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We have obtained the exact asymptotics of the determinant
det1�r,s�L

[(r+s−2
r−1

) + exp(iθ)δr,s
]
. Inverse symbolic computing

methods were used to obtain exact analytical expressions for
all terms up to relative order L−14 to the leading term. This
determinant is known to give weighted enumerations of cyclically
symmetric plane partitions, weighted enumerations of certain
families of vicious walkers and it has been conjectured to be
proportional to the one point function of the O(1) loop model
on a cylinder of circumference L. We apply our result to the
loop model and give exact expressions for the asymptotics of
the average of the number of loops surrounding a point and the
fluctuation in this number. For the related bond percolation model
at the critical point, we give exact expressions for the asymptotics
of the probability that a point is on a cluster that wraps around
a cylinder of even circumference and the probability that a point
is on a cluster spanning a cylinder of odd circumference.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

The binomial determinant

det
1�r,s�L

[(
r + s − 2

r − 1

)
+ exp(iθ)δr,s

]
(1)

gives a weighted enumeration of certain types of nonintersecting lattice paths and cyclically symmet-
rical plane partitions [8]. Consider a family of nonintersecting lattice paths on an L × L square lattice
subjected to the constraints:
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Fig. 1. A typical configuration of nonintersecting lattice paths enumerated by the determinant in (1) for L = 4. Paths starting
at Ai have to end at Ei .

Fig. 2. The two vertices of the dense O(1) loop model.

1. Paths are allowed to move one step to the right or downward.
2. Paths are required to start from a point (0,k) with 0 � k � L − 1.
3. A path starting at (0,k) is required to end at the point (k,0).

See Fig. 1 for an example. The determinant (1) gives a weighted enumeration of all possible lattice
paths satisfying the above constraints, where a configuration containing s paths is given a weight of
exp[iθ(L − s)].

Families of lattice paths of this type are in bijection with cyclically symmetrical plane partitions
[8,9]. A plane partition of an integer N is an array of nonnegative integers n j,k , such that n j+1,k � n j,k ,
n j,k+1 � n j,k and N = ∑∞

j=1
∑∞

k=1 n j,k . Plane partitions can be represented by a pile of unit cubes

by introducing x, y, z coordinates in Z
3 and placing at position ( j,k,0) a stack of n j,k unit cubes.

A cyclically symmetric plane partition is a plane partition whose representation as a pile of cubes is
symmetric under a cyclic permutation of the x, y, z coordinates. The bijection maps lattice paths of
the above type to cyclically symmetric plane partitions that fit in an L × L × L box. Families of lattice
paths containing n paths are mapped to cyclically symmetric plane partitions with n cubes on the
main diagonal.

The determinant (1) has been evaluated exactly for the cases θ a multiple of π/3 [3,8,13]. For
general θ , an approximate asymptotic expansion was obtained by Mitra and Nienhuis [19]. They nu-
merically studied the dense O (1) loop model [7] on a cylinder. The dense O (1) loop model on square
lattices can be defined as follows. At each vertex, the four edges meeting there are connected with
equal probability in either of the two ways shown in Fig. 2. The set of edges connected to each other
will then form closed loops with probability 1. In Fig. 3 part of a typical example of a loop con-
figuration is shown on a 6 × ∞ lattice. Here we have imposed periodic boundary conditions in the
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Fig. 3. Part of a typical configuration of the O(1) loop model on a 6 × ∞ cylinder, periodic in the horizontal direction and
extending to infinity in both vertical directions.

horizontal direction which gives the lattice the topology of a cylinder with a circumference of 6. If
the circumference is chosen to be odd, then there will be “loop” spanning the entire length of the
cylinder.

Mitra and Nienhuis conjectured an exact formula for the probability P (L,m) that a point on a
cylinder with circumference L is surrounded by m loops [18]. From that conjecture they were able to
relate the generating function for the probability distribution to the determinant (1) [19]. Defining

φ(L, θ) ≡
L/2∑

m=0

P (L,m)2m cosm(θ) (2)

and

D(L, θ) ≡ exp(−iθ L/2) det
1�r,s�L

[(
r + s − 2

r − 1

)
+ exp(iθ)δr,s

]
, (3)

the conjecture is

Conjecture 1.

φ(L, θ) = D(L, θ)

AHT(L)2
if L is even,

φ(L, θ) = 1

2 cos( θ
2 )

D(L, θ)

AHT(L)2
if L is odd. (4)

Here AHT(L) is the number of L × L half-turn symmetric alternating sign matrices [15,22,23]:

AHT(L) = 2

L
2 −1∏ 3(k − 1)!k!(3k − 1)!(3k + 2)!

4(2k − 1)!2(2k + 1)!2 if L is even,

k=1
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AHT(L) =
L−1

2∏
j=1

4 j!2(3 j)!2
3(2 j)!4 if L is odd. (5)

We note that the function D(L, θ) defined in Eq. (3) is an even function of θ . This follows from a
symmetry property of the coefficients of the characteristic polynomial of the Pascal matrix. If we put

det
1�r,s�L

[(
r + s − 2

r − 1

)
− xδr,s

]
=

L∑
k=0

ckxk, (6)

then cL/2+k = (−1)2kcL/2−k , see [17]. For reference later on in this paper, we note that the total num-
ber of n × n alternating sign matrices, A(n), is given by [14,24]

A(n) =
n−1∏
k=0

(3k + 1)!
(k + n)! . (7)

The asymptotic behavior of correlations in the O(1) loop model can be calculated using nonrigor-
ous Coulomb gas techniques, see [10,20,21]. As shown in [19], this leads to the following conjecture.

Conjecture 2.

φ(L, θ) =
∞∑

n=−∞
Cn(L, θ)L−3(θ+2nπ)2/(4π2)+1/12, (8)

where the functions Cn(L, θ), which are not the same for odd and even L, have an asymptotic expansion in
powers of 1/L, such that the term proportional to 1/L vanishes.

Conjectures 1 and 2 imply for −π < θ < π :

D(L, θ) = A(θ)

(
3
√

3

4

)L2

L7/36−3θ2/(4π2)

[
1 + O

(
1

Lmin[2,3(1−|θ |/π)]

)]
. (9)

In Ref. [19], the amplitude A(θ) was evaluated numerically. It was observed that:

Conjecture 3. The amplitude A(θ) in the expansion of D(L, θ) is the same function for odd and even L.

Exact values for A(θ) were obtained for the cases θ a multiple of π/3 using the known exact
evaluations of D(L, θ).

The results of this paper were obtained by making two additional assumptions.

Assumption 1. The functions Cn(L, θ) in (8) are analytic in θ .

This was also mentioned in [19]. This assumption, combined with the periodicity of φ(L, θ) implies
that the Cn(L, θ) are analytic continuations of each other

Cn(L, θ) = C0(L, θ + 2πn). (10)

Another assumption we make is

Assumption 2. The asymptotic expansion of C0(L, θ) in powers of 1/L contains only even powers
of 1/L.

This is supported by the known exact evaluations of D(L, θ) for θ a multiple of π/3 and by
numerical computations which we discuss in the next section.
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Table 1
Values for D(θ) for θ a multiple of π/3. The expres-
sions for A(L) and AHT(L) are given in (7) and (5)

θ D(L, θ)

Even L Odd L

0 AHT(2L)
A(L)

AHT(2L)
A(L)

π/3 AHT(L)2
√

3AHT(L)2

2π/3 A(L) A(L)

π A( L
2 )4 0

Using Conjectures 1 and 2 and Assumptions 1 and 2, we were able to generate very accurate
numerical data for the terms in the asymptotic expansion of C0(L, θ). This allowed us to guess the
exact expressions in the asymptotic expansion up to relative order L−14 to the leading term. The
asymptotic expression for D(L, θ) is given for both even and odd L by

D(L, θ) =
∞∑

n=−∞
(−1)nL f (L, θ + 2πn), (11)

where

f (L, θ) =
(

2

3

) 1
12

exp
(−5ζ ′(−1)

)(3
√

3

4

)L2

L
7

36 − 3θ2

4π2 G

(
1 + θ

2π

)
G

(
1 − θ

2π

)

× G

(
4

3
+ θ

2π

)
G

(
4

3
− θ

2π

)
G

(
2

3
+ θ

2π

)
G

(
2

3
− θ

2π

)
exp

( ∞∑
k=1

R2k(θ)

L2k

)
. (12)

Here G(z) is the Barnes G-function [1,2,4–6], and the R2k(θ) are polynomials of degree 2k + 2. For
k = 1, . . . ,7 they are given by Eq. (41) in Section 3. For odd L this formula is implied by the validity
of this formula for even L and Conjecture 3.

In the remainder of this paper we will discuss in detail how the above expression was obtained. In
Section 2 we explain how we obtained the numerical data for the terms in the asymptotic expansion.
In Section 3 we discuss guessing exact expressions from the numerical data and how that led to our
result. In Section 4 we apply the obtained asymptotic expansion to the loop model and compute the
asymptotics for a number of correlations in this model.

2. Generating high precision numerical data

For convenience, we will first only consider the case of even L. We will return to the case of odd L
later on in this paper. From (4), (8), and (1) it follows that

D(L, θ)

A2
HT(L)

L3θ2/(4π2)−1/12 =
∞∑

n=−∞

∞∑
k=0

Ak(θ + 2πn)L−3n2−3nθ/π−k, (13)

where the Ak(θ) are even functions of θ . To compute these functions, we generated the characteristic
polynomial of the Pascal matrix up to L = 200, which took a few days on an ordinary PC. Using these
polynomials we could quickly evaluate the left-hand side of the above expression. This allowed us to
extract the Ak(θ) and their first few derivatives.

Let us first see what we can conclude from the exact expressions for D(L, θ = n π
3 ), see Table 1.

We can expand these expressions in powers of 1/L by rewriting the product of factorials in terms
of Barnes G-functions [1,2,4–6] and using the asymptotic expansion of the Barnes G-function, see e.g.
Ref. [19] for an efficient method to do this. We note that the asymptotic expansion of the Barnes G-
function given in some papers contains a sign error, in particular in Refs. [2,19]. The correct expansion
is
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log
[
G(z + 1)

] = z2
(

1

2
log(z) − 3

4

)
+ 1

2
log(2π)z − 1

12
log(z) + ζ ′(−1)

+
∞∑

k=1

B2k+2

4k(k + 1)z2k
. (14)

Here the Bk are the Bernoulli numbers, and ζ ′(z) is the derivative of the zeta function. This can be
derived using the methods presented in [2]. A simple sign error leading to an incorrect minus sign in
front of the summation over k was made in that article.

It turns out that the asymptotic expansions of the expressions in Table 1 contain only even powers
of 1/L:

φ(L,0) = 31/12

25/36
exp

(−ζ ′(−1)
)[

1 + 127

5184L2
− 2041055

53747712L4
+ 107538127903

835884417024L6

− 13294838545991999

17332899271409664L8
+ 645434518069131955571

89853749822987698176L10

− 272944577297197688875376083

2794811034494209364066304L12

+ 26385460676926169502575757887765

14488300402817981343319719936L14
+ · · ·

]
,

φ

(
L,

π

3

)
= 1,

φ

(
L,

2π

3

)
= 231/36

35/12

π

�(1/3)2
exp

(−ζ ′(−1)
)[

1 + 7

576L2
− 23983

663552L4
+ 16317695

127401984L6

− 225307455655

293534171136L8
+ 1215802858094435

169075682574336L10

− 19038476800109154745

194775186325635072L12
+ 204450994938396835527815

112190507323565801472L14
+ · · ·

]
,

φ(L,π) = 28/3

3

π2

�(1/3)4

[
1 − 8

81L2
+ 464

6561L4
− 228352

1594323L6
+ 77553152

129140163L8

− 45379702784

10460353203L10
+ 122234658136064

2541865828329L12
− 156017791843041280

205891132094649L14
+ · · ·

]
. (15)

The absence of odd powers of 1/L suggests that for general θ , Ak(θ) = 0 for odd k. Our numerical
results are consistent with this (the fact that A1(θ) = 0 is a Coulomb gas prediction). From (13) we
see that the A2k(θ +2πn) will also give rise to odd powers of 1/L when θ = 0 or θ = 2π/3 for odd n:

A2k
[
2π(2n + 1)

] = 0,

A2k

[
2π

3
+ 2π(2n + 1)

]
= 0. (16)

From the leading terms of the above expansions we can read-off A0(
π
3 p) for p = 0,1,2,3. Note

that A0(π) is half the leading term of φ(L,π) because n = 0 and n = −1 contribute equally to the
summation in (13) when θ = π . We can read-off some more Ak(

π
3 p) for k > 0, but it is not possible

to find more special cases of the form A0(
π
3 p + 2πn) due to mixing with the Ak(

π
3 p). To calculate

these values, we must lift the degeneracy between these terms, which can be done by considering
the derivatives of (13) w.r.t. θ .

Our strategy to find A0(θ) was as follows:

1. Using (derivatives of) Eq. (13) obtain accurate fits for special values of A0(θ) and its derivatives.
2. Try to guess exact expressions for these approximate values.
3. Try to get information about the zeroes of A0(θ) from the fits.
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4. Assuming that A0(θ) is of finite order, any guess about the location of all the zeroes (and their
multiplicities) corresponds, by Hadamard’s factorization theorem [12], to a guess for A0(θ) up
to a factor exp(polynomial). Such a guess can be easily checked by evaluating summations over
the zeroes of the form

∑
n mn/(αn − α)p , where the αn are the zeroes of A0(θ), the mn the

multiplicities of the zeroes, and p is an integer larger than the order of A0(θ). Such summations
can be expressed in terms of the derivatives of A0(θ) at θ = α as follows. The contour integral∮

C(R)

A′
0(z)

A0(z)

dz

(z − α)p
, (17)

where C(R) is a circle with the origin as its center and radius R , will tend to zero for R → ∞ if
p is chosen larger than the order of A(θ). It then follows from the residue theorem that

∑
n

mn

(αn − α)p
= − 1

(p − 1)!
dp

dzp
log

[
A0(z)

]∣∣∣∣
z=α

. (18)

If, using either numerical or exact expressions for the derivatives of A0(θ), we verify the validity
of the above formula for some particular α and p, we can construct a candidate function for
A0(θ) and verify that it fits the data. Note that it is theoretically possible for the last test to fail.
E.g., it could be that p is not larger than the order of A0(θ) and the guess about the zeroes is
also wrong in such a way that (18) is satisfied by accident.

5. If 4 fails, we could try to apply some transformation to A0(θ), e.g., by subtracting some function
from it and consider the zeroes of the transformed function. Or we could abandon the attempt to
find the function from its zeroes altogether and do some sort of brute force search instead.

3. Finding exact expressions from numerical data

An important result we obtained was the derivative of A0(θ) at θ = π/3. The numerical value we
obtained by fitting the derivative of (13) was

A′
0

(
π

3

)
≈ −0.31250232645180558377609866618987578223847934983479 . . . . (19)

We conservatively estimated the accuracy of this number to be ∼30 digits. To get an idea what
the analytical expression of this number could possibly be like, let us consider the derivative of the
function φ(L, θ). It follows from (8) that the leading asymptotics of the derivative is

φ′
(

L,
π

3

)
∼ A′

0

(
π

3

)
− 1

2π
log(L). (20)

Now, for finite L the value φ′(L, π
3 ) is just an algebraic number. The fact that on the right-hand side

there is a logarithmic term in L strongly suggests that the “constant term” A′
0(

π
3 ) contains a term

proportional to Euler’s constant with the same amplitude as the coefficient in front of the log(L). If
we subtract this contribution of Euler’s constant from our fit to A′

0(
π
3 ) we get

A′
0

(
π

3

)
+ γ

2π
≈ −0.22063560015265159339645643211799769082485006927415 . . . . (21)

It is not so clear what this number is, but perhaps we should multiply it by π because the term
log(L) + γ appears with a factor 1/(2π):

π

[
A′

(
π

3

)
+ γ

2π

]
≈ −0.69314718055994530941723212145817656757963215693787 . . . .

This looks familiar:

− log(2) = −0.69314718055994530941723212145817656807550013436026 . . . . (22)
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So, we arrive at the following conjecture:

A′
0

(
π

3

)
= − γ

2π
− log(2)

π
. (23)

For general θ :

φ′(L, θ) ∼ A′
0(θ) − 3θ

2π2
A0(θ) log(L). (24)

And we thus expect that A′
0(θ)/A0(θ) contains a term −3θ/(2π2)γ . After subtracting this contribu-

tion we may not be able to recognize the remaining term as easily as in the case of θ = π/3. The
problem we need to solve is in general: We suspect that some number x which we know to limited
precision is a rational linear combination of some constants y1 . . . yn . We want to know if this is
true, in which case we want to find the linear combination. This type of problem can be solved using
so-called integer relation algorithms. We used the Lenstra–Lenstra–Lovász lattice reduction algorithm
(LLL algorithm) [16] for this purpose, implemented in Mathematica by the function LatticeReduce. In
Appendix A we give a brief description of this algorithm and explain how it can be used as an integer
relation algorithm.

Using the LLL algorithm were able to find more exact values for the logarithmic derivative of A0(θ),
such as

A′
0(

2π
3 )

A0(
2π
3 )

= −−2γ + 3 log(3)

2π
,

A′
0(π)

A0(π)
= −−3γ − 6 log(2) + 3 log(3)

2π
. (25)

The pattern of zeroes was not very clear at this stage. Fitting to the second derivative of (13) at θ = 0
yielded very small coefficients for the log(L)2L−p terms, consistent with these terms being exactly
zero. This suggests that there are zeroes at 2πn for n 	= 0. Fitting to the first and second derivative of
(13) at θ = 2π/3 yielded very small coefficients for the log(L)L−p and log(L)2L−p terms, respectively.
This then suggests additional zeroes at 2πn ± 2π/3. Note that for odd n this coincides with (16).

As we can see from (15), the Ak(θ) rapidly diverge as a function of k. This makes it difficult to
extract accurate values for A0(θ) for θ � 3π . We could only verify that the derivatives at 2π , 4π/3
and 8π/3 were nonzero. Clearly it is not possible for all the zeroes to be simple zeroes because then
A0(θ) would have to be a trigonometric function up to a polynomial factor, which is inconsistent
with the results we found so far. E.g. A0(θ) cannot be a product of functions like �(a + bθ)�(a − bθ).
A product of functions of the form �(a + bθ2) is consistent with the derivatives we found, but is not
consistent with the equal spacing of the zeroes. A product of Barnes G-functions is a more plausible
possibility, however, then the multiplicities of the zeroes must increase linearly, but that is not what
we see at the first few zeroes.

We proceeded with attempting to find expressions for higher derivatives. The presence of Euler’s
constant in the first logarithmic derivative suggests that in higher (logarithmic) derivatives we can
expect to find polygamma functions. Using the LLL algorithm we found

A′′
0(0)

A0(0)
= − 3

2π2
− 3γ

2π2
− 3 log(3)

2π2
+ ψ1(

1
3 )

6π2
− ψ1(

2
3 )

6π2
, (26)

where ψp(z) is the polygamma function of order p. If the order of A0(θ) is 2 or higher then we
need to consider higher derivatives to compute summations over the zeroes. If the order of A0(θ)

is less than 4, then
∑

n mn/α4
n is given by −4 times the coefficient of θ4 in the series expansion of

log[A0(θ)] around θ = 0.
After some trial and error we found using the LLL algorithm the expression:

1

4!
d4

dθ4
log

[
A0(θ)

]∣∣∣∣ = 1

576π4

[
ψ3

(
1

3

)
− ψ3

(
2

3

)]
− 27

32π4
ζ(3). (27)
θ=0
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We can reproduce this result if we assume that all the zeroes of A0(θ) are at 2πn and 2πn ± 2π/3
and have a multiplicity of |n|. The first three positive zeroes at 4π/3, 2π and 8π/3 then have a
multiplicity of 1 as we observed earlier. To see that this works, let us write the summation over the
zeroes as

∑
n

mn

α4
n

= 1

8π4

[ ∞∑
n=1

1

n3
+

∞∑
n=1

n

(n − 1
3 )4

+
∞∑

n=0

n

(n + 1
3 )4

]

= 1

8π4

[ ∞∑
n=1

1

n3
+

∞∑
n=1

1

(n − 1
3 )3

+
∞∑

n=0

1

(n + 1
3 )3

]

+ 1

24π4

[ ∞∑
n=1

1

(n − 1
3 )4

−
∞∑

n=0

1

(n + 1
3 )4

]
. (28)

We can simplify this expression further using

∞∑
n=1

1

n3
+

∞∑
n=1

1

(n − 1
3 )3

+
∞∑

n=0

1

(n + 1
3 )3

=
∞∑

n=1

1

( n
3 )3

= 27ζ(3), (29)

and the identity:

∞∑
n=0

1

(n + z)p
= (−1)p

(p − 1)!ψp−1(z), (30)

which allows us to write

∞∑
n=1

1

(n − 1
3 )4

=
∞∑

n=0

1

(n + 2
3 )4

= 1

6
ψ3

(
2

3

)
(31)

and

∞∑
n=0

1

(n + 1
3 )4

= 1

6
ψ3(

1

3
). (32)

These simplifications yield the expression:

∑
n

mn

α4
n

= 27

8π4
ζ(3) + 1

144π4

[
ψ3

(
2

3

)
− ψ3

(
1

3

)]
. (33)

We see from (27) that this is indeed the same as −4 times the coefficient of θ4 of log[A0(θ)].
The function G(1 + z) has zeroes at the negative integers z = −n with multiplicity n and is of

second order. The conjecture about the zeroes of A0(θ) and the assumption that the order of A0(θ)

is less than four is thus equivalent to the statement: There exist constants a and b such that

A0(θ) = exp
(
a + bθ2)G

(
1 + θ

2π

)
G

(
1 − θ

2π

)
G

(
4

3
+ θ

2π

)
G

(
4

3
− θ

2π

)

× G

(
2

3
+ θ

2π

)
G

(
2

3
− θ

2π

)
. (34)

We verified that this fits the data exactly. We found

A0(θ) = 211/3631/36π1/3 exp

(
−19

3
ζ ′(−1)

)
�

(
1

6

)− 2
3

G

(
1 + θ

2π

)
G

(
1 − θ

2π

)

× G

(
2

3
+ θ

2π

)
G

(
2

3
− θ

2π

)
G

(
4

3
+ θ

2π

)
G

(
4

3
− θ

2π

)
. (35)
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Next, we turned our attention to the A2k(θ). We found that the ratios A2k(θ)/A0(θ) appeared to
be polynomials of degree 4k. We observed that the summation over k in (13) can be simplified as
follows. If we define the polynomials Q 2k(θ) as

A0(θ)exp

[ ∞∑
k=0

Q 2k(θ)

L2k

]
≡

∞∑
k=0

A2k(θ)

L2k
, (36)

then Q 2k(θ) is of degree 2k + 2. Our results so far can be summarized as follows. For even L, the
function φ(L, θ) is given by an asymptotic expansion of the form:

φ(L, θ) =
∞∑

n=−∞
A0(L, θ + 2πn)L−3(θ+2nπ)2/(4π2)+1/12 exp

[ ∞∑
k=0

Q 2k(θ + 2πn)

L2k

]
. (37)

What about odd L? In Ref. [19] it was observed that the coefficient of the L−3θ2/(4π2)+1/12 term in

φ(L, θ) for odd L is Aodd
0 (θ) =

√
3

2 cos(θ/2)
A0(θ). An equation of the same form as (37) for odd L would

thus imply that there exist polynomials Q odd
2k (θ) such that

φ(L, θ) =
√

3

2 cos( θ
2 )

∞∑
n=−∞

(−1)n A0(L, θ + 2πn)L−3(θ+2nπ)2/(4π2)+1/12

× exp

[ ∞∑
k=0

Q odd
2k (θ + 2πn)

L2k

]
(38)

for odd L. From (4) we see that for even L, the function D(L, θ) is obtained by multiplying φ(L, θ)

by AHT(L)2, while for odd L we must multiply by 2 cos( θ
2 )AHT(L)2. As was observed in [19], this leads

to the same result for the leading term of D(L, θ) because AHT(L) for odd L is 3−1/4 times AHT(L) for
even L in the large L limit. Our results therefore imply that the asymptotics for D(L, θ) for both even
and odd L are given by the formula:

D(L, θ) =
∞∑

n=−∞
(−1)nL f (L, θ + 2πn), (39)

where

f (L, θ) =
(

2

3

) 1
12

exp
(−5ζ ′(−1)

)(3
√

3

4

)L2

L
7

36 − 3θ2

4π2 G

(
1 + θ

2π

)
G

(
1 − θ

2π

)

× G

(
4

3
+ θ

2π

)
G

(
4

3
− θ

2π

)
G

(
2

3
+ θ

2π

)
G

(
2

3
− θ

2π

)
exp

( ∞∑
k=1

R2k(θ)

L2k

)
. (40)

The polynomials R2k(θ) for k = 1, . . . ,7 are given by

R2(θ) = 77

15552
+ 7θ2

144π2
− 11θ4

64π4
,

R4(θ) = − 245

559872
− 157θ2

12960π2
− 29θ4

1152π4
+ 181θ6

1280π6
,

R6(θ) = 1103

40310784
− 1349θ2

244944π2
+ 3599θ4

31104π4
− 989θ6

6912π6
− 3275θ8

14336π8
,

R8(θ) = 793135

4353564672
+ 116807θ2

2099520π2
− 101009θ4

279936π4
− 47479θ6

622080π6
+ 43171θ8

36864π8
+ 61621θ10

122880π10
,

R10(θ) = − 93651593

130606940160
− 3740009θ2

10392624π2
+ 1868083θ4

1399680π4
+ 301091θ6

93312π6
− 1858513θ8

276480π8

− 1239773θ10

10
− 1184171θ12

12
,

184320π 901120π
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Fig. 4. The mapping of a loop configuration to a bond configuration of the corresponding bond percolation problem. A bond is
either put on an edge of the square lattice formed by the • or on the dual edge orthogonal to it on the square lattice formed
by the ◦.

R12(θ) = 2884889645

940369969152
+ 68061091601θ2

23213342880π2
− 110018569θ4

22674816π4
− 754814143θ6

16796160π6

+ 454871621θ8

10450944π8
+ 931652293θ10

9953280π10
+ 31193731θ12

884736π12
+ 23057581θ14

5963776π14
,

R14(θ) = − 2213492219141

135413275557888
− 2471502605θ2

76527504π2
− 83019415531θ4

7142567040π4
+ 30869634919θ6

45349632π6

− 10100916773θ8

44789760π8
− 96936237491θ10

62705664π10
− 35619671389θ12

39813120π12
− 105293315θ14

589824π14

− 453005291θ16

36700160π16
. (41)

We note that the summation in the exponent in (40) is a divergent asymptotic expansion of some
unknown function. If we truncate this expansion at some finite order, then the summation over n
in (39) will diverge. However, since the summation over n converges very fast (independently of L),
this is not an issue when doing numerical computations.

4. Application to the O(1) loop model and bond percolation

In this section, we consider the leading asymptotics of some correlations in the O(1) loop model
and bond percolation model on the cylinder that can now be evaluated exactly. The bond percolation
model at the critical point is related to the dense O(1) loop model via the bijection shown in Fig. 4.
We can see from this figure that the loops of the dense O(1) loop model correspond to boundaries
of percolation clusters. From (2) we can see that the generating function φ(L, θ = π/2) equals the
probability that a point in the loop model is not surrounded by any loops. This probability thus
corresponds to the probability in the percolation model that a point is on a cluster that wraps around
the cylinder for even L, while for odd L it gives the probability that the point is on a cluster that spans
the cylinder. This probability was given in [18] for even L as P ≈ 0.81099753L−5/48[1 + O(L−3/2)].
Using (37) we can evaluate the leading asymptotics as

P = 223/72

35/48

π1/4 exp[−1/4ζ ′(−1)]√
�(1/4)

L−5/48[1 + O
(
L−3/2)]. (42)

It follows from (37) that the leading asymptotics for the probability that a point is on a cluster that
spans the cylinder is

√
3/2 times the above expression.

Next, we consider the number of loops surrounding a point. By repeatedly differentiating both
sides of Eq. (2) at θ = π/3, we can express the moments of P (L,m) in terms of derivatives of φ(L, θ)

at θ = π/3. These derivatives can be evaluated using the derivatives of (37) and (38) at θ = π/3.
Denoting the number of loops surrounding a point by N , we have

〈N〉 = 1

2
√

3π

[
γ + log(4L)

][
1 + O

(
L−2)] for even L,

〈N〉 =
{
−1

6
+ 1√ [

γ + log(4L)
]}[

1 + O
(
L−2)] for odd L. (43)
2 3π
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Using the first and second derivatives at θ = π/3 the fluctuation in N can be calculated. This is given
by

〈
N2〉 − 〈N〉2 =

{
−1

9
− 1 + log(3)

2π2
+ ψ1(1/6)

18π2
+

[
2

3
√

3π
− 1

2π2

][
γ + log(4L)

]}
× [

1 + O
(
L−2)] for even L,〈

N2〉 − 〈N〉2 =
{
−2

9
− 1 + log(3)

2π2
+ ψ1(1/6)

18π2
+

[
2

3
√

3π
− 1

2π2

][
γ + log(4L)

]}
× [

1 + O
(
L−2)] for odd L. (44)

5. Discussion

We have obtained the exact asymptotics of the characteristic polynomial of the Pascal matrix. The
form of the asymptotics was partially known due to a conjecture relating D(L, θ) to φ(L, θ). This was
used to obtain accurate numerical data for the amplitude of the leading power of L. The LLL lattice
reduction algorithm was used to guess exact expressions for special values of the amplitude which
ultimately enabled us to find exact expressions for the amplitude for all θ and the amplitudes of the
subleading terms up to relative order L−14 to the leading term.

We have applied this result to the O(1) loop model and the related bond percolation model on the
cylinder. Asymptotic expressions for the average of the number of loops surrounding a point and the
fluctuation in this number were obtained. We also obtained the leading asymptotics of the probability
that a point is not surrounded by any loops, which for even L corresponds to the probability that
a point is on a cluster that wraps around the cylinder, while for odd L it gives the probability that a
point is on a cluster that spans the length of the cylinder.

The methods presented here can likely be used to obtain exact asymptotic expressions for a large
class of binomial determinants. E.g., in [8], exact expressions for the determinant

det
1�r,s�L

[(
r + s + m − 2

r − 1

)
+ exp(iθ)δr,s

]

for arbitrary integer m and θ a multiple of π/3 were obtained. The asymptotics for general θ appears
to have a similar structure as for the case m = 0 investigated in this article.
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Appendix A. Solving integer relation problems using the LLL algorithm

The LLL algorithm solves the following problem. Suppose we are given n linear independent vectors
v1 . . . vn in R

d with d � n. Consider the set of all integer linear combinations of the v j . Such a set is
called a lattice and the v j are a basis of the lattice. The basis of a lattice is not unique in general.
Given the v j , the LLL algorithm finds short, approximately orthogonal, basis vectors for the lattice
spanned by the v j .

In an integer relation problem, one is given a real number x which one wishes to express in terms
of real constants yk:

x =
n∑
k

rk yk, (A.1)

where the rk are rational numbers. In our case, x is known to limited precision while the yk are
known to arbitrary precision. We want to know if for given x and yk such a relation exists, in which
case we want to find the rk . The LLL algorithm can be used to solve this problem as follows. We first
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multiply our number x and the constants y1 . . . yn by some power of ten and take the floor to get
integers:

y′
i ≡ ⌊

10p yi
⌋
,

x′ ≡ ⌊
10p x

⌋
. (A.2)

We choose p such that x′ contains only those digits of x that we know to be correct. We then define
the basis vectors:

vi ≡ ei + y′
ien+2 for 1 � i � n,

vn+1 ≡ en+1 + x′en+2. (A.3)

where er is the rth unit vector of R
n+2. We take these n + 1 vectors v1 . . . vn+1 as the input of the LLL

algorithm. The output will be a set of short basis vectors for the lattice spanned by the vi . If there is
a short basis vector b in the output for which the (n + 2)nd component is O(1) in n and the (n + 1)st
component is nonzero, then we have very likely found an exact relation between the yi and x:

n∑
k=1

bk yk + bn+1x = 0. (A.4)

The larger the number n of constants is, the larger we need to choose p to be able to detect a relation.
The LLL algorithm is not the best available integer relation algorithm. The PSLQ algorithm [11] is

faster and will yield lower bounds on the sizes of the coefficients if no relation is found. However,
unlike the PSLQ algorithm, the LLL algorithm can also be used to find an unknown function given the
action of a finite number of linear functionals. This would be useful in the event we need to move on
to point 5 of the program described on p. 35. Suppose an unknown function f : S1 → S2 for arbitrary
vector spaces S1 and S2 satisfies the relations:

Lr f = xr (A.5)

for 1 � r � m, where the Lr are linear functionals and the xr are real numbers. If f is suspected to be
a rational linear combination of functions gk:

f =
n∑

k=1

rk gk, (A.6)

where n > m, we can use the LLL algorithm to find the rk if they exist. We define

yk,r ≡ Lr gk,

y′
k,r = ⌊

10p yk,r
⌋
,

x′
r = ⌊

10p xr
⌋

(A.7)

for 1 � k � n and 1 � r � m, where p is limited by the accuracy of the xr . We then take as input for
the LLL algorithm the basis vectors defined as

vi ≡ ei +
m∑

r=1

y′
i,ren+1+r for 1 � i � n,

vn+1 ≡ en+1 +
m∑

r=1

x′
ren+1+r . (A.8)

If a short output basis vector b has a nonzero (n + 1)st component and the components (n + 1 + r)
for r = 1, . . . ,m are all O(1) in n, then that vector very likely defines an exact relation between f
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and the gk:

n∑
k=1

bk gk + bn+1 f = 0, (A.9)

provided p was chosen large enough.
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