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1. Introduction

Magic squares have a long and fascinating history as detailed by Pickover [17], Pasles [16], Olleren-

shaw and Brée [15], and Cammann [4]. The treatment of magic squares as matrices leads to many

interesting new results and insights as seen from nearly all of our references. An historical account

of the matrix-theoretic approach is given by Loly et al. [10], where references to other work may be

found. Magic squares have a continuing appeal to both professional and recreational mathematicians

and they have found application in physics, computer science, image processing, and cryptography

[8,10,15].

The present paper is concerned with magic squares that have special properties, namely, regu-

lar (or associative), pandiagonal, and most-perfect magic squares, plus a new class of quasi-regular

magic squares which includes regular and most-perfect magic squares. These four classes of magic

squares (defined in the next section) are called special. We employmethods ofmatrix algebra to study

transformations between these special magic square matrices, their spectra, and their matrix prod-

ucts and powers. Many of our results are new and others confirm known results obtained by other

methods.

2. Definitions

Webegin by defining a number of special matrices and several classes of special magic squares that

will be studied in what follows. All matrices considered here are square. Let u be the unity column

vector with all elements 1, U – the unity matrix with all elements 1, I – the identity matrix, and R

– the reflection matrix (or counteridentity matrix) with 1’s on the cross (or dexter) diagonal and all

other elements 0. It should be noted that other authors use various other symbols for our U, u, and R.

In matrix notation R and U satisfy the following identities:

RT = R−1 = R, RU = UR = U, tr [U] = n, Ui = ni−1U, i = 1, 2, . . . , (1)

where RT denotes the transpose of R and tr [U] denotes the trace of U. The matrix product RA reflects

the elements of a matrix A about its horizontal centerline, AR reflects the elements of A about its

vertical centerline, ATR rotates the elements of A a quarter turn clockwise about its center, RAT rotates

the elements of A a quarter turn counter-clockwise, and RAR rotates the elements of A a half turn.

These matrices together with AT , RATR, and A itself constitute the eight phases (or variants) of A as

discussed in [10].

The matrixM is semi-magic if the sums of all its rows and all its columns equal the same index m,

i.e., if

Mu =
(
uTM

)T = mu or MU = UM = mU. (2)

The matrixM ismagic if, in addition to (2), its main diagonal and cross diagonal also sum tom, i.e., if

tr [M] = tr [RM] = m. (3)

By these definitions, a magic square also is semi-magic and a semi-magic square may or may not be

magic. In what follows, M denotes a magic square matrix unless otherwise noted and A denotes a

generic matrix, both having integer elements (for simplicity). Subscripts are used to denote special

classes of M. The n by n (order-n) matrix A is natural (or classic) if its elements are in the numerical

sequence 1, 2, . . . , n2. Some authors use the sequence 0, 1, . . . n2 − 1 which would slightly change

some of our results. Various methods of constructing magic squares are presented in [7,12–20]. The

index for a natural magic square is given by

m = n(n2 + 1)/2. (4)

The eight phases ofM also aremagic as is easily verified. Someauthors, e.g., Pickover [17], restrictmagic

squares to those having distinct elements while many others do not enforce this restriction. In this
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paper we allow magic squares with nondistinct elements, but magic squares with distinct elements

are called strictly magic. A condition for a matrix to have distinct elements is given at the end of this

section.

The matrix AC is centrosymmetric if

RACR = AC . (5)

A permutationmatrix P has a single 1 in all rows and columns and 0 for all other elements. It has the

following properties:

UP = PU = U, P−1 = PT , and det P = ±1. (6)

The matrix operation PA interchanges rows of A and AP interchanges columns of A.

A magic square MR is regular (or associative) if pairs of its elements that are symmetrically posi-

tioned with respect to its center add to the same regularity index r, i.e., if

MR + RMRR = rU or RMR + MRR = rU. (7)

This requires MR of odd order to have r/2 as its center element. On taking the trace of (7) and noting

(3) and (4), we have

r = 2mn−1 or r = n2 + 1 ifMR is natural. (8)

It is known that all order-3 magic squares are regular [10].

A magic square MP is pandiagonal (Nasik, perfect, or diabolic) if all its broken diagonals (of n ele-

ments) in both directions sum to themagic indexm. These conditions, including (3), can be expressed

as

tr
[
KiMP

]
= tr

[
KiRMP

]
= m, i = 1, 2, . . . , n, (9)

where K is the order-n permutationmatrix that has all elements 0 except K1n = 1 (upper right corner)

and Ki,i−1 = 1, i = 2, 3, . . . , n (diagonal below the main diagonal). The operation KM shifts rows of

M down one (and bottom row to top) whileMK shifts columns ofM one to the left (and first column to

last). Power operations KiM andMKi give rise to repeated shifts. The following identities can be easily

verified:

Kn = I, K−i = Kn−i = RKiR, i = 1, 2, . . . , n
n∑

i=1

Ki =
n∑

i=1

K−i = U. (10)

It follows from the shifting properties of K that MP satisfies the conditions

n∑
i=1

KiMPK
i = mU and

n∑
i=1

K−iMPK
i = mU (11)

which provide a convenient numerical test for pandiagonality.

The term panmagic is applied to a pandiagonal magic square. An ultra-magic square MU is both

panmagic and regular. It is known that other than U there are no order-2 magic squares, no order-

3 panmagic squares, and no order-4 ultra-magic squares [17]. Furthermore, Rosser and Walker [19,

Theorem 5.2] proved that there are no natural panmagic squares of singly-even order (n = 6, 10, . . .).
A simple derivation of the identity used in their proof is given in Appendix A. Also, it follows from a

known transformation (to be discussed in the next section) that there are no natural regular squares

of singly-even order either.
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As an extension of regular magic squares, we define a quasi-regular (QR)magic squareMQ as one

that satisfies

MQ + Q−1MQQ = rU or QMQ + MQQ = rU, (12)

where r is given by (8) and theoperator Q is a nonsingularmatrix of the sameorder asMQ that satisfies

UQ = QU = U and det Q �= 0. (13)

A quasi-regular magic squareMQ with a centrosymmetric operator QC is called QRC.

Lemma 1. A QRC semi-magic squareMQ is a magic square.

It follows from (12), (5), and (8) that MQ satisfies the diagonal sum condition (3). This lemma will be

used in a later section to prove that odd powers of a QRC magic square are QRC magic squares. Also, if

MQ is QR with operator Q , then it follows from (12) that the phases RMQ ,MQR, and RMQR are QR with

operator Q , whereas the phases
(
MQ

)T
, R

(
MQ

)T
,
(
MQ

)T
R, and R

(
MQ

)T
R are QR with operator QT .

On comparing (7) with (12), we see that a regular magic square is QRC with operator QC = R.

This case was studied extensively by Mattingly [12], who also gave a condition of the form (12) but

with a different right-hand side and without (13). The case Q−1 = Q was studied by Chu et al. [5]

with application to order-4 magic squares and their Moore–Penrose inverses. Also, Staab et al. [20]

considered the case where Q = Q−1 = P = PT is a symmetric permutation matrix of various special

forms. In the present paper Q need not be a permutation matrix nor must Q = Q−1.
An important subclass of QR magic squares follows from noting that, by (12) and (13), we have

Q2MQ = MQQ
2 (14)

which is satisfied if

Q2 = Q2
S = (1 − βn) I + βU, β �= n−1. (15)

Here, β = 0 corresponds to Q−1 = Q which includes the case where Q is a symmetric permutation

matrix. However, other forms of Q are possible. A quasi-regular magic square MQ with operator QS

that satisfies (14) is called QRS and it need not be QRC.

A useful special form for the QR operator is

QK =
n̂∑

i=0

ai

(
Ki + K−i

)
, where n̂ = �n/2� (16)

and, in order to satisfy (13), the constants ai must satisfy

2

n̂∑
i=0

ai = 1 and det QK �= 0. (17)

A QR magic squaresMQ with operator QK is called QRK and it also is QRC.

The matrix Q = n−1U also satisfies (12) but not (13) since U is singular. For a given operator Q ,

the following associated operator Q̂ satisfies (12) and (13):

Q̂ = (1 − αn)Q + αU, α �= n−1, (18)
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where α �= n−1 ensures that Q̂ is nonsingular as seen from the identity

det
[
Q̂

]
= det [Q ] det [(1 − αn) I + αU] = (1 − αn)n−1 det [Q ] . (19)

Often, α can be chosen so that Q̂ has a simple form. In addition, it can be shown that Q−1 and Q̂−1 are

suitable QR operators and that Q̂ , Q−1, and Q̂−1 retain the special property of QC, QS, or QK .
For a given magic square or a class of magic squares of a particular form, one may attempt to

constructQ bysolutionof (12) and (13).However, formostmagic squares this turnsout tobe impossible

and they are not QR. Nevertheless, the study of QRmagic squares leads to interesting results as will be

seen in what follows.

The following theorem generalizes a result given by Ollerenshaw and Brée [15] for the special case

QK = K
n
2 (n even):

Theorem 2. A QRK magic square is pandiagonal.

Proof. From (12) and (10), we have

KiMQ + KiQ−1
K MQQK = rU

KiRMQ + KiRQ−1
K MQQK = rU. (20)

On taking the trace of these two equations and noting that QKK
i = KiQK and QKR = RQK follow from

(16) and (10), we see that the pandiagonal conditions (9) are satisfied. �

A most-perfect (MP) magic square MM of doubly-even order (n = 4, 8, . . .) has the following

additional properties:

(1) Two elements that are n/2 elements apart along all diagonals (including broken ones in both

directions) sum to r, i.e.,

MM + K
n
2 MMK

n
2 = rU. (21)

(2) The elements of all 2 by 2 subsquares (including broken top–bottom, broken left–right, and the

four corners) sum to the constant 2r, i.e.,

(I + K)MM (I + K) = 2rU. (22)

On comparing (21) with (12) and (13), we see that aMPmatrix is QRKwith operatorQK = Q
−1
K = K

n
2 .

Thus, in view of Theorem 2, a MP matrix must be pandiagonal as noted by Ollerenshaw and Brée [15].

For an order-4 panmagic square, the pandiagonality conditions (11) and Eq. (21) lead to the known

fact [17] that all such squares are MP and QRK with operator QK = K2. A method of constructing

and counting the number of MP natural magic squares of doubly-even order is given in [15]. Next, we

derive the matrix form of identities for MM given in subscript form in [15].

Theorem 3. A MP matrix MM satisfies the following identities:

MM (I + K) = KiMM (I + K)

(I + K)MM = (I + K)MMKi

⎫⎪⎬
⎪⎭ , i even (23)

MM (I + K)
(
I + K

n
2

)
= 2rU

(
I + K

n
2

)
(I + K)MM = 2rU

⎫⎪⎬
⎪⎭ , n doubly-even. (24)
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Proof. Eq. (22) may be written as

MM (I + K) + KMM (I + K) = 2rU,

KMM (I + K) + K2MM (I + K) = 2rU, (25)

∴ MM (I + K) = K2MM (I + K)

and (23)1 follows by induction. Since n is doubly-even, by (23)1 and (21), for (24)1 we have

MM (I + K)
(
I + K

n
2

)
= MM (I + K) + K

n
2 MMK

n
2 (I + K)

= MM (I + K) + (rU − MM) (I + K) = 2rU. (26)

The proofs of (23)2 and (24)2 are similar. �

Onmultiplying (24)1 and (24)2 by U and noting (10), it follows that (2) is satisfied andMM is semi-

magic. SinceMM is QRK, by Lemma 1, it is magic as stated in its definition. In a later section (24) will be

used to prove that odd powers of MP magic squares are MPmagic squares. Next, we present a general

result for order-5 panmagic squares.

Theorem 4. Any order-5 panmagic square MP5 is QRKS with operators

QK5 =
(
I + 2K + 2K−1

)
/5 and Q̂K5 =

(
I + 2K2 + 2K−2

)
/5 (27)

with β = 4/25 in (14).

Proof. It is easy to show that QK5 and Q̂K5 satisfy (13), (16), and (17). On adding the two pandiagonal

conditions (11) on MP5 and noting that K3 = K−2 and K4 = K−1, we find that

2MP5 +
(
K + K−1

)
MP5

(
K + K−1

)
+

(
K2 + K−2

)
MP5

(
K2 + K−2

)
= 2mU (28)

which, by the identity (10)2, becomes

QK5 (QK5MP5 + MP5QK5) = rU. (29)

SinceQK5 is not singular andU = QK5U, it follows thatMP5 satisfies theQRcondition (12)withoperator

QK5. The associated operator Q̂K5 in (27) comes from (18) with α = 2/5 and (10). The relation (14)

with β = 4/25 is easily verified using (10). �

The QR equation (12) on MP5 with operators QK5 and Q̂K5 given by (27) shows that the elements

corresponding to those marked with � in the following matrices sum to m:

�1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0

0 0 � 0 0

0 � � � 0

0 0 � 0 0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, �2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 � 0 0

0 0 0 0 0

� 0 � 0 �
0 0 0 0 0

0 0 � 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (30)

and these patterns can be shifted up/down and left/right. Other sum invariants also can be derived

from (12) and (27). The�1 sum invariantwas obtained in a differentmanner by Andress [2]who found

similar sum invariants for other panmagic squares. Sum invariants also follow from the QR condition

(12) for other magic squares which need not be pandiagonal.
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A necessary and sufficient condition for an order-nmatrix A to have distinct elements is

A − KiAKj = �ij, i, j = 1, 2, . . . , n, (i = j �= n) , (31)

where �ij is an order-n matrix that has no zero elements. Also, a check for distinct elements and

naturalness follows from sorting the elements of A into numerical order.

3. Transformations

In this section we examine matrix transformations between regular, QR, pandiagonal, and MP

magic square matrices. The phase transformations mentioned after (1) preserve each of these special

properties as is easily verified. First, we note a basic transformation for semi-magic squares.

Lemma 5. A semi-magic square M1 can be transformed to a semi-magic square M2 by the transfor-

mation

M2 = P1M1P2, (32)

where P1 and P2 are perturbation matrices. If M1 is natural, then so isM2 .

This follows from (2) and the fact that row/column interchanges do not effect naturalness. The next

four theorems establish sufficient conditions for the transformed square to be magic and retain any

special properties. The straightforward proofs of the first three of these are left as exercises.

Theorem 6. A magic square M1 can be transformed to a magic square M2 by the transformation

M2 = PM1P
T , where RPR = P. (33)

If M1 is QR with operator Q1, then M2 is QR with operator

Q2 = PQ1P
T . (34)

If M1 is regular, QRC, or QRS, then so is M2.

Theorem 7. If MQ is a QR magic square with operator Q , then so are QMQ and MQQ . If MQ is QRK (hence

pandiagonal) or MP, then so are QKMQ and MQQK .

Theorem 8. A panmagic square MP1 can be transformed to a panmagic square MP2 by the transformation

MP2 = KiMP1K
j, i, j = 0, 1, 2, . . . , or n. (35)

Here, (35) is the well-known row/column shift transformation [17]. Next, we present the matrix form

of a known transformation.

Theorem 9. A regular magic square MR of even order n can be transformed to a panmagic square MP by

the transformation

MP = WMRW, (36)

where the permutation matrix W is expressed in terms of order-n/2 submatrices R̂, Î, and Ô as

W = W1 =
⎡
⎣ R̂ Ô

Ô Î

⎤
⎦ or W = W2 = RW1R =

⎡
⎣ Î Ô

Ô R̂

⎤
⎦ , (37)

where Ô is the order-n/2matrix with all elements zero. Furthermore, MP is QRK with operator QK = K
n
2 .
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Proof. From (37), we have the identities

WRW = K
n
2 and W−1 = W (38)

fromwhich the regularity condition (7)with (36) leads to (21). ThusMP is QRKwith operatorQK = K
n
2

and, by Theorem 2, MP is pandiagonal. �

The transformation (36)was known to Planck [18]who called it the “A–Dmethod.” Also, for order-8

magic squares, this transformationwasgivenbySetsudaaspostedon theSuzukiwebsite [21].However,

the convenient matrix formulation (36) and the QRK condition on MP are believed to be new.

Corollary 10. A QRK panmagic square MP of even order n with operator QK = K
n
2 can be transformed to

a regular magic square MR by the transformation

MR = WMPW . (39)

Theproof follows in reverse theproof of Theorem9. In viewof (21), this corollary applies to allMPmagic

squares. Since all order-4 panmagic squares areMP, they can be transformed to a regular magic square

by (39). In addition, some other panmagic squares of higher even order can be transformed to a regular

magic squareMR by transformations similar to (39). However, the author has been unable to establish

sucha transformation for all panmagic squaresof evenordern > 4and it appears that this is impossible

(conjecture) since there are more elemental regular conditions from (7) than elemental pandiagonal

conditions from (9) for such squares. Also, we note that the foregoing transformations, including the

phase transformations, can be combined sequentiallywhere appropriate, e.g.,MP2 = RK3 (MP1)
T RK2.

Some natural panmagic squares MP of odd order can be transformed to a natural regular square

MR by the shift transformation (35) with i and j chosen such that the element
(
n2 + 1

)
/2 of MP

is shifted to the center of MR as required for regularity. In some cases a further permutation of rows

and/or columns results in a regularmagic square. For example, the following natural order-9 panmagic

square given by Pickover [17, p. 255] (attributed to Gakuho Abe):

MP9 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 16 51 30 45 77 56 71 22

41 47 61 67 73 9 15 21 35

69 75 8 14 20 34 40 46 63

13 19 36 42 48 62 68 74 7

53 32 64 79 58 12 27 6 38

81 60 11 26 5 37 52 31 66

25 4 39 54 33 65 80 59 10

29 44 76 55 70 24 3 18 50

57 72 23 2 17 49 28 43 78

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(40)

is QRKS with operator

QK9 = (QK9)
−1 =

(
2K3 + 2K−3 − I

)
/3 (41)

and MP9 can be transformed to the following natural ultra-magic square by row/column shifts and

permutations:
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MU9 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

77 56 71 22 1 16 51 30 45

24 3 18 50 29 44 76 55 70

34 40 46 63 69 75 8 14 20

65 80 59 10 25 4 39 54 33

9 15 21 35 41 47 61 67 73

49 28 43 78 57 72 23 2 17

62 68 74 7 13 19 36 42 48

12 27 6 38 53 32 64 79 58

37 52 31 66 81 60 11 26 5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (42)

Again, MU9 is QRKS with operator QK9, thus ensuring that MU9 is pandiagonal according to Theorem

2. In addition, the elements of all 3 by 3 subsquares of MP9 and MU9 sum tom = 369, i.e.,
(
I + K + K−1

)
MU9

(
I + K + K−1

)
= mU, (43)

a property similar to (22) for MP squares. Thus, MU9 might be called ultra-perfect. Furthermore, the

QR condition (12) with the operator QK9 leads to the following sum invariant: for any element, the

sum of its four neighboring elements (with wrap around) three squares right, left, above, and below

minus the element itself is 123. An order-9, ultra-perfect magic square also was constructed by Frost

[7]. His square also is QRK with operator QK9 and he noted the sum condition given by (43).

The author doubts (conjecture) that the above transformation method can be applied to all odd-

order panmagic squares since here again there are more elemental regular conditions from (7) than

elemental pandiagonal conditions from (9) for n � 5. Also, I have been unable to transform a generic

regular magic square MR of odd order to a panmagic square MP by a matrix transformation and this

appears to be impossible (conjecture). Furthermore, not all panmagic squares of order n > 5 are QR,

e.g.,

MP7 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 20 29 45 12 28 37

10 26 42 2 18 34 43

16 32 48 8 24 40 7

22 38 5 21 30 46 13

35 44 11 27 36 3 19

41 1 17 33 49 9 25

47 14 23 39 6 15 31

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(44)

is a natural order-7 panmagic square that is notQR aswill be verified in the next two sections. However,

we have encountered many QR panmagic squares of order n � 6 with various Q operators, some of

which are given in [14]. Use will be made of the QR property in the next two sections.

4. Spectra

First, themainconceptsof thespectral analysisofmatricesarebrieflyreviewed.A fullerpresentation

of this subject is available in standard texts on matrices.

For an order-nmatrixM, the characteristic equation is obtained from

det [M − λI] = 0 (45)
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which leads to a polynomial equation of degree n having roots λ1, λ2, . . . , λn called the eigenvalues

of M. The eigenvalues may be real or complex and they need not be distinct. Corresponding to each

distinct eigenvalue λj there is a simple eigenvector Sj1 such that

(
M − λjI

)
Sj1 = 0, (46)

where Sj1 is determined only to within a scalar multiple. If an eigenvalue is repeated k times it is said

to have algebraicmultiplicity k. Repeated eigenvalues λj may have generalized eigenvectors Sjk for

which

(
M − λjI

)k
Sjk = 0

(
M − λjI

)k−1
Sjk �= 0

⎫⎬
⎭ , k = 2, 3, . . . , k̂j � kj < n, (47)

where k is the rank of Sjk and kj is the algebraic multiplicity of λj. There may be several sets of

such Sjk, the number of which is the geometric multiplicity of λj. In some cases there also may be

several simple (rank-1) eigenvectors corresponding to the repeated eigenvalue. For a matrix with real

elements, if there is a complex eigenvalueλj with eigenvector Sjk, then, by (46) or (47), there alsomust

be a complex conjugate eigenvalue λ̄j with eigenvector S̄jk . By (47), Sjk satisfies the recursion relation

(
M − λjI

)
Sjk = Sj,k−1, k = 2, 3, . . . , k̂j. (48)

The simple and generalized eigenvectors can be assembled into a matrix S such that

M = SJS−1, (49)

where the columns of S are the eigenvectors and J is a matrix with their corresponding eigenvalues

on the main diagonal and zeros elsewhere if all eigenvectors are simple (diagonable case). If there

are generalized eigenvectors (nondiagonable case), then J has ones on the diagonal above or below

the main diagonal (depending on the ordering of Sjk in S) corresponding to the repeated eigenvalues.

Equation (49) is called the Jordan form of M. The character of the eigenvalues and eigenvectors for

various special magic squares is examined next.

Lemma 11. A semi-magic square M with positive real elements has an eigenvalue m of algebraic

multiplicity one with a simple eigenvector S1 = u, i.e.,

MS1 = mS1, where S1 = u = [1, 1, . . . , 1]T . (50)

Furthermore, the magnitude of all other eigenvalues is less than m.

Equation (50) follows from the summation condition (2). As noted by Mattingly [12], the last part of

this lemma follows from Perron’s theorem.

Lemma 12. A simple or rank-k generalized eigenvector Sk of a semi-magic square with eigenvalue λ
satisfies

USk = 0 for λ �= m. (51)

Proof. Multiply (46) or (47) by U to obtain

(λ − m)k USk = 0 (52)

which establishes (51). �

The next theorem extends to QR magic squares a result established by Mattingly [12] for regular

magic squares.
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Theorem 13. If a QR magic square MQ with operator Q has a nonzero eigenvalue λ �= m with a rank-

k generalized eigenvector Sk, then MQ also has a companion eigenvalue −λ with a rank-k generalized

eigenvector QSk .

Proof. From the QR condition (12), (51), and (46), we have

Q−1MQQS1 = −MQS1 = −λS1, (53)

whence QS1 �= 0 and

MQ (QS1) = −λ (QS1) . (54)

Therefore QS1 is a simple eigenvector with eigenvalue −λ. For the generalized eigenvector Sk, on

multiplying (48) by Q and using (12) and (51), we find that

(M + λI)QSk = −QSk−1, k = 2, 3, . . . , k̂. (55)

Then, by induction, starting with (54) for k = 2, it follows from (55) and (47) that

(M + λI)k QSk = 0

(M + λI)k−1 QSk �= 0

⎫⎬
⎭ , k = 2, 3, . . . , k̂. (56)

Therefore, QSk satisfies (47) and is a rank-k generalized eigenvector with eigenvalue −λ . �

The foregoing proof does not require the introduction of an auxiliary matrix as in Mattingly’s proof

[12] for Q = R. It is essential that Q be nonsingular so that QS1 �= 0 follows from (53), for we have

found specific cases where QS1 = 0 when Q is singular. However, our proof does not require that

Q be centrosymmetric. Recently, Staab et al. [20] proved Theorem 13 when Q is a special symmetric

permutation matrix Q = P = PT . Previously, Thompson [22] proved the existence of signed pairs of

eigenvalues for panmagic squares of orders 4 and 5 using vector space methodology. Since we have

already shown that all panmagic squares of orders 4 and 5 are QRK, Theorem 13 confirms Thompson’s

result.

It follows from Theorem 13 that if a magic square M has nonzero eigenvalues that do not come

in signed pairs, then M is not QR. For example, the natural panmagic square MP7 of (44) has nonzero

eigenvalues that are not signed pairs and therefore it is not QR.

Theconverseof Theorem13would imply that amagic squarehavingonly signedpairs of eigenvalues

(except 0 andm) is QR.However, a counterexample to this converse is furnishedby the following order-

6 natural magic square given by Mattingly [12]:

M6 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

35 1 6 26 19 24

3 32 7 21 23 25

31 9 2 22 27 20

8 28 33 17 10 15

30 5 34 12 14 16

4 36 29 13 18 11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(57)

which has eigenvalues 0, 111, ±27, ±4
√

6. Computations in [14] attempting to determine Q lead

to the conclusion that M6 is not QR. Therefore, the QR property is a sufficient condition, but not a

necessary condition, for the existence of signed pairs of eigenvalues. We note that M6 is generated

by MATLB� and it can be constructed by the Strachey method for singly-even order, natural magic

squares as described by Pasles [16]. Also, we have constructed an order-10 Strachey magic square

that has signed pairs of eigenvalues [14] and we conjecture that this is a property of all such singly-
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even-order squares. For the doubly-even order, regular, rank-3, natural magic squares generated by

MATLB�, Kirkland and Neumann [9] derived explicit equations for their three nonzero eigenvalues,

two of which are signed pairs.

Next, we generalize to QRmagic squaresMattingly’s [12] results on the number of zero eigenvalues

of regular magic squares.

Theorem 14. An odd-order QR magic square has an even number of zero eigenvalues, whereas an even-

order QR magic square has an odd number of zero eigenvalues and is singular.

Proof. From (49), the trace of a matrix M equals the sum of the eigenvalues of M and it follows from

(3) that

tr [M] = ∑
λi = m. (58)

For an odd-order MQ , according to Lemma 11 and Theorem 13, (58) is satisfied by the signed pairs of

eigenvalues, λ = m, and an even number of zero eigenvalues. For an even-orderMQ , by (58) together

with the signed pairs of eigenvalues and λ = m, there must be an odd number of zero eigenvalues.

Thus, an even-order MQ is singular. �

As an example of Theorems 13 and 14, the eigenvalues of the panmagic square MP9 of (40) are

0, 0, 0, 0, 369, ±3(369 ± 3i
√

2343)
1
2 , where the four zero eigenvalues all have simple eigenvec-

tors, i.e., MP9 is diagonable. The ultra-magic square MU9 of (42) has eigenvalues 0, 0, 0, 0, 0, 0, 369,

±12
√

39,where the six zero eigenvalues correspond to four simple eigenvectors and two generalized

eigenvectors of ranks 2 and 3, soMU9 is nondiagonable. Next,we consider the effect the transformation

(33) on the spectra of magic squares.

Theorem 15. The transformations

M2 = PM1P
T and M3 = P (M1)

T PT (59)

leave eigenvalues unchanged and the eigenvector matrices S in their Jordan forms are related by

S2 = PS1 and S3 = P
(
S
−1
1

)T
. (60)

The proof follows from the Jordan forms (49) ofM1, M2, andM3. SinceWT = W in (37), Theorem 15

applies to the transformation (36) between regular and pandiagonal magic squares of even order. For

a magic square M, Theorem 15 shows that the normal phases M, MT , RMR, and RMTR all have the

same eigenvalues and J matrix as do the reflected phases RM,MR, RMT , andMTR as noted previously

by Loly et al. [11]. The next theorem connects the eigenvalues of these two phase groups for regular

magic squares.

Theorem 16. If a QRS magic square MQ with operator QS has nonzero eigenvalues λ and −λ with cor-

responding rank-k generalized eigenvectors Sk and QSSk, then the QRS magic squares QSMQ and MQQS

have eigenvalues ±iγ λ and ∓iγ λ, respectively, with corresponding rank-k generalized eigenvectors Ŝk

and QSŜk, where

Ŝk = QSSk + iγ Sk and γ =
√
1 − βn. (61)

Proof. Theorem 7 ensures the magic property of QSMQ and MQQS, and Theorem 13 ensures that

nonzero eigenvalues occur as signed pairs. On applying QSMQ to (61), noting (14), and appealing to

Theorem 13, we find that

(
QSMQ − iγ λ

)
Ŝ1 = 0. (62)
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Thus, Ŝ1 is a simple eigenvector of QSM with eigenvalue iλ and, by Theorem 13, QSŜ1 is a simple

eigenvector of QSMQ with eigenvalue −iγ λ. The proof for generalized eigenvectors of rank k depends

on the recursion relation

(
QSMQ − iγ λI

)
Ŝk = iŜk−1, k = 2, 3, . . . , k̂ (63)

which follows from (48), (61), (12), and (51). Then, by induction, from (63) startingwith (62) for k = 2,
it follows from (63) and (47) that

(
QSMQ − iγ λI

)k
Ŝk = 0

(
QSMQ − iγ λI

)k−1
Ŝk �= 0

⎫⎬
⎭ , k = 2, 3, . . . , k̂. (64)

Thus, Ŝk satisfies (47) and is a rank-k generalized eigenvector ofQSMQ with eigenvalue iγ λ. By Theorem

13, QSŜk is a rank-k generalized eigenvector of QSMQ with eigenvalue −iγ λ. The proof for MQQS is

similar. �

There are two important special cases of Theorem 16. First, for regular magic squares
(
QS = Q

−1
S

= R, β = 0, γ = 1) the result of this theorem regarding eigenvalues was proved by Thompson [22]

for order-3magic squares and order-4 panmagic squares and a general proof (different from ours) was

given by Abu-Jeib [1].

Second, in viewof (21), the caseQS = Q
−1
S = K

n
2 (n even) applies to allMPmagic squares, including

all order-4 panmagic squares. In addition, all order-5 panmagic squares are covered by Theorem 16

since their operatorsQK5 and Q̂K5 from (27) satisfy (14). Theorem16 also applies to the squaresMP9 and

MU9 of (40) and (42) sinceQK9 = (QK9)
−1 in (41). For example,QK9MP9 has eigenvalues 0, 0, 0, 0, 369,

±3i
(
369 ± 3i

√
2343

) 1
2 ,where the signed pairs are i times the signed pairs ofMP9 given above. Also,

by Theorem 7, QK9MP9 is QRK and panmagic. Furthermore, QK9MP9 is natural (for no apparent reason)

and it can be formed by row/column interchanges using (32). However, for other MP we have found

that QKMP is not strictly-magic [14].

5. Products and powers

In this section we study the matrix products and powers1 of various special magic squares. Our

results are stated as theorems for matrix products of magic squares. These theorems can easily be

specialized tomatrix powers. First, we give a general result that is applicable to all semi-magic squares.

Lemma 17. The matrix product of any number of semi-magic squares M1, M2, . . . , Mk of the same

order is a semi-magic square, i.e.,

UM̂ = M̂U = m̂U, where M̂ = M1M2 . . .Mk, m̂ = m1m2 . . .mk. (65)

This result followsdirectly from(2).Next,weestablish sufficient conditions for M̂ to satisfy thediagonal

sum conditions (3) and be magic.

Theorem 18. The matrix product of an odd number k of QR magic squares MQ1, MQ2, . . . , MQk of the

same order and with the same operator Q is a QR magic square M̂Q with operator Q , i.e.,

M̂Q + Q−1M̂QQ = r̂U, where M̂Q = MQ1MQ2 . . .MQk, r̂ = 2m̂n−1. (66)

If MQi are QRK (hence pandiagonal) with operator QK , then so is M̂Q .

1 Matrix powers (formed by matrix multiplication) are not to be confused with matrices formed from powers of the individual

elements of a matrix as discussed in [17].
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Proof. By Lemma 17 M̂Q is semi-magic. Each QR squareMi satisfies (12) which may be written as

MQi = riU − Q−1MQiQ , where ri = 2min
−1. (67)

On forming M1M2M3 from (67) for M2 and using (67) for M1 and M3, by (2), (13), and (8), we obtain

(66) for k = 3. Thus, by Lemma 1, M̂Q is magic. The QRK property of M̂Q follows from (66) forQ = QK .
Induction extends these results to higher odd k. �

Theorem 19. The matrix product of an odd number k of most-perfect magic squares MM1, MM2, . . . ,
MMk is a most-perfect magic square, i.e.,

M̂M + K
n
2 M̂MK

n
2 = r̂U, where M̂M = MM1MM2 . . .MMk

(I + K) M̂M (I + K) = 2r̂U, and r̂ = 2m̂n−1. (68)

Proof. The first equation follows from (21) and Theorem 18 with Q = K
n
2 . For the second equation,

from (24), we form

(I + K) M̂M (I + K)
(
I + K

n
2

)
= 4r̂U

(
I + K

n
2

)
(I + K) M̂M (I + K) = 4r̂U. (69)

Addition of these, together with (68)1, yields (68)2. �

The foregoing lemma and two theorems have counterparts for odd powers of special magic squares

of the same type. They follow from settingMi = M andmi = m so that M̂ = Mk and m̂ = mk in each

case. Furthermore, ifMQ is nonsingularwith operatorQ , then it can be shown that oddnegative powers

of MQ also are QR magic squares with operator Q and index m−k. In line with these results, the cube

of the QR magic square MP9 is magic, whereas the cube of MP7 (44) is only semi-magic which again

shows that it is not QR. Theorem 18 applies to all order-3 magic squares since they are regular and to

all panmagic squares of orders 4 and 5 since they are QRK. This confirms the results of Thompson [22]

based on vector space methodology. In addition, Theorem 19 applies to all order-4 panmagic squares

since they also are MP.

There is an alternate proof of Theorem 18 for powers ofMQ based on its spectrum. From Lemma 11

and Theorem 13,MQ has an eigenvaluem and signed pairs of eigenvalues and/or eigenvalues 0. Thus,

it follows from (49) that

tr
[(
MQ

)k] = tr
[
SJkS−1

]
=

n∑
i=1

λk
i = mk, k odd. (70)

Similarly, using (66), we have

tr
[
R

(
MQ

)k] = tr
[(
RMQ

)k] = mk, k odd. (71)

Therefore,
(
MQ

)k
(k odd) satisfies (3) and, by Lemma 17, it is magic. This result provides insight on the

connection between the signed pairs of eigenvalues ofMQ and odd matrix powers of MQ .

Next, let us consider the odd powers of Mattingly’s order-6magic squareM6 of (57). By the Cayley–

Hamilton theorem, M6 must satisfy its characteristic equation which gives

M6 (M6 − 111I)
(
[M6]

2 − 729I
) (

[M6]
2 − 96I

)
= 0 . (72)

Since M6 is magic, by (2), this becomes

[M6]
5 = 825 [M6]

3 − 69984M6 + 2621675700U (73)
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and recursion leads to

[M6]
2k+1 = 1

633

(
272k − 96k

)
[M6]

3 + 1

211

(
243 × 96k − 32 × 272k

)
M6

+ 1

422

(
7807 × 1112k − 150775 × 272k + 142968 × 96k

)
U, k � 2 . (74)

It can be verified that [M6]
2k+1 (k � 2) satisfies themagic square conditions (2) and (3)withm2k+1 =

1112k+1. Also, [M6]
3 is strictly-magic and it follows that [M6]

2k+1 is strictly-magic since the [M6]
3 term

in (74) is greater than the M6 term. A formula similar to (74) for powers of an order-3 natural magic

square was given as a problem with solution by Brillhart [3]. Furthermore, our result generalizes a

result of van den Essen [6] who used the Cayley–Hamilton theorem to show that odd powers of all

order-3 magic squares are magic but odd powers of higher order ones may not be. Formulas similar to

(74) can be derived for other magic square matrices; see [14] for examples.

6. Conclusions

The results presented here have furthered our knowledge of transformations, spectra, products,

and powers of special magic squares. In particular, the introduction of the quasi-regular property has

led to new insights on these topics. Numerical examples in this paper illustrate some of our theoretical

results andmore numerical examples are presented in [13,14]. As noted in the body of the paper, there

are unresolved issues regarding special magic squares.
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Appendix A. Panmagic squares of even order

Herewegive a short proof of a basic identity for even-order panmagic squares due toRosser andWalker

[19]. As notedby them, this identity leads to the fact that natural panmagic squares of singly-evenorder

do not exist.

WithMij denoting the elements of an even-order panmagic squareMP , the Rosser–Walker identity

can be written as
n/2−1∑
x,y=0

Mi+2x,j+2y = mn/4, i, j = 1 or 2. (75)

The proof of (75) given by Rosser and Walker [19] is rather complicated. A simpler proof follows from

forming (75) by subtracting alternate rows, alternate columns, and alternate diagonals from 2MP and

summing over all elements of each matrix to obtain (75). A formal proof can be developed using the

lattice matrix with elements

Lij =
[
1 − (−1)i

] [
1 − (−1)j

]
/4. (76)

The column, row, and pandiagonal sum conditions onMP can be expressed as

(L + LK)MP = m (L + LK) ,
MP (L + KL) = m (L + KL) , (77)

LKMPL + LMPKL = mn

2
L,
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respectively. These identities lead to

(L + LK)MPL + LMP (L + KL) = 2LMPL + LKMPL + LMPKL = mnL,

whence LMPL = mn

4
L (78)

which is equivalent to (75) for i = j = 1. The other three cases of i, j = 1 or 2 follow from Theorem 8.

As noted by Rosser andWalker [19], for natural panmagic squares of singly-even order (n = 6, 10,
. . .) , by (75) and (4),mn/4 is a fractionwhereas the left-hand-side of (75) is an integer. Therefore, (75)

is violated and such squares do not exist. Furthermore, by Theorem 9, a regular magic square of even

order can be transformed to a panmagic square. Thus, natural regular magic squares of singly-even

order do not exist either.

Unfortunately, the oft-cited proof of nonexistence of natural panmagic squares of singly-even order

given by Planck [18] is faulty since his assumed element pattern does not apply to all even-order

panmagic squares. For example, in certain natural panmagic squares of order-8 from [21] the sum

of the 16 main 2 × 2 subsquares is not 130 as Planck assumes. Thus, he proved only that natural

most-perfect squares of singly-even order do not exist.

At History Museum, Xi′an, China (photo by the author).

Another application of magic squares!
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