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Let (x,}be a stationary Gaussian sequence with E&} = 0, E{Xi} = 1 and E{&X,} = rrr 
bt Cn = (2 b I#? b,, = cn --i en’ ln(4n In v), and set Mn = rnaxg<k<i Xk. A classical 
result for independent normal random variables is that 

WC, x) Mexp[-eWx] asn-- forallx. (1) 

rman has shown that (1) applies as well to dependent sequences provided rn In n = o(1). 
ppose now that {rn} is a convex correlation sequence satisfying rn = o(l), (rn In n)-’ 

is monotone for large n and o(l). Then 

P[,;;ln (Mn - (I-rn)‘n bn) < X] + a(~) for all x, (2) 

e (0 is the normal distribution function. While the normal can thus be viewed as a 
ution for {Mn), there are others. In particular, the limit dis- 

rther exhibit a 
ro in a nonsmooth 

ed. A modified version 
ich possess sufficient 

ptotic independence, 
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1. Introduction 

{X,} denotes a stationary Gaussian sequence with 
and E{X, XJ = rn. We set C, = (2 In n)r 
and take M, isher and Tippets 
the result that if rH = 0, M # 0, 

P[~*(M,-b,)gx]-,exp[-e~~]asrt-,0 forall,Y. (Il.!) 

Their work was later subsumed in the general theory of maxima of inde- 
pendent random variables as given by Gneder [ 3 1. Since that time 
there has been some interest in the limit di 
plied to dependent normal variables. Thus 
dependent stationary sequences, found th 
zero for 1~21 2 M. Bernan [ I ] subsequentiy proved that r, In ~3 = o(I) is 
a sufficient condition for (1.1). It may be seen below that BermarCs re- 
sult pushes matters about as far as is possible in this direction. 

In Section 2 we are concerned with axima when rR = o( 1) but 
rn In II -C o( 1). In this settin 
sible limit distributions see 
the study of the maxima of independe 
fairly complete picture of the situatio 
and discussion given below. 

We first consider the boundary case r,, =: $ln II, lrrl 
2.3 the limit distribution is shown to be 
value distri:lution of (1.1) with a normal 
depend on ‘y. Next it is assumed that ~?n 
and that (rR In rz)‘l is monotone for la 
2.4) the limit distribution for M, is no 
2.4 remains true when the convexity condition on rfl is replaced by a 
variety of weaker conditions (see the remark about this which follows 
the proof of Theorem 2.4). 

Our proofs rely heavily on Berman’s Lemma [ I ] (see also 
says, implicitly, that some perturbation of the correlation se 
leaves the limit distribution for M, unchange e In this sense, condition 
(2.4) of Theorem 2.3 can be viewed as scribing an appropriate neigh- 
borhood of the correlation sequence y 
on the other hand, it is not worthwhile ca 
borhood argument. A use of Lemma 2.2 
that context surfaces in the remark fol ing Theorem 2.4. 
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tion 2 we emphasize the crucial role of some sort of 
rease of rn to zero once rrz In II #= o( 1). We consider 

ation sequerces of the form (r,p,), where {p,} is a periodic corre- 
rice. Assuming that the maxima underN{rn} can be handled, 

and 2.4, one can track down the limit distribu- 
my,}. It is hoped that the discussion given there will shed 

roblem of characterizing limit distributions in the 

In Section 3, (X(t)} denotes a continuous parameter stationary 
Gaussian process with mc3an value zero and correlation function v(t). It 
is assumed that r satisfies 

r(t) = 1 - cltl” + o(lrl”), 0 < cI1 G 2, c > 0, (1.2) 

for t in a neigborhood of zero. Accordingly, X may be taken to have 
continuous paths, and one can def?ne M, = maxO g t G TX(t). Pickands 
[ 71 has shown tifat the extreme-value distribution of (1.1) is a limit 
distribution for MT if r(t) In t = o( 1) (The exact statement is given at 
(3.2)). We show that if r(t) Is convex and o( 1) {now 0 < a < 1) and 
(r(t) In t)” is monotone for large t and o( 1), then the limit distribw- 
tion for .A+ is normal (Theorem 3.1). 

2. Limit distributions for M, 

Throughout this section, M, will denote maxoGkGn Xk, where {X,) 
is stationary Gaussian, E{X,) = 0, E{X$} = 1 and E{X,X,} = Y,. H will 
be the extreme-value distribution function of (1. l), while ip will be the 
normal dbstribution function with @’ = q. By M,(p) we mean the maxi- 
mum of H + 1 standard normal variables with constant correlation p be- 
tween any two. With this notation, (1.1) becomes 

P[cJM,(O)--b,) < x] + H(x) as n + * for all x. (2.1) 

Observe further, and this is essential to us, that if I/ is standard normal 
and independent of M,(O), M,(p) may be represented as (1 -p)li2 
M,(O) + ~112 U. 

Repeated use is to be made of the (comparison) Lemmas of Slepian 
[9] and man [ 11. For the prese 
where { is stationary Gaussian 9 
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(Slepian). If pk < rk for id! k, the@ 

P[MI, < c] < [Mn < c] for all c. 

In demonstrating that );1 In IZ = o( 1) i 
able to use (2.3) for a direct co~~~parison 
forward application of (2.3) is 
Theorem 2.3 contains Berman’s result 
semblance to his. On the other hand, Theorem 
vious use 0: this comparison - the derivation of (2.3) requires estimates 
which become rather crude once m In H + o( 1). 

Theorem 2.3. Suppose rn In 11 = 

#{ 1 G k < tt 1 Irk In k - rl> E} = o(n) fbr d e > 0. (2.4) 

Therz 

qc=-X+7-(27)” 2r)ll &WY 

Proof. First note that 7 3 0 follows fro 
ries in the covaria 

= y/In N. The theorem will fol 
M,(pn) < b, + xfc, ] has the required limi 

M,~b,+xlc,l- 

(2.6) 
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p,). We first d emonstrate (2.6). Let F(k) = supi,kri, 
gnd take 0 < 0 < (1 --T;( 1 ))/( l+s;( 1)). Let wo = [f@j, 

that for large I”Z the right-hand side of (2.6) is no larger 

d-+0 ( I--rw2( 1 )-*I2 exp -- 
[ 

(bn +x/c, )2 
l+s;(l) 1 + 

-t~~(i--~~(m))-*‘~ exp - 
[ 

@, +x/c,)2 n 
l+T;(mj , 1 ,C Ipk-q (2.7) 

=m 

The first term of (2.7) goes to ze osincebz N 2lnn. 
Now P*(I~) In 11 = O( 1 ), so 

2 r & +X/C, )2 
kexP I-- l+F(m) = exP 1 [ $&(2lnn---lnlnn)+o(l) , 1 

= Q(1). 

Hence the second term of (2.7) will also be o( 1) If 

n -I Inn 5 Iv,--p,l =0(l). (2.N 
k=m 

Fork> m, 

Ir k- y/in kl = 0(1/ln n), 

and we have for any C, 
n 

Cl kzrn rk-p,” kg rk-m ’ 1 y~+k$ihik~ 

(2.8) now follows if 

1 1 p-7 
In k ln pz 

Q.9) 
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Using an integration I>y parts we find that 

and (2.9) is established as in (2.6). 
Now consider P[M,(p,) < 

P[( I -p n )1’2M n (0) 

00 

b, + x/c, 1. Write this as 

t p’lz li< 6, +x/tzJ = n 

= S 
-m 

00 

=s P[M,(O) G b, + (x(11) + o(l ))lc,l (2.10) 
-00 

where X(U) = x - (2~)‘~~ II + “y. Usin (2.1) in 12. lo), dominated convcr- 
gence gives us 

cI(I 

J 
b, +(x(u)+ a( 1)) C, 1 4pt.u) CISJ + 

-00 

00 

s exp[ -exp[--x(u)]] q(u) 
-a5 

which completes the proof of the theorem. (3 

Before begin ing on Theorem 2.4 let us make the following observa- 
tion. Assume in Theorem 2.3 that 

52 = y/in 12 for lrzl > /I!. 

Then accordin e asymptotic dis ribution as M,(v,). 
In Theorem 2.4 the same conclusion is ultimately made, viz. M, and ‘ 
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) have the same asymptotic distribtition. However, we are unable 
ate this fact directly using (2.3). Our proof of Theorem 2.4 

a maximum obtained from an appropriate set 
bles. The trimming invokes theconvexity of yn 
res a lengthy proof, it appears that something 
step in obtaining the result. 

Proof. The proof proceeds by showing that the lim inf bf the left-hand 
side of (2.11) is at least @(x--e) for all e > 0, while the lim sup is at most 
@(x+E). The first statement is almost immediate. rn is decreasing, so (2.2) 
gives us a first comparison of 

P[M 
n 

< ,1’2x + (l-r 
n n 

p2b 
?2 

] 2 

3 P[A!l,(r,) G ryx + (1 -rJ1f2 b,]. 

But the right-hand side of (2.12) satisfies 

P[M,(r,) < (1 -Q1/2 b, + r;12x ] = 

(2.12) 

= P[(l-r n p2M n (0) + Y V2 U < (1 -_y n n )112 b, + r;12 x ] 

W 

=s P[M,(O) g bn + rL12 (x-u)/( 1-rn)1’2] ~(24) du 
.‘-W 

>, P[M,(O) +G b, + e rhj2/( 1 -rn) lj2] +(.x- e), 

and the last expression -+ @(x--e) as IZ + 00 in view of (2.1) and the fact 
that ?f2 c, + * as y1-+ *. 

To do the other inequality, first note that the convexity of rn ensures 
that there is a stationary Gaussian sequence {Y,) = {Y&z)} with the cor- 
relations 

Pk = P&o = (Q -r,)/(l--_m) fork = 1, 2, . . . . PI. 

(For example, one may take P&Z) = 0 for k > 11 and apply 
rion.) 



< aqx+e) + P[ 

so the theorem will follow if 

P[M; < b, - tj r1/21( 1 ..=.r )’ 
n _ II 

or 

Pi 

Further, if U is supposed independent of ( 
as( 1-rn)~~2 Yk(n)+tf2U l’ork =OJ 1, . ..) n. 

maximum of 9&), . . . . YJjz), we may write 

Mlt = (L-r,)',2 

Now 

[M n 6 (l-r )’ n 

= P[(l-r,)“Z 

Let r(n) = [cz exp[--(In ~r)~~~]]. The eon 
that there is a stationary Gaus 
relatfons 

Ok = iI@) = k v &@)t k = 1) 

Let Mi be the maximum 

P[M 

+-I __I 
II II . 

(2.14) 
We shall complete matters by showin on th ht-hand 
side of (2.14) end to zero, the first b irect means and the second by 
appealing to (2.3). 

To show that 



estimate of the size of pt(,,S For k < n, 
Ft-1 

n-l 
rj+l 

<rk c -h- 'k 

j=k r. 
I 

=rk ln7 . 
4 n 

e that pn In n is monotone for II 2 k, 

(2.15) 

2]=P[(l-p 
t(n) 

)i12M (O)+p n 
II2 u< b 

q to.0 n 
-erll2] 

n 

00 

= s P JO; G b,+ 
'n Pt(n) Cb 7*1/2+p;f) 24 

n 1 $w du 
-=-a0 (I-P~~~~1’2(l+(l-Pt~ll))‘lz)- (I-p,J’2 

+ P b,+ 
‘n Pt(n) w li2 n 

( l-Pt(n)lllz ( I+( l -pt(,))“‘) - 2( 1 -pt(n))1’2 1 ’ 
(2.16) 

For the first term on the right-hand sid2 of (2.16), note that (2.15) gives 

‘n 
-----a: 

r, u-r,) r, (1 -r,) (In n)li2 
h,-- --+ 00 

pt(n~ 
rtcnl Mb n/In t(n 1) %O 

In n/in t(n) + 1 as n + 00. To see that the second 
t-hand side of (2.16) is o(l), note that 

- ln inn -- y ill t(n) 

bn 
m 

‘1 (n) 

(in nY2 (1 -rn)rk’2 
and invoke (2.1). 

-+ 0, 

be seen that the last term Recall that 
agree fos all 



t,(n) = [exp[(l- “) Inn]], i= 1, 3 ***3 4 0 8 3 

&)+@ ) = too3 

where q(n) satisfies 

fl(BJ’2 > (in PI) n 
Observe that &z) < In in pzllln nl < In In 
hand side of (2.17) is bound 

The first ter;n in (2.1 
dexed by i < q(t) is b 

exp 

Ii ( 
2a 

= exp In 1% “i(rr) 
l+p 

_ ,iz*4 
p1 

*i(n) 
while the term indexed by q(n) is at most 

exp 
[ 
2 In It---(ln iz 
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that (2.19) is boun 

II2 + o((In n)112] for i = 0, 1, . ..$ &7)-l, 

admits the same bound. This will complete the theorem 

i (In ~)r/~+ o((ln n)l12)] + o( 1) < 

S In In Pz exp[ --+ (In n) U2 + o((ln n)‘j2)] + o(I). 

ound (2.19) and (2.20), first use (2.15) io obtain 

2r t tn) ln W-~~‘2)-1 G 2 5 cnfii2 . 

is bknded by 
i 

for i = 1, 2, . . . . q(n). 

exp[ln w(4 rtoqnj (-ln &-+2) + o((ln n)‘j2)] = 

= exp[ (!n n)P’2(4r n t&l ‘n -lt2 (-ln Q-1) + o((ln I#/~)] 

< exp[ -ir1/2 In n + o((ln n)lt2)] *( exp[ -f (In n)ri2*o((ln n)‘12)], n 

where the last inequality follows from rhj2 > (In n)-1/2C For 0 < i < q(n) 
we again have rf+1)‘2 > (In PI)-~‘~ and so (2.19) is no more than 

exp[$+1)‘2 In n(4rt tnj 
i 

rkj2 - 1) + o((ln n)li2)] < 

< exp[-i(ln n) U2 + o((ln n)l12)]. 

Lastly, (2.20) is at most 

exp[ (In n)li2 (4r flcnX2 (In nj1/2- 1) + o((ln n)l12)] < 
tqOd * 

< exp[(ln n)‘12(4r r-1/2-1 J + o((ln n j1i2j] < 
tqOO n 

< exp[-,l(ln n) II2 -i- o((ln n)l12)] . 

using the fact that r$f@)+1)‘2 (In n)1/2 < 1. The proof is now complete 
since (2.14) has been shown to be o(1) via (2.16), (2.17) and (2.18). 0 

convexity condition on y, tn Theorem 2.4 can be weaken- 
f all clear tha rn convex for n 2 M would suffice - such 

a correlation sequence differs from some convex one for finitely many 
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yt and one then appeals to Berman’s Lemma. 
weakening, we can pr 
placed by r, monoto 
at (2.12). The other 
cribed preceding [ 4, 
are forced here to do a 
ri(n) as given above (2 
structive, so we have 

e would like a? 
can lead one akaay fro 

die correlatron se 
can have rather la 
for M, is unaffec 
Y, In M # o(1). Here then is a Crst simple example which already suffi- 
ces to distinguish this context m the independent variabl 
Take 

/!Ik =o fork = 1,2, . . ..&--1. &$== 9 1 

and su;)pose that (171) satisfies the assum tions 01’ Theorem 2.4. If 
denotes the maximum under the correla 
self the maximum of 8 independent maxima of uences with the 
correlation {QJ. A~~~y~n 

one to 

Now distribution types which as 
are, equivalently, those which ar 
of independent variables. Ir 
closure and new laws arise. 

information WC have about ot at arise in 
this way. Suppose {JQ is a min(n > 0: pn = 1). Let 

2.3, we can show that 

r-l W(P+ln d+‘r - (2~)qJi)). 
i=O 

(2.22) 
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satisfies the assumptions of Theorem 2.4 we expect that 

r-l n n - (1-r n p2b 
n 

)G x] + G(x), (2.23) 

where G is the distribution function of maxo9kGd_l L/k. We have not 
) in this generality. In case {Pk) is nonnegative howeve,*, 

by two simple comparisons. A suitable lower 
y in (2.23) is obtained by comparingm with 
+ rAj2 L$) where the WR’s are independgnt, in- 

ndard normal. An upper bound can be found 

max()<k<n((l-Y,) Ii2 Yk (rz) + $I2 Uk) where 
{Y&t)} is the sequence used in Theorem 2.4. 

3. Limit distributions for M, 

In this section (X(r>} is to be a continuous parameter, stationary 
Gaussian process with 

Lw)l = 0, E{X2(0)} = 1, E{X(O)X(t)) = r(t). 

We suppose throughout that 

r(t) = 1 - elf]” + o(ltl”), (W 

for t a neighborhood of zero where ar and c are constants satisfying 
0 C at < 2 and c > 0. As a consequence of (3.1) we may take X to have 
continuous paths and M, to be defined by maxOGtgTX(t). 

We first state a result of Pickands [7] which shows that the extreme- 
v&~e distribution H is a limit distribution for M, under suitable asymp- 
totic conditions on P. For this, consider a separable, nonstationary 
Gaussian process Y(‘t), t 2 0, with E{ Y(t)} = -ItI” and 

Cov(Y(s), Y(t)) = Isl” + Itl” - Is-tp. 

Set 
w 

hkL = lim T--l s e" P[ max Y(t) > tl] du, 
T-- 0 OGtf(T 

CT = (2 h T)“29 

in which it should be noted that H’ is positive and finite [ 71. With (3.11) 
in force, Pickands has shown that r(t) In t = o( 1) implies 



P[c#~~-&.) 6 x] 9 exp[-P] as T-+ 00 for ail x. (3.2) 

We are now in a posirion to state: 

Theorem 3.1_ Suppose that (3.1) holds with 0 < Q < 1 b r(t) is complex 

for t 2 0 uzd o(I), atzd that (r(t) In t)” is ~~~~ot~~~ 
o( 1). Then 

!P[I=-~~~(T) (I+--(’ -r(TJ)1i2 $lT) 

Psoof. We proceed, as in T eorem 2.4, to show first that the lim 
and side of (3.3) is at Ieast @$x--&) and then that its Ii 

at most +(x+E). 
Let p(t) be a correlation functi 

Therm there exists a 7 > 0 such that for all sufficiently 1 

p(t) ( f --r(T)) +v(T) G r(t j for all 0 6 t G 7. 0.4) 

Consider a process {Y 1 (t), t osed of standard 
which, on each interval [kr, 
continuous paths and is ind 
If T is large and U is a standard normal vsriable inde 
{Y, (t), R 3 O), then (3.4) ensures that 

E{X(s)X(t)} 3 lE{[(l--r(‘ir?)‘D YJS) + r*/*(r) U] 

[(l--r(T))“* Y&t) + r’qr) 
for al! s and t. Applying (2. 

PIM, G (L+(~))q, + r*qr) x] 

3 P[(I-r(T))'/" 
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f of the left-hand side of (3.3) is at least @(X---E) FrtJvided 

Y,(t)<&+d*(T)]+ 1 asT+=. (3.~6) 

We claim that d4 > 0 since other- 
O) = l* But then ip(tO) = 1 because of 

icts r(t) = o(1). Since A > 0, [6, Lemma 2.91 is 

Now the log of (3.6) is 

~]+l) In P[supO<#<, Y#) < & + d/“(T)] w c 

- -(T/T) P[ sup Y,(t) > PT +d2(T)] 
Octe 

- -T #=- l (2c)‘la H* cp(fl, + cz r”*(T)), (3.8) 

and this tends to zero as T + 00, completing the first part of the proof. 
TO do the other part, first note that the convexity of Y ensures that 

there is a separable stationary Gaussian process (YT) = (Y*(t)} with the 
correlation function 

Let 

pT =: p,(t) = (r(t)-r(T))/( l-r(T)) for t < T. 

M 

present M, by 

( ~--T(T))~/~ M’, + r’/*(T) U 

for C’ independent of {YT). As in (2.13), the proof will be complete 
when it is shovvn that 

P[M E r”*(T)] + 0 as T + 00. (3.9) 

(T) = T exp[ -(In T)p/2]. The convexity of pT agad I ensures that 
there is a separable stationary Gaussiar, process {ZT) = {Z,(r)} with the 
correlation function 

u2- = or(‘) = p,(t) v pT(Q(T)). 



and conclude from (2.2) that 

The problem is now m 
[T] consecutive unit i 

enough to show that 

P[ max z,(t) < fiT - rf PI 
=S(T) 

actoring out a co 
write, :in parallel 

where 2;. has the ~0~~~~~~~~ fmx~birrn 

a;.(t) = (OT(C)--OT( 

Because r(t) In t is monotone fo 
that 

r(t) - r(T) 6 r(t) In qk T/in 6) 

whenever t < T. Hence 

3 
) = p,(T exp[--(ln 

(ln T)‘ji 
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hc-hand side sf (3.12) is now easily seen to be 
the second term is handled irs above (2.17) to reduce the 

- e r”Q-)] = o( 1) . (3.13) 

et (Y2(r), t 3 0) be a process of standard 
h on each interval [ , k + 1) has the correlation 

and is independent of Y2 (t), E [j, j+ l)ifi#k.Wehave 

[ max Z;(r) < flT - e r1’2(T)] < 
t-m 

- e d2(T)] 4 

+ IP[ max Y2(rj G PT - E G/2(T)J 
t@E.S(T) 

- P[ max Z>(t 
t=m 

G pT- e r’/2(T)]l. (3.14) 

Since ok(r) Q r(t) on 10, I], 

G Pin[ max 
tES(T)n[O, I! 

X(t) 6-z 13, -e r”2(T)] 9 

a:.ld this is o(1) by [6, Lemma 2.51 (see o, [8, Lemma 1.31). Finally, 
he last term in (3.14) is estimated acco ng to (2.3) and the resulting 

sum is handled exactly as (2.17). These details are omitted. q 
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