On the existence of directed rings and algebras with negative squares

YiChuan Yang
College of Applied Sciences, Beijing University of Technology, Beijing 100022, PR China
Universität Stuttgart, Institut für Algebra und Zahlentheorie, D-70569 Stuttgart, Germany

Received 16 September 2004
Available online 13 December 2005
Communicated by Michel Broué

Abstract

We show that there exist many directed rings and algebras with negative squares. © 2005 Elsevier Inc. All rights reserved.

Keywords: Directed ring; Directed algebra; Valuation; Negative square

1. Introduction

In [1], Artin and Schreier observed that a totally ordered field cannot have negative squares, and Johnson in [11] and Fuchs in [7] extended this result to totally ordered domains with unit element. In [12], Schwartz showed that an archimedean lattice-ordered field that has $1>0$ and that is algebraic over its maximal totally ordered subfield cannot have negative squares, and in [6], DeMarr and Steger showed that in a partially ordered finite-dimensional real linear algebra no square can be the negative of a strong unit. In [4], Birkhoff and Pierce asked whether the complex numbers have a compatible lattice-order. Below we use valuations to construct directed algebras that have negative squares. By the results of Johnson and Fuchs, the order on such an algebra cannot be extended to a compatible total order.

[^0]For the general theory of partially ordered algebraic systems, we refer the reader to [2,3,8,10].

Throughout this note, all fields are commutative; all rings are associative and have identity; $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$, and \mathbb{C} denote the totally ordered ring of integers, the totally ordered field of rational numbers, the totally ordered field of real numbers, and the filed of complex numbers respectively; x denotes an indeterminate.

2. Directed rings with negative squares

Let F be a ring with unit element 1 , let G be a nontrivial, totally ordered, additive, abelian group, and let $G_{-\infty}=G \cup\{-\infty\}$, where $(-\infty)+(-\infty)=-\infty=(-\infty)+g=$ $g+(-\infty)$ for all $g \in G$. A function $v: F \rightarrow G_{-\infty}$ is a negative valuation if v is onto and the following conditions hold for all $a, b \in F$:
(1) $v(a)=-\infty$ if and only if $a=0$;
(2) $v(a b)=v(a)+v(b)$;
(3) $v(a+b) \leqslant \max \{v(a), v(b)\}$.

As noted in the proof of Corollary 2.3 below, the degree function on the quotient field of $\mathbb{R}[x]$ is a negative valuation into \mathbb{Z}. For later use, note that by (2), $v(1)=0=v(-1)$ and hence $v(-a)=v(a)$ for all $a \in F$.

Proposition 2.1. Let F be a totally ordered ring with unit element, let G be a nontrivial totally ordered abelian group, and let $v: F \rightarrow G_{-\infty}$ be a negative valuation. Then the following statements are equivalent:
(1) for all $0 \leqslant a, b \in F, v(a+b)=\max \{v(a), v(b)\}$;
(2) for all $0 \leqslant a, b \in F$, if $v(a)>v(b)$, then $a>b$.

Proof. Assume that (1) holds, that $0 \leqslant a, b \in F$, that $v(a)>v(b)$, and that $a \leqslant b$. Then $0 \leqslant b-a$ and $v(b)=v((b-a)+a)=\max \{v(b-a), v(a)\} \geqslant v(a)$, a contradiction. So $a>b$.

Conversely suppose that (2) holds, that $0 \leqslant a, b \in F$, and that $v(a+b) \neq \max \{v(a)$, $v(b)\}$. Then since v is a negative valuation, $v(a+b)<\max \{v(a), v(b)\}$. If $\max \{v(a)$, $v(b)\}=v(a)$, then $v(a)>v(a+b)$, and hence by (2), $a>a+b$ so that $0>b$, a contradiction. A similar contradiction occurs if $\max \{v(a), v(b)\}=v(b)$ and thus $v(a+b)=$ $\max \{v(a), v(b)\}$.

Theorem 2.2. Let F be a totally ordered field, and let $F(i)$ be an extension of F by an element i, where $i^{2}=-1$. If there exist a totally ordered nontrivial abelian group G and a negative valuation $v: F \rightarrow G_{-\infty}$ that satisfies the equivalent conditions of Proposition 2.1, then there exists a partial order on $F(i)$ with respect to which $F(i)$ is a directed field.

Proof. Let

$$
P=\{a+b i \mid a \geqslant 0, b \geqslant 0, \text { and if } b \neq 0, \text { then } v(a)>v(b)\} .
$$

By [8, pp. 13 and 105], P will be the positive cone of a directed order on $F(i)$ if
(1) $P \cap(-P)=\{0\}$,
(2) $P+P \subseteq P$,
(3) $P P \subseteq P$, and
(4) $F(i)=P-P$.

That condition (1) holds is clear. For (2) and (3), let $a+b i, c+d i \in P$.
Suppose first that $a=0$. If $b \neq 0$, then $-\infty>v(b)$, a contradiction. So $b=0$ and hence $(a+b i)+(c+d i)=c+d i \in P$ and $(a+b i)(c+d i)=0 \in P$. A similar situation occurs when $c=0$ and hence we may assume that $a>0$ and $c>0$. Note that if $b=0$, $v(a)>-\infty=v(b)$ and if $b \neq 0, v(a)>v(b)$ because $a+b i \in P$, and that similarly $v(c)>v(d)$.

For (2), we certainly have $a+c>0$ and $b+d \geqslant 0$. So if $b+d=0,(a+b i)+$ $(c+d i)=(a+c)+(b+d) i \in P$. If $b+d \neq 0$, then since $v(a)>v(b)$ and $v(c)>v(d)$, Proposition 2.1 implies that

$$
v(a+c)=\max \{v(a), v(c)\}>\max \{v(b), v(d)\}=v(b+d)
$$

So in this case as well, $(a+b i)+(c+d i) \in P$, and therefore, (2) holds.
For (3), we have $a d+b c \geqslant 0$ and $v(a c)=v(a)+v(c)>v(b)+v(d)=v(b d)$. So by Proposition 2.1, $a c-b d>0$, and thus if $a d+b c=0,(a+b i)(c+d i)=(a c-b d)+(a d+$ $b c) i \in P$. If $a d+b c \neq 0$, then by Proposition 2.1, $v(a d+b c)=\max \{v(a d), v(b c)\}$ and $v(a c)=v((a c-b d)+b d)=\max \{v(a c-b d), v(b d)\}$. So since $v(a c)>v(b d), v(a)+$ $v(c)=v(a c)=v(a c-b d)$. Then by Proposition 2.1, if $v(a d+b c)=v(a d)$,

$$
v(a d+b c)=v(a)+v(d)<v(a)+v(c)=v(a c-b d)
$$

and similarly if $v(a d+b c)=v(b c)$,

$$
v(a d+b c)=v(b)+v(c)<v(a)+v(c)=v(a c-b d) .
$$

It follows that $(a+b i)(c+d i)=(a c-b d)+(a d+b c) i \in P$ and hence that (3) holds.
For (4), we first show that $i \in P-P$. Since v is onto and G is nontrivial, $v(f)>0$ for some $f \in F$, and thus since $v(f)=v(-f)$ and F is totally ordered, we may assume $f>0$. Furthermore, $v(f)>0=v(1)$ and since F is a totally ordered field, $1>0$. So $f+i \in P$ and thus $i=(f+i)-f \in P-P$. Now suppose that $a+b i \in F(i)$. Then $a, b \in P \cup(-P)$ and we have shown that $i=\alpha+\beta$ for $\alpha \in P$ and $\beta \in-P$. So by (3), $b \alpha \in P$ and $b \beta \in-P$ or $b \alpha \in-P$ and $b \beta \in P$, and by (2), writing $a+b i$ as $(a+b \alpha)+b \beta$ or $(a+b \beta)+b \alpha$ shows that $a+b i \in P-P$. So (4) holds and thus $F(i)$ is a directed field with respect to the order induced by P.

Corollary 2.3. Let F be a totally ordered field and let Q denote the quotient field of the polynomial ring $F[x]$. If i is a solution of $x^{2}+1=0$, then there exists a partial order on $Q(i)$ with respect to which $Q(i)$ is a directed field.

Proof. By [8, p. 107], $F[x]$ is a totally ordered ring with respect to the order: $a_{0}+a_{1} x+$ $\cdots+a_{n} x^{n}>0$ if and only if $a_{n}>0$, and by [8, p. 110], the quotient field Q of $F[x]$ is a totally ordered field with respect to the order: $\frac{f(x)}{g(x)}>0$ if and only if $f(x) g(x)>0$. It is straightforward to show that the function $v: Q \rightarrow \mathbb{Z}_{-\infty}$ defined by letting

$$
v\left(\frac{f(x)}{g(x)}\right)= \begin{cases}\operatorname{deg}(f(x))-\operatorname{deg}(g(x)) & \text { if } f(x) \neq 0 \\ -\infty & \text { if } f(x)=0\end{cases}
$$

is a well-defined negative valuation on Q that satisfies condition (1) of Proposition 2.1 ($[5, \mathrm{p} .7]$ does this for the degree function on $F[x]$). So by Theorem 2.2, there is a partial order on $Q(i)$ with respect to which it is a directed field.

Since we have not shown that the order defined in the proof of Theorem 2.2 is a latticeorder, we have not answered the question of Birkhoff and Pierce mentioned in Section 1. In view of the work above, a more general question would be the following. Note that since a lattice-ordered field is directed, a negative answer to this question would yield a negative answer to the question of Birkhoff and Pierce.

Question 2.4. Do the complex numbers have a compatible directed order?

3. Directed algebras

Let T be a totally ordered ring and recall (see [6]) that a directed T-algebra is an algebra D over T with a partial order that makes it a directed ring with the following compatibility property: if $0 \leqslant \tau \in T$ and $0 \leqslant d \in D$, then $0 \leqslant \tau d$.

In [4], Birkhoff and Pierce showed that $\mathbb{Q}(i)$ admits no partial order with respect to which it is a lattice-ordered field and that \mathbb{C} admits no partial order with respect to which it is a lattice-ordered algebra over \mathbb{R}. In [12], Schwartz proved that the field of algebraic numbers admits no partial order with respect to which it is a lattice-ordered field. And in [6], DeMarr and Steger proved that if A is a finite-dimensional nontrivial algebra over \mathbb{R} whose center contains a square root of -1 , then A admits no partial order with respect to which it is a directed algebra over \mathbb{R}. We first note that the proof of DeMarr and Steger may be easily generalized to prove the following result.

Proposition 3.1. Let T be a totally ordered archimedean ring such that the map $x \mapsto x+x$ is onto, and let A be a finite-dimensional nontrivial T-algebra whose identity is a strong order unit and whose center contains a square root of -1 . Then A admits no partial order with respect to which it is a directed algebra over T.

On the other hand, since the proofs in Section 2 remain unchanged if the rings are viewed as algebras over a totally ordered ring T, we have the following result for directed algebras.

Proposition 3.2. Let F be a totally ordered field, and let $F(i)$ be an extension of F by an element i, where $i^{2}=-1$. If there exist a nontrivial totally ordered abelian group G and a negative valuation $v: F \rightarrow G_{-\infty}$ that satisfies the equivalent conditions of Proposition 2.1, then there exists a partial order on $F(i)$ with respect to which $F(i)$ is a directed F-algebra. In particular, if Q is the quotient field of the polynomial ring $F[x]$, then there exists a partial order on $Q(i)$ with respect to which $Q(i)$ is a directed Q-algebra.

We conclude this note with three examples. All are examples of directed algebras that are not lattice-ordered, the first over \mathbb{R} and the second and third over \mathbb{Z}. The third shows that a directed \mathbb{Z}-algebra need not satisfy the condition: if $n a \geqslant 0$, then $a \geqslant 0$.

Example 3.3. Fuchs' tight Riesz orders [9] give many examples of directed \mathbb{R}-algebras that are not lattice-ordered. For instance,

$$
P=\left\{a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in \mathbb{R}[x] \mid 0<a_{i} \text { for all } i\right\} \cup\{0\}
$$

is the positive cone of a partial order on $\mathbb{R}[x]$ with respect to which $\mathbb{R}[x]$ is a directed \mathbb{R}-algebra that is not lattice-ordered.

Example 3.4. It is easy to check that with respect the coordinatewise operations, $\mathbb{Z} \times \mathbb{Z}$ is a \mathbb{Z}-algebra and that $P=\{(m, n) \in \mathbb{Z} \times \mathbb{Z}| | m \mid \leqslant n\}$ is the positive cone of a partial order \succcurlyeq on $\mathbb{Z} \times \mathbb{Z}$ with respect to which $\mathbb{Z} \times \mathbb{Z}$ is a directed \mathbb{Z}-algebra. To see that this order is not a lattice-order, observe that $(1,1) \succcurlyeq(1,0)$ and $(1,1) \succcurlyeq(0,0),(0,1) \succcurlyeq(1,0)$, and $(0,1) \succcurlyeq(0,0)$. But if $(m, n) \succcurlyeq(1,0)$ and $(m, n) \succcurlyeq(0,0)$, then $|m-1| \leqslant n$ and $|m| \leqslant n$. So if as well $(1,1) \succcurlyeq(m, n)$, then $|1-m| \leqslant 1-n$ and hence $2|m-1| \leqslant(1-n)+n=1$, i.e., $m=1$. And if as well $(0,1) \succcurlyeq(m, n)$, then $|-m| \leqslant 1-n$ and hence $2|m| \leqslant(1-n)+n=1$, i.e., $m=0$. It follows that \succcurlyeq is neither a lattice-order nor a tight Riesz order.

Example 3.5. It is easy to check that $P=\{n \in \mathbb{Z} \mid 1<n\} \cup\{0\}$ is the positive cone of a partial order \succ on \mathbb{Z} with respect to which \mathbb{Z} is a directed \mathbb{Z}-algebra. Note that $3 \succ 1$ and $3 \succ 0$ and if $3 \succ n$ and $3 \neq n$, then $1 \geqslant n$ so that $n \nLeftarrow 0$. But $4 \succ 1,4 \succ 0$, and $4 \nsucc 3$. It follows that \succ is neither a lattice-order nor a tight Riesz order. Note that $2 \cdot 1 \succ 0$ but $1 \nsucc 0$.

Acknowledgment

The author thanks the referee both for rewriting the paper and for suggesting Proposition 2.1, which helped to eliminate the lacunae in an earlier, incomplete proof of Theorem 2.2.

References

[1] E. Artin, O. Schreier, Algebraische Konstruction reeler Körper, Abh. Math. Sem. Univ. Hamburg 5 (1926) 85-99.
[2] A. Bigard, K. Keimel, S. Wolfenstein, Groupes et Anneuax Réticulés, Lecture Notes in Math., vol. 608, Springer-Verlag, Berlin, ISBN 3-540-08436-3, 1977.
[3] G. Birkhoff, Lattice Theory, third ed., Amer. Math. Soc. Colloquium Pub., vol. 25, Amer. Math. Soc., Providence, RI, 1973.
[4] G. Birkhoff, R.S. Pierce, Lattice-ordered rings, An. Acad. Brasil. Cienc. 28 (1956) 41-69.
[5] N. Bourbaki, Éléments de Mathématique, Algèbre, Chapitre 4, Polynomes et Fractions Rationelles, Actaualités Scientifiques et Industrielles, vol. 1102, Hermann, Paris, 1959.
[6] R. DeMarr, A. Steger, On elements with negative squares, Proc. Amer. Math. Soc. 31 (1972) 57-60.
[7] L. Fuchs, Note on ordered groups and rings, Fund. Math. 46 (1958) 167-174.
[8] L. Fuchs, Partially Ordered Algebraic Systems, Pergamon Press, Oxford, 1963.
[9] L. Fuchs, Riesz Vector Spaces and Riesz Algebras, Queen's Papers in Pure and Appl. Math., vol. 1, Queen's Univ., Kingston, ON, 1966.
[10] A.M.W. Glass, Partially Ordered Groups, World Scientific, Singapore, ISBN 981-02-3493-7, 1999.
[11] R.E. Johnson, On ordered domains of integrity, Proc. Amer. Math. Soc. 7 (1956) 414-416.
[12] N. Schwartz, Lattice-ordered fields, Order 3 (1986) 179-194.

[^0]: E-mail address: yichuanyang@hotmail.com.

 0021-8693/\$ - see front matter © 2005 Elsevier Inc. All rights reserved.
 doi:10.1016/j.jalgebra.2005.10.039

