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Abstract

We show that there exist many directed rings and algebras with negative squares.
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1. Introduction

In [1], Artin and Schreier observed that a totally ordered field cannot have negative
squares, and Johnson in [11] and Fuchs in [7] extended this result to totally ordered do-
mains with unit element. In [12], Schwartz showed that an archimedean lattice-ordered
field that has 1 > 0 and that is algebraic over its maximal totally ordered subfield cannot
have negative squares, and in [6], DeMarr and Steger showed that in a partially ordered
finite-dimensional real linear algebra no square can be the negative of a strong unit. In [4],
Birkhoff and Pierce asked whether the complex numbers have a compatible lattice-order.
Below we use valuations to construct directed algebras that have negative squares. By the
results of Johnson and Fuchs, the order on such an algebra cannot be extended to a com-
patible total order.
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For the general theory of partially ordered algebraic systems, we refer the reader to
[2,3,8,10].

Throughout this note, all fields are commutative; all rings are associative and have iden-
tity; Z, Q, R, and C denote the totally ordered ring of integers, the totally ordered field
of rational numbers, the totally ordered field of real numbers, and the filed of complex
numbers respectively; x denotes an indeterminate.

2. Directed rings with negative squares

Let F be a ring with unit element 1, let G be a nontrivial, totally ordered, additive,
abelian group, and let G−∞ = G ∪ {−∞}, where (−∞) + (−∞) = −∞ = (−∞) + g =
g + (−∞) for all g ∈ G. A function v :F → G−∞ is a negative valuation if v is onto and
the following conditions hold for all a, b ∈ F :

(1) v(a) = −∞ if and only if a = 0;
(2) v(ab) = v(a) + v(b);
(3) v(a + b) � max{v(a), v(b)}.

As noted in the proof of Corollary 2.3 below, the degree function on the quotient field of
R[x] is a negative valuation into Z. For later use, note that by (2), v(1) = 0 = v(−1) and
hence v(−a) = v(a) for all a ∈ F .

Proposition 2.1. Let F be a totally ordered ring with unit element, let G be a nontrivial
totally ordered abelian group, and let v :F → G−∞ be a negative valuation. Then the
following statements are equivalent:

(1) for all 0 � a, b ∈ F , v(a + b) = max{v(a), v(b)};
(2) for all 0 � a, b ∈ F , if v(a) > v(b), then a > b.

Proof. Assume that (1) holds, that 0 � a, b ∈ F , that v(a) > v(b), and that a � b. Then
0 � b − a and v(b) = v((b − a) + a) = max{v(b − a), v(a)} � v(a), a contradiction. So
a > b.

Conversely suppose that (2) holds, that 0 � a, b ∈ F , and that v(a + b) �= max{v(a),

v(b)}. Then since v is a negative valuation, v(a + b) < max{v(a), v(b)}. If max{v(a),

v(b)} = v(a), then v(a) > v(a + b), and hence by (2), a > a + b so that 0 > b, a con-
tradiction. A similar contradiction occurs if max{v(a), v(b)} = v(b) and thus v(a + b) =
max{v(a), v(b)}. �
Theorem 2.2. Let F be a totally ordered field, and let F(i) be an extension of F by an
element i, where i2 = −1. If there exist a totally ordered nontrivial abelian group G and a
negative valuation v :F → G−∞ that satisfies the equivalent conditions of Proposition 2.1,
then there exists a partial order on F(i) with respect to which F(i) is a directed field.
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Proof. Let

P = {
a + bi | a � 0, b � 0, and if b �= 0, then v(a) > v(b)

}
.

By [8, pp. 13 and 105], P will be the positive cone of a directed order on F(i) if

(1) P ∩ (−P) = {0},
(2) P + P ⊆ P ,
(3) PP ⊆ P , and
(4) F(i) = P − P .

That condition (1) holds is clear. For (2) and (3), let a + bi, c + di ∈ P .
Suppose first that a = 0. If b �= 0, then −∞ > v(b), a contradiction. So b = 0 and

hence (a + bi) + (c + di) = c + di ∈ P and (a + bi)(c + di) = 0 ∈ P . A similar situation
occurs when c = 0 and hence we may assume that a > 0 and c > 0. Note that if b = 0,
v(a) > −∞ = v(b) and if b �= 0, v(a) > v(b) because a + bi ∈ P , and that similarly
v(c) > v(d).

For (2), we certainly have a + c > 0 and b + d � 0. So if b + d = 0, (a + bi) +
(c + di) = (a + c) + (b + d)i ∈ P . If b + d �= 0, then since v(a) > v(b) and v(c) > v(d),
Proposition 2.1 implies that

v(a + c) = max
{
v(a), v(c)

}
> max

{
v(b), v(d)

} = v(b + d).

So in this case as well, (a + bi) + (c + di) ∈ P , and therefore, (2) holds.
For (3), we have ad + bc � 0 and v(ac) = v(a) + v(c) > v(b) + v(d) = v(bd). So by

Proposition 2.1, ac−bd > 0, and thus if ad +bc = 0, (a+bi)(c+di) = (ac−bd)+(ad +
bc)i ∈ P . If ad + bc �= 0, then by Proposition 2.1, v(ad + bc) = max{v(ad), v(bc)} and
v(ac) = v((ac − bd) + bd) = max{v(ac − bd), v(bd)}. So since v(ac) > v(bd), v(a) +
v(c) = v(ac) = v(ac − bd). Then by Proposition 2.1, if v(ad + bc) = v(ad),

v(ad + bc) = v(a) + v(d) < v(a) + v(c) = v(ac − bd),

and similarly if v(ad + bc) = v(bc),

v(ad + bc) = v(b) + v(c) < v(a) + v(c) = v(ac − bd).

It follows that (a + bi)(c + di) = (ac − bd) + (ad + bc)i ∈ P and hence that (3) holds.
For (4), we first show that i ∈ P − P . Since v is onto and G is nontrivial, v(f ) > 0

for some f ∈ F , and thus since v(f ) = v(−f ) and F is totally ordered, we may assume
f > 0. Furthermore, v(f ) > 0 = v(1) and since F is a totally ordered field, 1 > 0. So
f + i ∈ P and thus i = (f + i) − f ∈ P − P . Now suppose that a + bi ∈ F(i). Then
a, b ∈ P ∪ (−P) and we have shown that i = α + β for α ∈ P and β ∈ −P . So by (3),
bα ∈ P and bβ ∈ −P or bα ∈ −P and bβ ∈ P , and by (2), writing a +bi as (a +bα)+bβ

or (a + bβ) + bα shows that a + bi ∈ P − P . So (4) holds and thus F(i) is a directed field
with respect to the order induced by P . �
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Corollary 2.3. Let F be a totally ordered field and let Q denote the quotient field of the
polynomial ring F [x]. If i is a solution of x2 + 1 = 0, then there exists a partial order on
Q(i) with respect to which Q(i) is a directed field.

Proof. By [8, p. 107], F [x] is a totally ordered ring with respect to the order: a0 + a1x +
· · · + anx

n > 0 if and only if an > 0, and by [8, p. 110], the quotient field Q of F [x] is a
totally ordered field with respect to the order: f (x)

g(x)
> 0 if and only if f (x)g(x) > 0. It is

straightforward to show that the function v :Q → Z−∞ defined by letting

v

(
f (x)

g(x)

)
=

{
deg(f (x)) − deg(g(x)) if f (x) �= 0,

−∞ if f (x) = 0,

is a well-defined negative valuation on Q that satisfies condition (1) of Proposition 2.1
([5, p. 7] does this for the degree function on F [x]). So by Theorem 2.2, there is a partial
order on Q(i) with respect to which it is a directed field. �

Since we have not shown that the order defined in the proof of Theorem 2.2 is a lattice-
order, we have not answered the question of Birkhoff and Pierce mentioned in Section 1. In
view of the work above, a more general question would be the following. Note that since
a lattice-ordered field is directed, a negative answer to this question would yield a negative
answer to the question of Birkhoff and Pierce.

Question 2.4. Do the complex numbers have a compatible directed order?

3. Directed algebras

Let T be a totally ordered ring and recall (see [6]) that a directed T -algebra is an algebra
D over T with a partial order that makes it a directed ring with the following compatibility
property: if 0 � τ ∈ T and 0 � d ∈ D, then 0 � τd .

In [4], Birkhoff and Pierce showed that Q(i) admits no partial order with respect to
which it is a lattice-ordered field and that C admits no partial order with respect to which
it is a lattice-ordered algebra over R. In [12], Schwartz proved that the field of algebraic
numbers admits no partial order with respect to which it is a lattice-ordered field. And
in [6], DeMarr and Steger proved that if A is a finite-dimensional nontrivial algebra over
R whose center contains a square root of −1, then A admits no partial order with respect
to which it is a directed algebra over R. We first note that the proof of DeMarr and Steger
may be easily generalized to prove the following result.

Proposition 3.1. Let T be a totally ordered archimedean ring such that the map x 	→ x +x

is onto, and let A be a finite-dimensional nontrivial T -algebra whose identity is a strong
order unit and whose center contains a square root of −1. Then A admits no partial order
with respect to which it is a directed algebra over T .
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On the other hand, since the proofs in Section 2 remain unchanged if the rings are
viewed as algebras over a totally ordered ring T , we have the following result for directed
algebras.

Proposition 3.2. Let F be a totally ordered field, and let F(i) be an extension of F by an
element i, where i2 = −1. If there exist a nontrivial totally ordered abelian group G and a
negative valuation v :F → G−∞ that satisfies the equivalent conditions of Proposition 2.1,
then there exists a partial order on F(i) with respect to which F(i) is a directed F -algebra.
In particular, if Q is the quotient field of the polynomial ring F [x], then there exists a
partial order on Q(i) with respect to which Q(i) is a directed Q-algebra.

We conclude this note with three examples. All are examples of directed algebras that
are not lattice-ordered, the first over R and the second and third over Z. The third shows
that a directed Z-algebra need not satisfy the condition: if na � 0, then a � 0.

Example 3.3. Fuchs’ tight Riesz orders [9] give many examples of directed R-algebras
that are not lattice-ordered. For instance,

P = {
a0 + a1x + · · · + anx

n ∈ R[x] | 0 < ai for all i
} ∪ {0}

is the positive cone of a partial order on R[x] with respect to which R[x] is a directed
R-algebra that is not lattice-ordered.

Example 3.4. It is easy to check that with respect the coordinatewise operations, Z × Z is
a Z-algebra and that P = {(m,n) ∈ Z × Z | |m| � n} is the positive cone of a partial order
� on Z × Z with respect to which Z × Z is a directed Z-algebra. To see that this order
is not a lattice-order, observe that (1,1) � (1,0) and (1,1) � (0,0), (0,1) � (1,0), and
(0,1) � (0,0). But if (m,n) � (1,0) and (m,n) � (0,0), then |m−1| � n and |m| � n. So
if as well (1,1) � (m,n), then |1 − m| � 1 − n and hence 2|m− 1| � (1 − n)+ n = 1, i.e.,
m = 1. And if as well (0,1) � (m,n), then |−m| � 1−n and hence 2|m| � (1−n)+n = 1,
i.e., m = 0. It follows that � is neither a lattice-order nor a tight Riesz order.

Example 3.5. It is easy to check that P = {n ∈ Z | 1 < n} ∪ {0} is the positive cone of a
partial order � on Z with respect to which Z is a directed Z-algebra. Note that 3 � 1 and
3 � 0 and if 3 � n and 3 �= n, then 1 � n so that n �� 0. But 4 � 1, 4 � 0, and 4 �� 3. It
follows that � is neither a lattice-order nor a tight Riesz order. Note that 2 ·1 � 0 but 1 �� 0.
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