the entering arcs are singly traced. It is noticed that 121 n I23 = ~, since a closed 
configuration of pathways and traced arcs cannot occur (Lemma 5). The number of distinct 
regions 121, 122 . . . .  is finite, since it cannot exceed the number of zeros of f ' .  Therefore the 
argument can only be repeated a finite number of times, so that there must be a descending arc 
132 which is not traced and whose right endpoint is a zero of f. [] 

3. The completeness algorithm 

The algorithm Separate-Paths (Appendix B) starts with investigation of the completeness. 
Under the completeness option Steps 5a and 7 of the Main Algorithm (Appendix A) are 
executed. The high-order iteration procedure 

Zn+l=Z~+Ok(Zn), k - - 2 , 3 , . . ,  w i t h , l , k ( z ) = ( k - 1 )  ( f ' / f ) t k -2 )  (1) 
( f , / f ) t k -1 )  

(Pomentale [9]) appeared most appropriate for our purposes. Its order of convergence k is 
independent of the multiplicity of the zero, which is important in view of the applicability of the 
Main Algorithm to functions which have multiple zeros. Since the algorithm may most fre- 
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quently be applied to the polynomial, another important consideration for this choice was 
Pomentale's contention that in this case (1) is most efficient for k = 4 if n > 4. Neither property 
holds for the more popular Laguerre iteration function. 

In the next step the orientation 3' of the zero curve configuration at zero p is defined by 
- a r g ( f ~ " ) ( p ) ) / m ,  where m is the multiplicity of p. This choice for 7 is consistent with the 
expression for the angles of the tangent lines at p, derived by Klip [6], { ~ ( k ) =  - e t + k ~ r /  
2 m l k  = 0 . . . . .  4m - 1; f =  (z - p )"h(z ) ;  ct = arg (h (p ) ) /m} ,  so that 3' = - a .  The angles of the 
entering r-pathways are defined by associating these pathways with the sectors in which the 
converging i-arcs divide the region at p (Step I of Completeness Algorithm, Appendix B). 
According to Theorem 1, if at each zero the pathways terminate in distinct sectors, completeness 
of the tracing occurred (Step II, Appendix B). Otherwise pairs of arcs with coinciding terminal 
pathways are simultaneously retraced. The algorithm rapidly identifies the site of intersection 
and locates a pair of triangles of each pathway to which the following lemma applies. 

Lemma 6. Let T1, i respectively T2j be tracing triangles for arcs a 1 and a 2 and let 11 and 12 be the 
corresponding intervals of I v I-values. I f  T1. i A T2, j = B and 11 A 12 ~ ~, then the partial pathways 
S1 i j = E,_aT2,k distinct arcs. = ~,k=lTl ,k ,  S 2 cover  

Proof. If the contention is false, then S~ and $2 partially cover the same arc, say a I. This is also 
true for the last triangles TLi, T2j in each chain, since pathways S~ and $2 can intersect only 
once (Lemma 5). Since 7"1. i ~ TIj  = B, distinct segments of a 1 are covered and since I v [-values 
strictly decrease, 11 ~ 12 = B, contrary to the assumption. [] 

By means of the process of bisection and advancing with the smaller triangle size, while 
calculating the new I v I-interval, one generates a sequence of subtriangles T(s), T2 (s~, to which 
Lemma 6 can be applied. The last pair of large triangles TLi, T2, j is advanced according to the 
location of the new tracepoint of each T ~) sequence. There are 2 possibilities. The bisection 
procedure may lead to a triangle size which satisfies the condition for break-off. This implies that 
high-order iteration to the approached zero z 0 of f '  is expected to be successful. From the 
orientation of the structure of g(z)  "=f(z)  - iV(Zo) at z 0 the direction of continuation of the 
r-arcs beyond z 0 can be derived. Subsequently a choice of continuation for one of the pathways 
is made. The other possibility is that the advancing process with smaller stepsize, which of course 
induces a reorientation of one of the large triangle chains, leads to separation of these chains. 
The administration process is effectively achieved by means of Klip [5]. Details will be provided 
elsewhere. 
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Appendix A 

Procedure: Zero Isolat ion--Main Algorithm 

Step 1: initialization: 

isolate 4n intersection points of branches 
with C by calculating quadrant  of f at 
division points I, Vj. 

Step 2: next arc (or next r-arc if only r-arcs 
are traced) is defined by start points Wj, 

Wj+l- 

Step 3: iterative tracing process: construct 
equilateral triangle 1/1, V 2, V 3. Continuation is 
simply achieved by reflection. 

Step 4: since a different quadrant  is found, 
triangle base V1V 2 is bisected 

for polynomial P of degree n calculate 
rootbound R; disk C ' =  (0, R); 
for j =  1 to 4n do; find ~ aC such that 
{qjl qj = quadr(f(Wj))} satisfy qj+l - qj = 1 
(mod 4); end; 

next-arc: 
for j = 1 to 4n by 1 (or by 2) do; V 1 .'-- I, Vi; 

V2 :--~ Wj+I; ql := qj; q2 :---- qj+l; 

next-tri: 
V 3 = ei~'/3V1 + e-i~/3V2; goto calc; 

reflect: 
if q3 = q2 then V 3 :-- V 3 + V 1 - V2; 
if q 3 = q l  then V 3 : = V  3+  V 2 - V 1 ;  

calc: 
qa '= quadr ( f (  V 3)); 
if q3 = ql or qa = q2 then goto reflect; 

bisect: 
V m "= (V 1 + V2)/2; q,. "-- quadr(f(V, .)) ;  
if q,, ,--qt then V1 "= V,,,; if qm = q2 then 
v2= Vm; 
if qm--ql  or qm=q2  then goto check- 
break-off; 
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Step 4a: an unnoticed intersection with 
arcs of the other kind has occurred. Pick up 
vertices of previous triangle and bisect. 
Check on given break-off criterion. 

Step 5: terminate tracing. Approximation V 
to zero is center of triangle prior to bisecting. 

Step 5a: (optional) terminal point V, (for 
r-arc) is found from last triangle base. 

Step 6: approximations are separated into 
sets of approximations to same zero on the 
basis of 'closeness': I(ri - 5)/rj  [ ~< 1/48 and 
'remoteness': [(r i - 5 ) / 5 [  > 3/4& 

Step 7: (optional) refine zero(j) to desired 
accuracy by applying Pomentale's high-order 
iteration function. 

Step 8." (optional) under graph option certain 
trace points are plotted. 

(Outline of Main Algorithm) 

inconsistency: 
Vj := Prev(Vj) ( j  = 1 to 3); 
goto bisect; 

check-break-off: 
if 1111112 [ > c then goto next-tri; 

approx: 
V/:-- Prev(Vj) ( j  = 1 to 3); 
V:= (Vl' + V:'+ Va')/3; 

term-point: 
v, = 0 .5*(  vl + vz); 
if [Re(f(V,)) / Im(f(V,))[  > c then do; 
V 1 :-- V,; if quadr ( f ( V , ) ) =  q2 then V: := 
v,; 
goto term-point; end; 
end next-arc; 

analyze-results: 
form {S j IJ  = 1 to t}; 
Sj := (Approx(zero(j))) ; 
zero(j) := mean( Sj } 

refine: for j = 1 to t do; 
call POMENT(P, zero(j)); find multiplic- 
ity m j; end; 

graph: 
call DISPLAY; 

end ZERO-ISOLATION; 

Appendix B 

Procedure: Separate-Paths-- Completeness Algorithm 

Step 1. Administration of pathways. Steps 5a 
and 7 of Main Algorithm have to be ex- 
ecuted. For each isolated zero 5 find orienta- 
tion 3' of set of i-arcs. For the # terminal 
points V, of r-arcs { a} find sector number s 
by calculating vector 5V~. Orientation 3' and 
set of arcs {a} with sector number s are 
registered for zero 5- 

p : 1--ij_ l (Z  _ Q)mj; 
(Subscript j is omitted in Steps I and 11) 

for j = 1 to t do; 3' = - a r g  (P(" ) ( r ) ) /m;  
for k =  l to # do; 
fl = arg(7-V,) - y; s k -- f l /(~r/m); end; 
create file(r, y, (a,  s}); end; 
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Step 1I. Check on completeness is iteratively 
executed (see return from Step IV. termin-1). 
In case of completeness both conditions m - 
2# and S k i s  , ,  ( k * k ' ;  k, k ' ~ { 1 , . . . , # } )  
hold at each zero. 

check-compl: for j = 1 to t do; 
f o r k = l  t o # - l d o ; f o r k ' = k + l t o #  
do; 
if s k = s k, then goto separation; end; 
end; end; 

call EXIT; 

Step III.  Separation of  pathways. By simul- 
taneously tracing a~ and a 2 relative to I vl 
values one encounters triangles T1, ~, T2, j which 
are disjoint, while intervals of v-values do 
intersect. Intervals are determined by calcu- 
lating intersection points of arcs ax and a 2 
with T 1 and T 2. Subtracing is performed such 
that subtriangles are disjoint. For each gener- 
ated subtriangle the I v l value of traced arc at 
exit is generated. Advance large triangle or 
modify pathway. 

separation: 

I k : =  I v(ak.¢ntr) I > I v(ak) I > IV(ak,exit) l 
(k - -  1, 2); 
Tl.in T2,i =~;  I1 n I 2  ~:,~; 

rename: 
El :=  El,i; T 2 := T2j; 
V 1 :~-- V(al,¢xit);  V2 :=  V(a2,©xit); 

init-subdiv: 
T~ ") := T k (k = 1, 2); 

iter-separ: 
if T(") C3 T~ ") ~: ~J then do; 
call BISECT(T("), T~ '), Iv1 I, lYE I); 
goto check-termin; end; 
k = l ;  if Ivll < Iv21 then k = 2 ;  
ADVANCE (T~')); 

check-tri: 
z k := akxxit; if z k ~ T k then 
goto iter-separ; T k := ADVANCE(Tk); 
if z k q~ T k then 

modify: T k := ADJACENT(Tk, Zk); 

Step IV. Termination. Calculate distance be- 
tween tracepoints. Subtrating is continued if 
large triangles are not disjoint. 

Continue tracing arc whose pathway was 
modified, according to Main Algorithm. 

Isolate branch point b by high-order iteration 
applied to derivative P' .  At b the attributes 
listed in Step I, which define structure, have 
to be calculated for Pb := P -- iv(b). 

(Outline of Completeness Algorithm) 

check-terrain: 
Z k :=  Otk,exit ( k  = 1, 2); 
if I zl - z 21 ~< c then goto termin-2; 
if T 1 A T 2 4= ~ then goto iter-separ; else 

terrain-1: 
do; k = 1; if MODIF(T2) then k ffi 2; 
call CONTINUE(Tk); goto check-compl; 
end; 

termin-2 : 
b := zl; call POMENT(P' ,  b); 
create file(b, V, {a, Sk}); 
register s k (exit) (k = 1, 2); 
goto termin-1; 

end SEPARATE-PATHS; 
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Fig.  8. T h e  s tructure  o f  the  per turbed  ' W i l k i n s o n ' s  p o l y n o m i a l '  P = 1 0 - T z  19 20 + l - - l i _ z ( z -  i) .  In  each  h a l f p l a n e  there  
o c c u r s  a branch  p o i n t  o f  r-arcs,  ind i ca ted  ( b y  h a n d )  by  O .  T w o  branch  reg ions  o f  order  3 ( in  e a c h  ha l fp lane)  are  
d i s ce rned ,  ind ica ted  b y  I and  II.  O n  the bas i s  o f  C o r o l l a r y  1 the  a p p r o x i m a t e  l oca t i on  of  the zeros  o f  f" in I a n d  II  is 

s k e t c h e d .  T h e  r e m a i n i n g  z e r o s  o f  f '  are branch  po in t s .  
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Fig. 9. The structure of a ninth degree complex polynomial  P = ( z - 1 ) 3 ( z  2 + l ) ( z  z + 5 + 5 i )  z. There are 2 branch 
region of order 2, indicated by  I and II. This is an example in which the tracing is ' incomplete ' .  The arc indicated by  

leading to z = i has not  been traced. This is complemented by  a doubly traced arc to z --1. In the third branch 
region, which has order  3, the 2 zeros of f '  have been sketched. 


