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1. Introduction

Since Pontecorvo’s pioneering work [1] the theoretical basis of 
neutrino mixing has been studied in great detail [2] and a quan-
tum field theory (QFT) formalism for mixed fields has been de-
veloped [3–12]. Phenomenological and experimental developments 
have successfully confirmed [13–19] the original proposal of the 
occurrence of the phenomenon of neutrino mixing and oscillations, 
thus opening new scenarios beyond the Standard Model (SM) of 
elementary particle physics. Puzzling questions remain, however, 
open. Among these, the problem of the origin of the non-vanishing
neutrino masses and mixings is a crucial one.

The QFT formalism has shown the limits of the quantum me-
chanical approximation in the treatment of mixing of neutrino 
fields by exhibiting the unitary inequivalence of the vacuum for 
neutrino fields with definite flavor (flavor vacuum) and the ones 
with definite mass. The unitary inequivalence between representa-
tions of the canonical (anti-)commutation relations is a character-
istic feature of QFT, which is absent in quantum mechanics (QM) 
due to the von Neumann theorem [20]. It has been shown [21]
that many physically relevant aspects in the mixing and oscillation 
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phenomenon are indeed consequences of such a QFT characteristic 
feature.

In this paper we focus on the algebraic structure of the field 
mixing generator. In QM the mixing transformation looks like a 
rotation operating on massive neutrino states. We show explicitly 
that such a rotation is not sufficient for implementing the mixing 
transformation at level of fields. It is necessary, in fact, also the 
action of a Bogoliubov transformation which operates a suitable 
mass shift. Such a property of Bogoliubov transformations has been 
already known and used since long time [22–25], e.g. in renor-
malization theory or in the dynamical generation of mass [25,26]. 
Bogoliubov transformations are also used in recent studies of neu-
trino mixing in astrophysics [27]. The key point in our analysis 
is the non-commutativity between rotation and Bogoliubov trans-
formations, a feature which turns out to be at the origin of the 
inequivalence among mass and flavor vacua.

The paper is organized as follows. In Section 2 we investigate 
the compatibility of the mixing transformation at level of states 
and fields, and show that a Bogoliubov transformations is required. 
In Section 3 we analyze the condensate nature of the flavor vac-
uum and the rôle played by the non-commutativity between the 
rotation and the Bogoliubov transformation. The possibility of a 
thermodynamical interpretation of such a condensate is consid-
ered in Section 4. Finally, in Section 5 we draw our conclusions. 
The paper is completed with Appendix A.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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2. Rotation and Bogoliubov transformations

Pontecorvo mixing transformations are written as a rotation of 
the states with definite masses |ν1〉, |ν2〉, into those with definite 
flavor |νe〉 and |νμ〉 as [1]

|νe〉 = cos θ |ν1〉 + sin θ |ν2〉, (1)

|νμ〉 = cos θ |ν2〉 − sin θ |ν1〉. (2)

On the other hand, Standard Model is formulated in terms of 
fields1 and there neutrino mixing appears in the following form 
[28]

νe(x) = cos θ ν1(x) + sin θ ν2(x) , (3)

νμ(x) = cos θ ν2(x) − sin θ ν1(x) , (4)

where x ≡ (x, t). The generator of such a transformation is [3]

G(t; θ,m1,m2) = exp

{
θ

∫
d3x

(
ν

†
1(x)ν2(x) − ν

†
2(x)ν1(x)

)}
.

(5)

The question then arises to what extent the two above transfor-
mations are equivalent. It has been shown [3] that this is not the 
case and indeed a deep conceptual difference is present between 
mixing of states and mixing of fields. The results also extend to 
the mixing phenomenon of any particle, and are not limited to the 
case of Dirac neutrinos.

Let us now consider the expansion for the Dirac fields ν1 and 
ν2 with definite masses appearing in Eqs. (3), (4):

νi(x) =
∑

r

∫
d3k

(2π)
3
2

[
ur

k,i(t)α
r
k,i + vr

−k,i(t)β
r†
−k,i

]
eik·x,

i = 1,2, (6)

where ur
k,i(t) = e−iωk,i t ur

k,i and vr
−k,i(t) = eiωk,i t vr

−k,i , with ωk,i =√
k2 + m2

i . The αr
k,i and the βr

−k,i (r = 1, 2), are the annihilation 
operators for the vacuum state |0〉1,2 ≡ |0〉1 ⊗|0〉2. See Appendix A
for other useful relations.

Observe that Eqs. (1), (2) can be seen as arising by the applica-
tion to the vacuum state |0〉1,2 of the rotated operators:

R(θ)−1α
r†
k,1 R(θ) = cos θ α

r†
k,1 + e−iψk sin θ α

r†
k,2, (7)

R(θ)−1α
r†
k,2 R(θ) = cos θ α

r†
k,2 − eiψk sin θ α

r†
k,1, (8)

and similar ones for βr†
k,i . An arbitrary phase ψk has been also in-

cluded. The generator R(θ) is indeed the one of a rotation:

R(θ) = exp

{
θ

∑
r

∫
d3k

(2π)
3
2

[(
α

r†
k,1α

r
k,2 + β

r†
−k,1β

r
−k,2

)
eiψk

−
(
α

r†
k,2α

r
k,1 + β

r†
−k,2β

r
−k,1

)
e−iψk

]}
. (9)

Notice that the unitary operator R−1 = R† leaves the vacuum in-
variant:

R−1(θ)|0〉1,2 = |0〉1,2 . (10)

1 Our analysis is limited to the case of two Dirac neutrinos. Extension to three 
neutrinos is in our plans. However, we have good reasons to believe that the present 
results are general, since our arguments are of algebraic nature.
In order to study the generator G(t; θ, m1, m2), Eq. (5), it is use-
ful to introduce another canonical transformation, the Bogoliubov 
transformation:

α̃
r†
k,i ≡ B−1

i (	i)α
r†
k,i Bi(	i)

= cos	k,i α
r†
k,i − εr eiφk,i sin	k,i β

r
−k,i, (11)

β̃
r†
−k,i ≡ B−1

i (	i)β
r†
−k,i Bi(	i)

= cos	k,i β
r†
−k,i + εr e−iφk,i sin	k,i α

r
k,i, (12)

with i = 1, 2 and the generator(s)

Bi(	i) = exp

{∑
r

∫
d3k

(2π)
3
2

	k,i ε
r
[
αr

k,iβ
r
−k,ie

−iφk,i

− β
r†
−k,iα

r†
k,ie

iφk,i

]}
. (13)

Since [B1(	1), B2(	2)] = 0, we may also define B(	1, 	2) ≡
B2(	2)B1(	1). Note that, the Bogoliubov transformation does
not leave invariant the vacuum |0〉1,2. Defining |̃0〉1,2 ≡
B−1(	1, 	2)|0〉1,2, we have

|̃0〉1,2 =
∏

i=1,2

∏
k,r

[
cos	k,i + εreiφk,i sin	k,iα

r†
k,iβ

r†
−k,i

]
|0〉1,2. (14)

The states |̃0〉1,2 and |0〉1,2 become orthogonal in the infinite vol-
ume limit, thus giving rise to inequivalent representations [12]. 
This is a well-known feature of QFT [24] reflecting into the non-
unitary nature (in the infinite volume limit) of the generator of 
Bogoliubov transformations.

We now consider the action of the rotation Eq. (9) on the fields 
ν1 and ν2:

R−1(θ)ν1(x)R(θ)

= cos θ ν1(x) + sin θ
∑

r

∫
d3k

(2π)
3
2

eik·x(eiψkαr
k,2 ur

k,1(t)

+ e−iψkβ
r†
k,2 vr

−k,1(t)
)
, (15)

R−1(θ)ν2(x)R(θ)

= cos θ ν2(x) − sin θ
∑

r

∫
d3k

(2π)
3
2

eik·x(e−iψkαr
k,1 ur

k,2(t)

+ eiψkβ
r†
k,1 vr

−k,2(t)
)
. (16)

The above expressions do not fully reproduce the mixing at level 
of fields, cf. Eqs. (3), (4): the problem is that the last term in the 
r.h.s. of these equations appears as the expansion of the field in the 
“wrong” basis. However, it is possible to recover the wanted ex-
pression by means of a suitable Bogoliubov transformation, which 
implements a mass shift. Let us see this for the field ν1:

B−1
2 (	2) R−1(θ) ν1(x) R(θ) B2(	2) =

= cos θ ν1(x) + sin θ
∑

r

∫
d3k

(2π)
3
2

eik·x(eiψk α̃r
k,2ur

k,1(t)

+ e−iψk β̃
r†
k,2 vr

−k,1(t)
)

= cos θ ν1(x) + sin θ
∑

r

∫
d3k

(2π)
3
2

eik·x(eiψkαr
k,2ûr

k,1(t)

+ e−iψkβ
r†
k,2 v̂r

−k,1(t)
)

, (17)
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where

ûr
k,1(t) = ur

k,1e−iωk,1teiψk cos	k,2

+ εr vr
−k,1eiωk,1te−iφk,2 e−iψk sin	k,2 , (18)

v̂r
−k,1(t) = vr

−k,1eiωk,1te−iψk cos	k,2

− εrur
k,1e−iωk,1te−iφk,2 e−iψk sin	k,2 . (19)

For 	̂k,2 = cos−1
(
e−iψk Uk(t)

)
, with Uk(t) ≡ ur†

k,2(t)ur
k,1(t) (see Ap-

pendix A), the Bogoliubov transformation B2(	̂2) produces the 
mass shift m2 − m1, such that2 ûr

k,1(t) = ur
k,2(t) and v̂r

−k,1(t) =
vr

−k,2(t). In definitive, the action of B−1
2 (	̂2) R−1(θ) produces the 

desired transformation of the field ν1, cf. Eq. (3). A similar rea-
soning can be done for ν2, using B−1

1 (	̂1) R−1(θ), with 	̂k,1 =
cos−1

(
eiψk Uk(t)

)
.

Note that the rôle of the Bogoliubov transformation in the pro-
cess of (dynamical) mass generation is well known, see for exam-
ple Refs. [25,26].

3. Vacuum structure and non-commutativity

In the previous Section, we have shown the incompatibility of 
the mixing transformation as mere rotations both for states and 
fields, and the necessity of implementing a mass shift for repro-
ducing the correct relations for fields: such an operation is highly 
non-trivial and indeed requires infinite energy (in the infinite vol-
ume limit).

On the other hand, the results of Section 2 are incomplete in 
that two different generators are needed for ν1 and ν2, whereas 
we know the algebraic generator for fields to be that of Eq. (5). 
It thus arises the problem of the decomposition of such generator 
in terms of rotation and Bogoliubov transformations; a preliminary 
solution to this problem has been presented in [29]. The full de-
composition of the mixing generator is given by (see Appendix A)

G(t; θ,m1,m2) = B−1(t;m1,m2) R(t; θ) B(t;m1,m2) , (20)

where the notation is now f (	i(mi)) ≡ f (mi); R(t; θ) and
B(t; m1, m2) are defined as in Eqs. (9), (13), with the phases 
φk,i ≡ 2ωk,it and ψk ≡ (ωk,1 − ωk,2)t and the condition 	k,i =
1
2 cot−1(

|k|
mi

) has been used [29]. From Eq. (20) it appears evident 
that the difference between G and R relies in the non-zero value 
of the commutator [R, B].

The explicit form of G(θ) in terms of ladder operators is given 
by Eq. (51) in Appendix A. It is possible to rewrite G(θ) (at t = 0) 
as

G(θ) = exp

{
2θ

∑
r

∫
d3k

(2π)
3
2

[
Uk J r

k,3 − εr V k J r
k,2

]}
, (21)

where we have introduced the following operators3:

J r
k,1 ≡ 1

2

[
(αr

k,1β
r
−k,1 − β

r†
−k,1α

r†
k,1) − (αr

k,2β
r
−k,2 − β

r†
−k,2α

r†
k,2)

]
,

(22)

J r
k,2 ≡ −1

2

[
(αr

k,1β
r
−k,2 − β

r†
−k,2α

r†
k,1) + (αr

k,2β
r
−k,1 − β

r†
−k,1α

r†
k,2)

]
,

(23)

2 An equivalent choice is 	̂k,2 = sin−1 (
eiφk,2 eiψk V k(t)

)
with V k(t) ≡

εr ur†
k,1(t)vr

−k,2(t).
3 We also have J r

k,1 ≡ 1
2 (K r

k,1 − K r
k,2) with K r

k,i ≡ αr
k,iβ

r
−k,i − β

r†
−k,iα

r†
k,i and 

ln Bi(	k,i) =
∫ d3k

3/2 	k,i
∑

r K r
k,i ; ln R(θ) = 2θ

∫ d3k
3/2

∑
r J r

k,3.

(2π) (2π)
J r
k,3 ≡ 1

2

[
(α

r†
k,1α

r
k,2 + β

r†
−k,1β

r
−k,2) − (α

r†
k,2α

r
k,1 + β

r†
−k,2β

r
−k,1)

]
,

(24)

which close the su(2) algebra: [ J r
k,i, J

r
k, j] = εi jk J r

k,k with i, j, k =
1, 2, 3. Moreover, considering that the Bogoliubov coefficients Uk
and V k appearing in Eq. (21) can be written as Uk = cos(	k,2 −
	k,1), V k = sin(	k,2 − 	k,1), in the limit of small (	k,2 − 	k,1), 
it is possible to expand V k in terms of the adimensional parameter 
a ≡ (m2−m1)2

m1m2
so that Uk

∼= 1, V k
∼= aṼ k , up to o[(a)2] where Ṽ k ≡

|k|√m1m2

2(|k|2+m1m2)
and thus,

G(θ) ∼= 1 + 2θ

∫
d3k

(2π)
3
2

∑
r

J r
k,3 + 2θ a

∫
d3k

(2π)
3
2

Ṽ k

∑
r

εr J r
k,2 .

(25)

It is easy to see as this generator becomes the identity when 
θ = 0 and is equivalent to a mere rotation when a = 0, i.e. 
m2 = m1. Moreover, the last term shows the explicit dependance 
on the true physical parameters of the mixing transformation, 
i.e. θ and a. Notice that the adimensional parameter a appears 
at second order in the expansion, being linked with the com-
mutator J r

k,2 = [ J r
k,3, J

r
k,1] which can be interpreted as a non-

diagonal Bogoliubov transformation, and is the first non-trivial term 
which contributes to the flavor vacuum structure.4 This feature 
can be further understood by looking at the vacuum defined in 
Eq. (14):

|0̃〉1,2 ∼=
[
1 +

∫
d3k

(2π)
3
2

∑
r

(
	k,1 α

r†
k,1β

r†
−k,1

+ 	k,2 α
r†
k,2β

r†
−k,2

)]
|0〉1,2 , (26)

for 	k,i small, and comparing it with the flavor vacuum |0〉e,μ ≡
G−1(θ)|0〉1,2 obtained in our approximation:

|0〉e,μ ∼=
[
1 + θ a

∫
d3k

(2π)
3
2

Ṽ k

∑
r

εr
(
α

r†
k,1β

r†
−k,2

+ α
r†
k,2β

r†
−k,1

)]
|0〉1,2 . (27)

Notice that, although the operatorial structure of the two above 
equations is similar, Eq. (27) exhibits non-diagonal operatorial 
terms. From Eq. (27) we see that |0〉e,μ cannot be reduced as a 
tensor product of vectors built on |0〉1,2: this indeed confirms that 
the phenomenon of flavor mixing is related to the entanglement 
of mass eigenstates (see [30] for the discussion of entanglement 
in the context of particle mixing and oscillations). Another inter-
esting feature of this phenomenon appears as one analyses more 
closely the parameter a, which in order to exist needs at least 
two fermion families to be present. In fact, with just one fam-
ily the only adimensional parameter one can form is |k|

m , which 
however depends on k and thus cannot be extracted from the in-
tegrals.

Finally, let us express the flavor vacuum by means of the full 
finite decomposition in Eq. (20):

|0〉e,μ = |0〉1,2 +
[

B(m1,m2) , R−1(θ)
]

|̃0〉1,2 , (28)

4 The complete operatorial structure of the flavor vacuum (Eq. (56) in the Ap-
pendix A) is obtained already at the second order approximation.
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where |̃0〉1,2 is defined in Eq. (14). We, thus, see how a condensate 
nature, made of particle–antiparticle pairs with same or different 
masses [3], arises as a consequence of the non-vanishing com-
mutator [B, R−1]. Indeed, a condensate is already present in the 
Bogoliubov vacuum |̃0〉1,2, for which it is possible to compute a 
condensation density:

1,2〈̃0|αr†
k,iα

r
k,i |̃0〉1,2 = 1,2〈̃0|βr†

−k,iβ
r
−k,i |̃0〉1,2 = sin2 	k,i, (29)

with i = 1, 2. The condensation density of the flavor vacuum differs 
from the one of the Bogoliubov vacuum and is given by

e,μ〈0(t)|αr†
k,iα

r
k,i |0(t)〉e,μ = e,μ〈0(t)|βr†

−k,iβ
r
−k,i|0(t)〉e,μ

= sin2 θ sin2(	k,1 − 	k,2), (30)

with i = 1, 2. We stress that, such condensation density, vanishes 
when either θ = 0 and/or m1 = m2, which are the cases in which 
there is no mixing.

As a result of the non-vanishing commutator in Eq. (28), one 
finds a gap in the vev of the energy on the two vacua �Ek ≡
e,μ〈0|Hk|0〉e,μ − 1,2〈0|Hk|0〉1,2:

�Ek = 2(ωk,1 + ωk,2) sin2 θ sin2(	k,1 − 	k,2) , (31)

where Hk ≡ Hk,1 + Hk,2. A detailed analysis of the energy gaps 
among the vacua |0〉e,μ , |̃0〉1,2 and |0〉1,2 is given in [29].

4. Thermodynamical properties

In this Section we investigate the possibility of a thermody-
namical interpretation for the condensate structure of the flavor 
vacuum. We proceed in analogy with Thermo Field Dynamics (TFD) 
for fermions, where a thermal vacuum is generated by means of a 
suitable Bogoliubov transformation:

|0(ϑ)〉 =
∏
k,r

[
cosϑk + sinϑk α

r†
k α̃

r†
k

]
|0〉1,2, (32)

where α and α̃ are fermion operators anti-commuting among 
themselves and ϑ = ϑ(β). Note that a “fictitious” system (the tilde
system), with the same structure of the physical system, is intro-
duced and is interpreted as a thermal bath. According to [22], such 
a state can be written as

|0(ϑ)〉 = exp

(
− Sα

2

)
|I〉 = exp

(
− Sα̃

2

)
|I〉 (33)

with |I〉 ≡ exp
(∑

k,r α̃
r†
−kα

r†
k

)
|0〉, and

Sα = −
∑
k,r

(
α

r†
k αr

k ln sin2 ϑk + αr
kα

r†
k ln cos2 ϑk

)
. (34)

In the above derivation one makes use of the following relations

e− Sa
2 α

†
ke

Sα
2 = tanϑkα

†
k , e− Sa

2 α̃
†
ke

Sα
2 = α̃

†
k . (35)

A similar expression holds for Sα̃ . Sα (or Sα̃ ) can, thus, be inter-
preted as the entropy function associated to the vacuum conden-
sate. We also have5

nk ≡ 〈αr†
k αr

k〉ϑ = sin2(ϑk) . (36)

The expectation value of the Hamiltonian Hα = ∑
k εkα

†
kαk is 

〈Hα〉ϑ = ∑
k εknk . We will use ωk = εk − μ, with μ being the 

chemical potential. The vev on the thermal vacuum of the entropy 

5 We use the notation 〈0(ϑ)| ∗ |0(ϑ)〉 ≡ 〈∗〉ϑ .
is: 〈Sα〉ϑ = −2 
∑

k

(
nk ln nk + (1 − nk) ln(1 − nk)

)
. One also consid-

ers the following quantity: � = 〈Hα − 1
β

Sα −μNα〉ϑ , which can be 
identified as a thermodynamical potential [22]. Extremization of �
with respect to ϑk leads to the Fermi–Dirac distribution.

nk = 1

eβωk + 1
. (37)

We apply a similar reasoning of the one in [22], also for the 
case of the flavor vacuum generated by Gt(θ, m1, m2) as in Eq. (5)
and assume that it is possible to rewrite it as:

|0〉e,μ = e− S
f
i
2 |I f 〉 , (38)

where i = 1, 2, f denotes “flavor”, and6 S f
i ≡ ∑

k S f
k,i ,

S f
k,i = −

{
(α

†
k,iαk,i + β

†
−k,iβ−k,i) ln sin2 �k

+ (αk,iα
†
k,i + β−k,iβ

†
−k,i) ln cos2 �k

}
, (39)

with sin �k ≡ |V k| sin θ . We have the following relations – cf. 
Eq. (35):

e− S
f
i
2 α

†
k, je

S
f
i
2 = eδi j ln tan �kα

†
k, j ,

e− S
f
i
2 β

†
−k, je

S
f
i
2 = eδi j ln tan �kβ

†
−k, j . (40)

In order to check whether or not the ansatz in Eq. (38) is consis-
tent, we evaluate it at the first order approximation in θ for small 
(	k,2 − 	k,1).

S f
i 	 −

∑
k

{
(α

†
k,iαk,i + β

†
−k,iβ−k,i) ln θ(	k,2 − 	k,1)

}
, (41)

and |I f 〉 	 ∏
k,r exp

{
εr

(
α

†
k,1β

†
−k,2 + α

†
k,2β

†
−k,1)

}
|0〉1,2 , thus the 

identity in Eq. (38) is satisfied in this approximation – cf. Eq. (27). 
This is indeed sufficient for the following considerations. Further 
discussion on the thermodynamical structure of |0〉e,μ will be pre-
sented elsewhere.

Finally, we define the difference �S f
k,i between the vev of the 

entropy operator Eq. (39) computed on the two different vacua

�S f
k,i = e,μ〈0|S f

k,i|0〉e,μ − 1,2〈0|S f
k,i|0〉1,2

= −2 sin2 �k ln tan2 �k . (42)

We can now consider the ratio �S f
k,i/�Ek,i , where the latter is 

the energy gap defined in the previous Section Eq. (31), obtaining 
βk,i = �S f

k,i/�Ek,i = − ln tan2 �k/ωk,i , which, however, depends on 
the momentum. In fact, unlike the standard TFD case, in which 
the parameter ϑk is determined only by the relation in Eq. (36), 
in the present case the Bogoliubov angle is already set with the 
condition 	k,i = 1

2 cot−1(
|k|
mi

) – see Appendix A, Eq. (53). This re-
sults in an impossibility to introduce a well defined temperature 
or equivalently in a deviation from the Fermi distribution, due to 
the non-diagonal pairs in the condensate structure of the flavor 
vacuum.

On the other hand, starting from a different viewpoint, one can 
investigate the relation between the flavor vacuum and a thermal 
vacuum state of the form |0(β1, β2)〉 ≡ |0(β1)〉 ⊗ |0(β2)〉 with

6 Here we have chosen to separate the physical and tilde systems (in analogy 
with TFD) according to the mass index.
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Fig. 1. Plot of N f (p) and N F (p) against Log |p|. For all curves, we set θ = π/4 and 
m1 = 20. N f (p) is plotted for different values of a. Sample values of parameters for 
N F (p) are a = 100, T1 = 104 and T2 = 7.8 × 104.

|0(βi)〉 ≡
∏
k,r

[
cosγk,i(βi) + sinγk,i(βi)α

r†
k,iβ

r†
−k,i

]
|0〉i , (43)

where i = 1, 2 and γk,i(βi) are the parameters of the Bogoliubov 
transformations depending on the temperature. We recall [3] that 
it is possible to rewrite |Uk|2 in terms of two adimensional param-

eters: |Uk|2 =
(

1 + 1/
√

1 + a(p/(p2 + 1))2
)
/2, with p ≡ |k|√

m1m2
, 

a ≡ (m2−m1)2

m1m2
. We consider the total number operator on the flavor 

vacuum N f (k) ≡ e,μ〈0|Nk,1 + Nk,2|0〉e,μ = 2 sin2 θ |V k|2 while the 
vev on the thermal vacuum gives7 N F (k) ≡ 〈Nk,1 + Nk,2〉β1,β2 =
(eβ1ωk,1 + 1)−1 + (eβ2ωk,2 + 1)−1. One may wonder to what extent, 
N F (k) can fit N f (k) for given values of the parameters m1, m2 and 
θ , by adjusting the free parameters β1 and β2. From Fig. 1 we 
see that this is somehow possible only for the right tail of the 
distribution N f (k); on the other hand, for low momenta, the be-
havior of the two distributions is quite different. This fact boils 
down to a structural difference between the two states |0〉e,μ and 
|0(β1, β2)〉. These states differ because in the condensate struc-
ture of the “thermal” state |0(β1, β2)〉 are missing terms of the 
form (αr†

k,1β
r†
−k,2 + α

r†
k,2β

r†
−k,1)|0〉1,2 (cf. Eq. (56) of Appendix A) due 

to the non-diagonal Bogoliubov transformation discussed in Sec-
tion 3.

5. Conclusions

We have discussed the algebraic structure of the mixing gener-
ator for two Dirac neutrino fields with different masses. We have 
shown that such a generator can be decomposed in terms of a 
rotation depending only on the mixing angle and a Bogoliubov 
transformation depending only on the neutrino masses. These two 
transformations do not commute among themselves and this fact 
produces important effects on the vacuum structure.

It is interesting to observe that the Bogoliubov transformations 
are indeed responsible for the mass shift and thus the results of 
this paper can lead to further insight in the interplay between mix-
ing phenomenon and mass generation in a dynamical perspective 
as recently discussed in Refs. [31].

Moreover, the condensate structure of the vacuum suggests 
a thermodynamical interpretation which we investigated, show-
ing peculiarities in the thermal behavior due to the character of 
the particle–antiparticle condensate involved in the flavor vac-

7 F stands for Fermi. We use the notation 〈0(β1, β2)| ∗ |0(β1, β2)〉 ≡ 〈∗〉β1,β2 .
uum. Such an issue will be further investigated in a future 
work.

Finally, we observe that the algebraic mechanism discussed in 
the present paper appears to be of quite general nature and thus 
we expect it to hold, with the due differences, also for the mixing 
among other kinds of fields. For Majorana fields [32], the mixing 
generator has essentially the same form as the one for Dirac fields 
Eq. (51), with the difference that antiparticle ladder operators are 
replaced by particle operators and the flavor vacuum appears to 
be a condensate of pairs of particles with opposite momenta: thus, 
in such a case, the results here derived apply essentially in the 
same way, including those concerning the thermodynamical inter-
pretation of §4. The case of bosonic fields will be discussed in a 
separate publication together with the extension of the present 
work to three flavor mixing.
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Appendix A

The fields ν1 and ν2 are expanded as – cf. Eq. (6)

νi(x) =
∑

r

∫
d3k

(2π)
3
2

[
ur

k,i(t)α
r
k,i + vr

−k,i(t)β
r†
−k,i

]
eik·x,

i = 1,2 ,

where ur
k,i(t) = e−iωk,i t ur

k,i and vr
k,i(t) = eiωk,i t vr

k,i , with ωk,i =√
k2 + m2

i . The αr
k,i and the βr

k,i (r = 1, 2), are the annihilation 
operators for the vacuum state |0〉1,2 ≡ |0〉1 ⊗ |0〉2: αr

k,i |0〉1,2 =
βr

k,i |0〉1,2 = 0. The anticommutation relations are the standard 
ones:

{να
i (x), νβ†

j (y)}t=t′ = δ3(x − y)δαβδi j , α,β = 1, . . . ,4 , (44)

{αr
k,i,α

s†
q, j} = δkqδrsδi j; {βr

k,i, β
s†
q, j} = δkqδrsδi j, i, j = 1,2 .

(45)

The orthonormality relations are ur†
k,iu

s
k,i = vr†

k,i vs
k,i = δrs and 

ur†
k,i vs

−k,i =vr†
−k,iu

s
k,i = 0. The completeness relation is 

∑
r(ur

k,iu
r†
k,i +

vr
−k,i vr†

−k,i) = 1.
One may recast Eqs. (3), (4) as [3]:

να
σ (x) = G−1

θ (t) να
i (x) Gθ (t), (σ , i) = (e,1), (μ,2) (46)

where the generator Gθ (t)8 is given by Eq. (5). Thus the flavor 
fields can be expanded as:

νσ (x) =
∑

r=1,2

∫
d3k

(2π)
3
2

[
ur

k,i(t)α
r
k,σ (t) + vr

−k,i(t)β
r†
−k,σ (t)

]
eik·x .

(47)

The flavor annihilation operators are defined as αr
k,σ (t) ≡

G−1
θ (t)αr

k,i Gθ (t) etc. For k = (0, 0, |k|), we have

αr
k,e(t) = cos θαr

k,1(t) + sin θ
(

U∗
k(t)αr

k,2(t) + εr V k(t)βr†
−k,2(t)

)
(48)

and similar ones. We have defined

8 In order to have a simpler notation we will use Gθ (t) ≡ G(t; θ, m1, m2).
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Uk(t) ≡ ur†
k,2(t)ur

k,1(t) = vr†
−k,1(t)vr

−k,2(t) = |Uk| ei(ωk,2−ωk,1)t ,

(49)

V k(t) ≡ εr ur†
k,1(t)vr

−k,2(t) = −εr ur†
k,2(t)vr

−k,1(t)

= |V k| ei(ωk,2+ωk,1)t , (50)

with εr = (−1)r , and |Uk|2 + |V k|2 = 1 with |Uk| =
|k|2+(ωk,1+m1)(ωk,2+m2)

2
√

ωk,1ωk,2(ωk,1+m1)(ωk,2+m2)
. The expansion of the mixing genera-

tor in terms of the mass annihilation and creation operators [3]
is9:

G(θ) = exp

{
θ

∑
r

∫
d3k

(2π)
3
2

[
Uk

(
α

r†
k,1α

r
k,2 + βr

−k,1β
r†
−k,2

− α
r†
k,2α

r
k,1 − βr

−k,2β
r†
−k,1

)
+ εr V k

(
α

r†
k,1β

r†
−k,2 − βr

−k,1α
r
k,2 + α

r†
k,2β

r†
−k,1

− βr
−k,2α

r
k,1

)]}
. (51)

Let us now define R̃ ≡ R̃(θ, 	1, 	2) = B−1(	1, 	2)R(θ)B(	1, 	2), 
with B(	1, 	2) ≡ B1(	1)B2(	2) and R(θ), Bi(	i) defined as in 
Eqs. (9), (13). R̃ can be written as

R̃ = exp

{
θ

∑
r

∫
d3k

(2π)
3
2

[(
α̃

r†
k,1α̃

r
k,2 + β̃

r†
−k,1β̃

r
−k,2

)
eiψk

−
(
α̃

r†
k,2α̃

r
k,1 + β̃

r†
−k,2β̃

r
−k,1

)
e−iψk

]}
. (52)

By use of the explicit form of the Bogoliubov transformed ladder 
operators, Eqs. (11), (12) and imposing the equality between R̃ and 
G(θ), we obtain the following conditions for the six parameters 
(three angles and three phases):

	̄k,i = 1

2
cot−1

( |k|
mi

)
, φ̄k,i = 2ωk,it ,

ψ̄k = (ωk,1 − ωk,2)t , θ̄ = θ . (53)

From such constraints, the following relations are derived:

Uk(t) = e−iψk cos(	k,1 − 	k,2) ,

V k(t) = e
i(φk,1+φk,2)

2 sin(	k,1 − 	k,2) . (54)

In definitive, we have decomposed the mixing generator in the fol-
lowing way10

G(t; θ,m1,m2) = B−1(t;m1,m2) R(t; θ) B(t;m1,m2) , (55)

i.e., as a product of operators depending only on the masses or 
on the mixing angle. It is, indeed, possible to disentangle the two 
dependances, mass and angle, of the mixing generator. Moreover, 
the form of the flavor vacuum (at t �= 0) is the following one for 
k = (0, 0, |k|):

9 In order to simply the notation we omit in the following the time dependance 
of the annihilation and creation operators.
10 We used the notation f (	i(mi)) ≡ f (mi). In fact 	k,i are functions of the 

masses and the momentum only. Thus we can regard the generator B(	1, 	2), 
where the momentum has been integrated out, as dependent on the mass parame-
ters, i.e. as B(m1, m2).
|0〉e,μ =
∏
k,r

[
(1 − sin2 θ |V k|2)

− εr sin θ cos θ |V k|e i(φ1+φ2)

2 (α
r†
k,1β

r†
−k,2 + α

r†
k,2β

r†
−k,1)

+ εr sin2 θ |V k||Uk|(eiφ2α
r†
k,1β

r†
−k,1 − eiφ1α

r†
k,2β

r†
−k,2)

+ sin2 θ |V k|2ei(φ1+φ2)α
r†
k,1β

r†
−k,2α

r†
k,2β

r†
−k,1

]
|0〉1,2 . (56)

We report some useful relations among spinors of different 
masses:

ur
k,1(t) = ur

k,2(t)Uk(t) + εr vr
−k,2(t)V ∗

k(t) (57)

vr
−k,1(t) = vr

−k,2(t)U∗
k(t) − εrur

k,2(t)V k(t) (58)

ur
k,2(t) = ur

k,1(t)U∗
k(t) + εr vr

−k,1(t)V ∗
k(t) (59)

vr
−k,2(t) = vr

−k,1(t)Uk(t) − εrur
k,1(t)V k(t) (60)

with Uk(t) and V k(t) defined as in Eqs. (49), (50). These relations 
can be easily verified. Consider for example the first one: multiply-
ing on the left by ur†

k,2(t), and using the orthonormality relations, 

we obtain the identity ur†
k,2(t)ur

k,1(t) = Uk(t). A similar result is 

obtained by acting with vr†
−k,2(t).
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