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Let {X,}vea statnonary Gaussxan sequence with E(Xo} = 0, E{X3} = 1 and E{Xo X, } =r,,
Letc, = (2 inn)!? v by =cp - 3 "n In(47 In ), and set M, = maxgr oy Xg- A classical
result for mdependent normal random variables is that

Plc,(M,-b,) < x] »exp[—e*}asn >~ forallx. (§))

Berman has shown that (1) applies as well to dependent sequences provided r,, In n = o(1).
Suppose now that {’n} is a convex correlation sequence satisfying r,, = o(1), ("n In n)‘l
is monotone for large n and o(1). Then

Plr;' M, - 1-r)"? by) < x] > ®(x) forallx, Q)

where @ is the normal distribution function. While the normal can thus be viewed as a
second natural limit distribution for {M,,}, there are others. In particular, the limit dis-
tribution is given below when r,, is (sufficiently close to) y/In n. We further exhibit a
collection of limit distributions which can arise when r,, decays to zero in a nonsmooth
manner. Continuous parameter Gaussian processes are also considered. A modified version
of (1) has been given by Pickands for some continuous processes which possess sufficient
asymptotic independence properties. Under a weaker form of asymptotic independence,
we obtain a version of (2).
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1. Introduction

{X,} denotes a stationary Gaussian sequence with E{Xy} =0, E{X (2)} =1
and E{XyX,} =r,. Wesetc, =(2Inn)12,b, =c, —ic;! In(4r Inn)
and take M, = max, ¢« Xx- Fisher and Tippett [2] first established
the result thatifr, =0,n# 0,

Plc, M, —b, )< x]~>exp[—e™]asn > forallx. (1.1)

Their work was later subsumed in the general theory of maxima of inde-
pendent random variables as given by Gnederko [3]. Since that time
there has been some interest in the limit distribut’)n question as it ap-
plied to dependent normal variables. Thus Watson [10], in treating M-
dependent stationary sequences, found that (1.1) obtained if r, was
zero for nl = M. Berman [1] subsequently proved that r,, inn =o(1) is
a sufficient condition for (1.1). It may be seen below that Berman’s re-
sult pushes matters about as far as is possible in this direction.

In Section 2 we are concerned with maxima when r,, = o(1) but
r, In 1 3= o(1). In this setting no simple characterization of the set of pos-
sible limit distributions seems possible — in contrast to what occurs in
the study of the maxima of independent random variables. However, a
fairly complete picture of the situation will emerge from the theorems
and discussion given below.

We first consider the boundary case r, = y/In n, In| > M. In Theorem
2.3 the limit distribution is shown to be a convolution of the extreme-
value distribution of (1.1) with a normal distribution whose parameters
depend on . Next it is assumed that r, is convex forn = 0,r, = o(1)
and that (r, In n)1 is monotone for large n and o(1). Then (Theorem
2.4) the limit distribution for M,, is normal. We note here that Theorem
2.4 remains true when the convexity condition on r, is replaced by a
variety of weaker conditions (see the remark at:out this which follows
the proof of Theorem 2.4).

Our proofs rely heavily on Berman’s Lemma [1] (see also [5]). It
says, implicitly, that some perturbation of the correlation sequence
leaves the limit distribution for M, unchanged. In this sense, condition
(2.4) of Theorem 2.3 can be viewed as describing an appropriate neigh-
borhood of the correlation sequence /In n, |n| = M. In Theorem 2.4
on the other hand, it is not worthwhile carrying through the same neigh-
borhood argument. A use of Lemma 2.2 which is more appropriate to
that context surfaces in the remark iollowing Theorem 2.4.
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At the end of Section 2 we emphasize the crucial role of some sort of
smoothness in the decrease of »,, to zero oncer, In n # o(1). We consider
correfation sequerces of the form {r, p,}, where {p,} is a periodic corre-
lation sequence. Assuming that the maxima under {r, } can be handled,
e.g. as in Theorems 2.3 and 2.4, one can track down the limit distribu-
tion undger {r, p,}. It is hoped that the discussion given there will shed
some light on the problem of characterizing limit distributions in the
present context.

In Section 3, {X(¢)} denotes a continuous parameter stationary
Gaussian process with mean value zero and correlation function r(¢). It
is assumed that r satisfies

r¢)=1—cltl*+o(lt1*), 0<a<2,c>0, (1.2)

for ¢ in a neigborhood of zero. Accordingly, X may be taken to have
continuous paths, and one can define My = max, ., < y X(¢). Pickands
[7] has shown that the extreme-value distribution of (1.1) is a limit
distribution for My if #(t) In ¢ = o(1) (The exact statement is given at
(3.2)). We show that if »(¢) is convex and o(1) (now 0 < a < 1) and
(r(t) In £)~! is monotone for large ¢ and o(1), then the limit distribu-
tion for My is normal (Theorem 3.1).

2. Limit distributions for M,

Throughout this section, M, will denote max,¢;<, X;, where {X,}
is stationary Gaussian, E{X,} = 0, E{X3} = 1 and E{X, X} =r,. H will
be the extreme-value distribution function of (1.1), while ® will be the
normal distribution function with &' = ¢. By M, (p) we mean the maxi-
mum of n + 1 standard normal variables with constant correlation p be-
tween any two. With this notation, (1.1) becomes

P[c”(Mn(O)—bn)<x]—+H(x) asn oo forall x. 2.1)

Observe further, and this is essential to us, that if U is standard normal
and independent of M,,(0), M,,(p) may be represented as (1—p)!/2
M, (0) + pt2 U.
Repeated use is to be made of the (comparison) Lemmas of Slepian
[9] and Berman [1]. For the present purposss, suppose M, = maXy< z<p Yz
where {Y} is stationary Gaussian, E{Yy} =0, E{ Y(Z)} =1 and E{YyY,} =0,.
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Lemma 2.1 (Slepian). If p < ry forall k, then
BIM <cl<PIM,<c] forallc (2.2)

Lemma 2.2 (Berman). Let wy = max{r, p;}. Then
n
IP[M, < c]-PIM;, < 211 < nkz;llrk—pkl (1-w}) M2 expl—c?/(1+wy)]

forallc (2.3)

In demonstrating that 7,, In n = o(1) is sufficient for (1.i), Berman was
able to use (2.3) for a direct comparison of ¥, with M, (0). A straight-
forward application of (2.3) is also possible when r,, In n = O(1). Indeed,

‘Theorem 2.3 contains Berman’s result and its proof bears a strong re-
semblance to his. On the other hand, Theorem 2.4 requires a more de-
vious use o' this comparison — the derivation of (2.3) requires estimates
which become rather crude once r,, In n # o(1).

Theorem 2.3. Suppose r, In n = O(1) and
#I<k<nllr,Ink-91> e} =o(n) foralle> 0. (24)
Then

Flc,M,-b,)<x]~ [ expl—exp[-(x+7-Q21)"?)) () dy
= [ Ha-2) Q) 2oz +7)/27)dz.2.5)

Proof. First note that y > 0 follows from (2.4) and the fact that the sum
of all entries in the covariance matrix of X, X, ..., X,, must be nonne-
gative. Set p,, = v/In n. The theorem will follow if we establish that
P[M,(p,) < b, + x/c,]has the required limit in n and thac

IP[M,, < b, +x/c,] — PIM,(p,) < b, +x/c, ]| <

n
< kZ;l 7 —p,,| (1-w?) 12 expl—(b, +x/c,Y*/(1+w,)]1=o(1),

(2.6)



Y. Mittal, D. Ylvisaker [ Limit distributions for maxima 5

where w; = max{r;, p,,}. We first demonstrate (2.6). Let 7 (k) = Sup; ;tis

note that 7(1) < 1, and take 0 < 9 < (1-F(1))/(14F(1)). Let m = [n?],

and observe that for large n the right-hand side of (2.6) is no larger
than .

(b, *x/c, )2 ]

2010 (1-r-2(1))"2 exp [— 57 (1)

(bptx/c,)?] &
'i'I‘l(l-—-}"’z(n'z))-l/2 exp[ —IW—LE Irk—p R (2.7)

The first term of (2.7) goes to zero since b2 ~ 2 In n.
Now F(m) In n = O(1), so

2 (bptx/c,) 5
lﬁnexp [ —-';T_—?—(;?—)—]=exp[l+(( )(21nn lnlnn)+o(1)]

=0(1).
Hence the second term of (2.7) will also be o(1) if

n
ntinn kZ) Ir,—p,! =o(1). (2.8)
=m

Fork = m,
r, — Y/Inkl = O(1/In n),

and we have for any €,
n

n
z: Z; Y
—_— < — ——

]

PR D e R |
k

=milnk Inn

\
<#m<k<nlir, Ink—yl > €} O(]—r!l-;;}

e(n—m)

1 1

+ —_—— —.
Ink Inn

(2.8) now follows if

n
1 L) = o2 |
k§ (E‘E - R‘E) O(ln n) (2.9)



6 Y. Mittal, D. Yivisaker [ Limit distributions for maxima

Using an integration by parts we find that
n

>l L

k=mInk lnm lnx

1 n___m_, n-m
Inm Inn Inm (lnm)z.

< 1
? (lnk lnn)<

<(1l § N __lm + n-»-m)lnn H—m _
nm inn Inm g2 n T

Hence

=o(1),
and (2.9) is established as in (2.6).
Now consider P[M,(p,) < b, +x/c, ). Write this as
P{(1-p,)2M (0)+ p}? U< b, + x/c,] =

= f P(M,(0)< (b, +x/c, — pM2u) (1 ~p,) 2] p(u) du

— OO

= [ P, < by + )+ ol | o) du, (210

where x(u) = x — (27)Y2 u + 4. Using (2.1) in (2.10), dominated conver-
gence gives us

o0

[ PIM, Q)< b, + (x(u) + o(1))e, ] plu) du ~

f expl—expl-—-x(u)1] o) du,
which completes the proof of the theorem. O
Before beginning on Theorem 2.4 let us make the following observa-
tion. Assume in Theorem 2.3 that
r,=y/lnn forinl>M

Then according to (2.6), M,, has the same asymptotic distribution as M, (r, ).
In Theorem 2.4 the same conclusion is ultimately made, viz. M,, and
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M, (r,) have the same asymptotic distribution. However, we are unable
to demonstrate this fact directly using (2.3). Our proof of Theorem 2.4
involves trimming back to a maximum obtained from an appropriate set
of n exp[—(In #)1/2] variables. The trimming invokes theconvexity of r,,
and while this device ensures a lengthy proof, it appears that something
akin to this is an essential step in obtaining the result.

Theorem 2.4. Suppose that r, is convex for n = 0,r, = o(1), and that
(r, In n)~! is monotone for large n and o(1). Then

Pir, 2 (M, —(1-r )2 b Y<x]->®(x)asn>>= forall x.
| ' 2.11)
Proof. The proof proceeds by showing that the lim inf of the left-hand
side of (2.11) is at least ®(x—e) for all € > 0, while the lim sup is at most

®(x t+€). The first statement is almost immediate. 7, is decreasing, so (2.2)
gives us a first comparison of

PIM, <rl2x+(1-r, )b, 1>

>PIM, (r)<rtx + (1-r )20 1. (2.12)
But the right-hand side of (2.12) satisfies
PIM,(r)< (1—r )2 b, +rl2x]=

=P[(1-r, )2 M, ) +r2 U< (1-r )2 b, + 1) x]
= [ PIM,0)< b, + 1 —)/(1-1,) P o) du

> PIM (0} < b, +erl2(1 -r,)1/?] (x—e),

and the last expression > ®(x—€) as n ~ * in view of (2.1) and the fact
that 742 ¢, » w0 asn > oo,

To do the other inequality, first note that the convexity of », ensures
that there is a stationary Gaussian sequence {Y;} = (Y (n)} with the cor-
relations

P =0 (n) = (rk——rn)/(l——rn) fork=1,2,..,n.

(For example, one may take p,(n) = O for k > n and apply Polya’s crite-
rion.)
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Further, if U is supposed independent of {Y;(n)}, X; may be represented
as (1-r,)2Y (n)+ri2U for k =0, 1, ..., n. Thus if M, denotes the

maximum of Y,(n), ..., Y,,(n), we may write
—_ 23 1/2
M, =(Q-r 20 +r)20.
Now
1/2 12,1 =
PIM, < (1-r)!2b, +rl2x] =

=Pl(1-r,)PM, +rPU< (1=r )b, +rV2x]

= [ P, < b, r i x—uD/(=r, )] lu) du

< d(x+e)+PM, <b, —¢ r,‘,"zl(l—rﬁ)‘leg
so the theorem will follow if
P(M, < b, —eri(1--r, )V = o(1)
or

PIM, < b, —er'2]=o(1).

(2.13)

Let t(n) = [n exp[—(In n)}/2]]. The convexity of {p,(n)} again ensures
that there is a stationary Gaussian sequence {Z;} ={Z,(n)} with the cor-

relations

0, =0, (N)=p VPyy k=1,2,..,n0.

Let M), be the maximum of Zy(n), ..., Z,(n) and use (2.2) to produce

PIM, < b,—erl?2]< PIM) < b, —er)l?)

< PIM, (o)) < b, —er'?)

*IPIM, (0,,)< 5, merrlxm‘ ~PIM,<b, - Gr,l,’zll-

(2.14)

We shall complete matters by showing that both terms on the right-hand
side of (2.14) tend to zero, the first by direct means and the secong by

appealing to (2.3).
To show that

PIM (b, < b, —e€ri?] = o(1),
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we need an estimate of the size of p,(,,. Fork <n,

j+1
r.—r = r.—r. )< — (r.—r, ., )=r 2 1L
k n i<k j i+l j=k"’- joi+l k]-:k r].
n-1
r. r
+
<rkz; _in-222 =1 In-% .
j=k r; "

But if k is sufficiently large that r, In n is monotone for n > &,

R L T Inn
= < —< : :
p() 1-r, l—rn]rl r, 1-r, In In k 2.15)
Now
PIM, (0, < b, —€rt21=Pl(1-p,, )V> M, (0) +p 2 U< b, —erll?]
o b p erl24pY2
= f P[M,,(0:<bn+ 1/’; tn) T - '(")1/2 p(u) du
Ehad (l"‘p,(n)) (1+(1—pt(n)) ) (l—pt(n))

< a-ert?20l)

1/2
€r,

+ P[M,,(O)s b,+ OnPito = ]
(=p, "2 (I+(1=py )V 2(1~p, )12
(2.16)
For the first term on the right-hand sidz of (2.16), note that (2.15) gives
r, r,(1=r,) r, (1-r,) (n n)l/2

Pyn) rt(n)ln(ln n/in t(n)) Tm)

since 1 < r,,/r, < Inn/lnt(n) - 1 asn - . To see that the second
term on the right-hand side of (2.16) is o(1), note that

-3 00

b, Py < byt Inn
P2 (e, 2 In t(n)
- b, 0 50

(in Y2 (1—r i2
and invoke (2.1).
It remains to be seen that the last term in (2.14) is o(1). Recall that
the correiation sequences associated with M, (p(,) and M;; agree for all
k = t(n).
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Then according to (2.3),
IPLM, (5, < b, —€rli?] - PIM;, < b, — et <
t(n)

<n "ZJI p(1—pd) V2 expl—(b, —eri??i(1+p,)].  (217)

Select an increasing sequence of integers ¢;(n) as follows:
tg(0) =[], 0< 0 < (1-p)/(1+p)),

tn)= [exp[(l—-r}jz) innll, i=1,2,..,q0),

tq(")...l(” ) = t(")s
where g(n) satisfies

rz(n)lz >(nn )-1/2 > rgq(n) +102
Observe ihat ¢(n) < In In n/lln n| < In In n for large 7. Now the right-
hand side of (2.17) is bounded for large n by

() _er!IZ)I
n*%p, exp [—~ —"———"—]

1+p,
AL —(b, —erli?y?
) y n n
+n % tl.ﬂ(n)p,im)exp[ T ] (2.18)
i

The first terin in (2.18) is negligible as ai (2.7). The term in (2.18) in-
dexed by i < g(n) is bounded by

2Inn
p 1;j(n)

exp [(z-rg;'ﬂ)/z) Inn- +o((In n)"z] =

2p,.
= exp [ln n(——-tf-s-'ﬂ- - r“”’"’z) + o((In 1-1)”2)] , (2.19)
l+p'i(n) "

while the term indexed by g(#) is at most
o)
exp [2 In n—(ln )42 — 2lnn o((In n)m)] =
1+p
tq(n)
1/2
2 p,qm) (In n)

1+
p'q(n)

= exp [(m n)l"z( ~ 1) + o((in m)1/2 )].u:n (2.20)
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We shall find that (2.19) is bounded by
expl—4(n M2 + o((In n)12]  fori=0, 1, ..., g(n)—-1,

and that (2.20) admits the same bound. This will complete the theorem
as (2.18) is then no larger than

{qin)+1) expl—L (In )2+ o((In n)!/2)] + o(1) <

< inIn n exp[-1 (In )2 + o{(In n)/?)] + o(1).
To bound (2.19) and (2.20), first use (2.15) io obtain
Pty <2 o) (-In @),

"’r,{n)< 2 Ttin) In (1—",1,/2)'l <2 r,i(n)r,l,/z fori=1,2,..., qn).
With i =1), (2.19) is bounded by

exp(ln n(4 T o) (-In 6)—r,1t/2) + o((ln n)!/?))1 =

= expl(In n)t,/2(4r, . ri2 (<In 6)—1) + o((In n)!/?)]

< expl[—3} ,.'12/2 Inn+o((In n)l/z)] <exp[—i(n n)1/2+o((ln n)l/z)] ,

where the last inequality follows from rY/2 > (In n)"V2, For 0 < i < q(n)
we again have r(i*1/2> (In #)~1/2 and so (2.19) is no more than

explry™V21n n(4r, , r}2 — 1)+ o(@n n)')1 <

< expl—1(In ©)2 + o((In n)V/?)).
Lastly, (2.20) is at most

expl(in 2 (dr, ri)? (n m2-1) + o((in )1 <

< expl(ln n)‘/2(4rtqm) r;”z-—l )+ o((In n)l/z)] <

< exp[—4 (In n)V2 + o((In n)1/2)]

using the fact that r@+1/2 (In n)1/2 < 1. The proof is now complete
since (2.14) has been shown to be o(1) via (2.16), (2.17) and (2.18). O

Remark. The convexity condition on r, ‘'n Theorem 2.4 can be weaken-
ed. It is first of ail clear that r,, convex for n > M would suffice — such
a correlation sequence differs from som: convex one for finitely many
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n and one then appeals to Berman’s Lemma. As a more substantial

weakening, we can prove (rather’ arduously) that r,, convex may be re-
- piaced by r, monotone. The first part of the proof follows exactly as
at (2.12). The other part of the proof uses the blocking technique des-
cribed preceding [4, (2.1)]. Whereas [4] uses a one-stage blocking, we
are forced here to do a (g(n) + 2)-stage blocking into the bluck sizes
t;(n) as given above (2.18). The proof is long ard not particularly in-
structive, so we have chosen not to give it. With this fact at hand it is
subsequently easy to prove that r, monotone may be replaced by r,,
positive and monotone for large ».

We would like at this point to indicate how nonsmooth behavior in
{r,} can lead one away from the limit distributions of Theorems 2.3
and 2.4. The devic: we invoke is the following: Given {r,} and a perio-
dic correlation sequence {p,}, {r,,p,} is a "1cw correlation sequence which
can have rather large oscillations. If r, In n = o(1), the limit distribution
for M, is unaffected by this char.ge, but this is no longer true when
r, Inn # o(1). Here then is a first simple example which already suffi-
ces to distinguish this context from the independent variables setting.
Take

pp =0 fork=1,2,..,d-1, rg=1

and suppose that {7,} satisfies the assumptions of Theorem 2.4. If M,,
denotes the maximum under the correlation sequenc~ {r,p,}, M, is it-
self the maximum of d independent maxima of sequences with the

correlation {r;,}. Applying Theorem 2.4 to each of these d sequences

and checking the behavior of the centering and scaling constants leads
one to

Plrl2 (0, —(1—-r )b )< x]»> d%(x) forallx. (2.21)

Now distribution types which are closed with respect to taking powers
are, equivalently, those which arise as limit distributions for th» maxima
of independent variables. Iii Theorems 2.3 and 2.4 we do not have such
closure and new laws arise.

Here is the information we have about other limit laws that arise in
this way. Suppose {p,} is arbitrary and d = min{n > 0: p, = 1}. Let
Uy, ..., Uy _ be a staticnary Smussian sequence with E{Uy} =0, E{ Ug}=l
and E{U; U, } = py,, and let {#,} denote the maxima associated with the
correlation sequence {r, p,}. If {r } satisfies the assumptions of Theorem
2.3, we can show that

d-1i

Plc, (M, ~b,)<x]~E IF(I) Hx+lnd +y - Q' 20)). (2.22)
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If {r,} satisfies the assumptions of Theorem 2.4 we expect that
Pir; 2(M, — (1—r )25 )< x] » G(x), (2.23)

where G is the distribution function of maxy¢;<y_; Uy We have not
proved (2.23) in this generality. In case {p;} is nonnegative howeve:,
this can be demonstrated by two simple comparisons. A suitable lower
bound for the probability in (2.23) is obtained by comparmE,M with
MaXggxan (1=, V2W; + 12 Uy) where the W, ’s are independent, in-
dependent of {U } and standard normal An upper bound can be found
by representmgM by maxgcr <, ((1-r, 2 Yy (n) + 12U x) where

{Y,; ()} is the sequence used in T heorem 2.4.

3. Limit distributions for M,

In this section {X(¢)} is to be a continuous parameter, stationary
Gaussian process with

E{(X(0)}=0, E{X20}=1, E{XO0)X)}=r@).
We suppose throughout that
r(t) =1 —cit1® + o(111%), 3.1)

for ¢ a neighborhood of zero where a and ¢ are constants satisfying
0< a < 2and c> 0. As a consequence of (3.1) we may take X to have
continuous paths and M to be defined by maxy,< 7 X (1).

We first state a result of Pickands [7] which shows that the extreme-
value distribution H is a limit distribution for M under suitable asymp-
totic conditions on r. For this, consider a separable, nonstationary
Gaussian process Y(?), t = 0, with E{Y(#)} = —|#|® and

Cov(Y(s), Y(£)) = IsI® + [£|® — [s—1]°.
Set

H, = lim 7! f u P[max Y(t)> uldu,
T~ oo 0 0<t<T

cr =(21In T2,

Br =cp+ {(a!--DinInT +In((2m) V2 Mol 232y}t

in which it should be noted that H, is positive and finite {7]. With (3.1)
in force, Pickands has shown that r(¢) In ¢ = o(1) implies
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Plc,(M;—B,) < x] - expl-e*]as T+ forallx. (3.2)

We are now in a position to state:

Theorem 3.1. Suppose that (3.1) holds with 0 < a < 1, r(t) is convex
for t = 0 and o(1), and that (r(t) In )"l is monotone for large 1 and
o(1). Then

BIrV(T) M~ C—r(MH2 B )< x]»>PB(x)asT->  forallx. (3.3)

Proof. We proceed, as in Theorem 2.4, to show first that the lim inf of
the left-hand side of (3.3) is at least ®(x—e) and then that its lim sup is
at most d(x +e).

Let p(t) be a correlation function satisfying

p()=1-=2c|t|*+0(|21*) ast-D.
Ther there exists a 7 > 0 such that for all sufficiently large T,
p(; J=r(M+r(T)<r(t) forallO<r< . (3.4)

Consider a process {Y,(¢), t > 0}, composed of standard normal variables,
which, on each interval [Ar, (k+1)7), has the correlation function p, has
continuous paths and is independent of Y, (¢), t € [j7, ( + 1)) ifj # k.

If T is large and U is a standard normal variable independent of

{Y (), t > O}, then (3.4) ensures that

E{X ()X (1)} = E{(1-r(TH? Y (s) +r'3(T) U]

[(1--HTHY2 7 () + r12(T) U
for ali s and ¢. Applying (2.2) we find that
PIM, < (1--r(THV2 B+ rVA(T) x) >

> P[(1—r(T)2 1/2 —HTHV? 12
Pl(1-r(1Y) OiL:ETYl(t)H (MU < A-r(1)"* B +r*(T) x]

7, 3 (1-r(T))

= e — (T/r)+1 12,7
&(C.—€)P [oiu)éryl(t)< B ter's(1;]. (3.5)

> fP[T/’I*‘ [Osup Y, ()< By +( wﬂ)—)llz (x—-u)] () du
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Thus the lim inf of the left-hand side of (3.3) is at least ®(x —€) provided
PUAH [ sup Y ()<Bp+er?(D)]>1 asT>e. (3.6)
o<t<r

Consider 4 = infj¢,, (1-p(£)N£]"*. We claim that 4 > O since other-
wise there is a ty # 0 for which p(#y) = 1. But then #(#) = 1 because of
(3.4), and this contradicts r(¢) = o(1). Since 4 > 0, [6, Lemma 2.9] is
applicable (see also [8. Lemma 1.2]) and

Plsup, ., Y1()> Br + e r'3(T))
7 2=l (B, + € rii2(T))
Now the log of (3.6) is
LT/r1+1) In Plsup, . Y, (1) < B, +ert?(T)] ~

> Qo)eH  asT->w. (3.7)

~ —(T/T) P sup Y,(t)> B, +er/X(T)]
o<t<7r

~ -T2V H, p(B, +er'/X(T)), (3.8)

and this tends to zero as 7 - o, completing the first part of the proof.

To do the other part, first note that the convexity of r ensures that
there is a separable stationary Gaussian process {Yr} = {Y(£)} with the
correlation function

pp=pp(t) = () —r(T)/(1~K(T)) fort<T.
Let

M, = max Y.(t),
T oct<T T

and represent M, by
(l—l‘(T))llz M'T + rl/Z(T) U

for U independent of {Y}. As in (2.13), the proof will be complete
when it is sho'vn that

PIM < B, —erV2(1)]>0 asT- . (3.9)

Let Q(7) = T exp[—('n T)Y/2]. The convexity of py aga- 1 ensures that
there is a separable stationary Gaussiar. process {Zy} = {Z.7)} with the
correlation function

0y = 0p(t) = pp(t) v pr(Q(T)).
Let

M> = max Z.(1),
T o<t T )
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and conclude from (2.2) that
PIM} < B —e r'2()1< PIMy < By —ert” m] (3.10)
The problem is now made discrete as follows. Take /, ...,/ n to be
[ 7] consecutive unit intervals with. an interval of length 8 removed
from the right-hand end of each one. Let G5 be the set of integer 1aulti-
ples of (2 In T) 3= ¢38/@ and let S(T) = Gy N (UI;). According to [51,
7 and maX,c g Z7(f) have the same limit distribution, so it will be

enough to show that
2 . oo
P[ max Z.()<pr —e r2(T)1>0 asT- e, (3.11)

Factoring out a common Gaussian variable in the usual way, we may
write, in parallel with (2.16),

P mgé)zr(t) < Bp—er¥(?)]=
=P[(1-a,(T)"? max Zy(e) + ol U< Bp—er3(D)]

<o)

+P[ max Zi.(r)< -+ by or(7)
1S (=0 (T2 (1+(1-0,(THV?2
1/2
-r N ] , (.12)
(1“07-(7'))1’2

where Z7 has the correiation function
op(t) = (0p()—0,(T)/(1~0,(T)) fort<T.
Because r(¢) In ¢ is monotone for large ¢, we find as in the discrete case
that
r@t) = r(T) < r(®) In Gz T/lnr)
whenever i < T. Hence

< r(t) InT
pr(t) 1-r(T) In In¢’

0,(T) = p (T expl—(In T2} < T exp[—(n V2] 2 )
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The first term on the righ:-hand side of (3.12) is now easily seen to be
o(1), while the second term is handled as above (2.17) to reduce the
oroblein to that of showing

3 s ' 1/2 -

Pluax Zp ()< By —er (1)1 = o(1). (3.13)

(3.13) is derived as fcllows. Let {Y,(¢), ¢ > O} be a process of standard

normal variables which on each interval [«, k + 1) has the correlation
function 07, and is independent of Y,(t),t€[j,j+1)ifj+ k.We have

U _ 1/2¢5
P[trensa(az()zr(t)sﬁT er'’{(N)] <

<Pl —erl(
[reS(n}?r)\(lo, 1) Yz(t) < BT €rmin]

+ \ e P 2¢
lpltlgg()':s') N < By —er™ D
—P ' e 12 . .
[tleng();) ZT(t} < BT er'’“(MI (3.14)

Since o (1) < r(t) on (9, 1],

pi7l ‘ <B.—erl?
ltesg)a;‘x[o,l) L)< Br—er’*(7)

< PI7 X(t) < 8.—er'2(N),
[:esr(t}e)lr)w‘[o,u ()< Bp—er™A(D]

aad this is o(1) by [6, Lemma 2.5] (see also, [8, Lemma 1.3]). Finally,
the last term in (3.14) is estimated according to (2.3) and the resulting
sum is handled exactly as (2.17). These details are omitted. O
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