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1. Introduction

Magic squares have a long and fascinating history as detailed by Pickover [17], Pasles [16], Olleren-
shaw and Brée [15], and Cammann [4]. The treatment of magic squares as matrices leads to many
interesting new results and insights as seen from nearly all of our references. An historical account
of the matrix-theoretic approach is given by Loly et al. [10], where references to other work may be
found. Magic squares have a continuing appeal to both professional and recreational mathematicians
and they have found application in physics, computer science, image processing, and cryptography
[8,10,15].

The present paper is concerned with magic squares that have special properties, namely, regu-
lar (or associative), pandiagonal, and most-perfect magic squares, plus a new class of quasi-regular
magic squares which includes regular and most-perfect magic squares. These four classes of magic
squares (defined in the next section) are called special. We employ methods of matrix algebra to study
transformations between these special magic square matrices, their spectra, and their matrix prod-
ucts and powers. Many of our results are new and others confirm known results obtained by other
methods.

2. Definitions

We begin by defining a number of special matrices and several classes of special magic squares that
will be studied in what follows. All matrices considered here are square. Let u be the unity column
vector with all elements 1, U - the unity matrix with all elements 1, I - the identity matrix, and R
- the reflection matrix (or counteridentity matrix) with 1's on the cross (or dexter) diagonal and all
other elements 0. It should be noted that other authors use various other symbols for our U, u, and R.
In matrix notation R and U satisfy the following identities:

RP=R'=R, RU=UR=U, tr[Ul=n U=n"U i=12,..., (1)

where RT denotes the transpose of R and tr [U] denotes the trace of U. The matrix product RA reflects
the elements of a matrix A about its horizontal centerline, AR reflects the elements of A about its
vertical centerline, AT R rotates the elements of A a quarter turn clockwise about its center, RA” rotates
the elements of A a quarter turn counter-clockwise, and RAR rotates the elements of A a half turn.
These matrices together with AT, RATR, and A itself constitute the eight phases (or variants) of A as
discussed in [10].

The matrix M is semi-magic if the sums of all its rows and all its columns equal the same index m,
i.e, if

AT
Mu:(u M) —mu or MU= UM = mU. 2)
The matrix M is magic if, in addition to (2), its main diagonal and cross diagonal also sum to m, i.e., if
tr[M] = tr [RM] = m. (3)

By these definitions, a magic square also is semi-magic and a semi-magic square may or may not be
magic. In what follows, M denotes a magic square matrix unless otherwise noted and A denotes a
generic matrix, both having integer elements (for simplicity). Subscripts are used to denote special
classes of M. The n by n (order-n) matrix A is natural (or classic) if its elements are in the numerical
sequence 1, 2, ..., n%. Some authors use the sequence 0, 1, . .. n*> — 1 which would slightly change
some of our results. Various methods of constructing magic squares are presented in [7,12-20]. The
index for a natural magic square is given by

m=n(n?+1)/2. (4)

The eight phases of M also are magic as is easily verified. Some authors, e.g., Pickover [17], restrict magic
squares to those having distinct elements while many others do not enforce this restriction. In this
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paper we allow magic squares with nondistinct elements, but magic squares with distinct elements
are called strictly magic. A condition for a matrix to have distinct elements is given at the end of this
section.

The matrix Ac is centrosymmetric if

RACR = Ac. (5)

A permutation matrix P has a single 1 in all rows and columns and O for all other elements. It has the
following properties:

UP=PU=U, P"'=pP', and detP = +1. (6)

The matrix operation PA interchanges rows of A and AP interchanges columns of A.
A magic square My, is regular (or associative) if pairs of its elements that are symmetrically posi-
tioned with respect to its center add to the same regularity index r, i.e., if

Mg + RMgR = rU or RMg + MgR = rU. (7)

This requires Mg of odd order to have r/2 as its center element. On taking the trace of (7) and noting
(3) and (4), we have

r=2mn"' or r=n’+1 if Mg is natural. (8)

It is known that all order-3 magic squares are regular [10].

A magic square Mp is pandiagonal (Nasik, perfect, or diabolic) if all its broken diagonals (of n ele-
ments) in both directions sum to the magic index m. These conditions, including (3), can be expressed
as

tr [K"Mp] —tr [K"RMP] =m, i=1,2,...,n, (9)

where K is the order-n permutation matrix that has all elements 0 except K1, = 1 (upper right corner)
andK;;—1 =1, i =2, 3, ..., n(diagonal below the main diagonal). The operation KM shifts rows of
M down one (and bottom row to top) while MK shifts columns of M one to the left (and first column to
last). Power operations K'M and MK’ give rise to repeated shifts. The following identities can be easily
verified:

K'=1, K'=K"7"=RKR, i=1,2,....n
n X n .
DK =>K"=U. (10)
i=1 i=1
It follows from the shifting properties of K that Mp satisfies the conditions

n n
D K'MpK' =mU and D K 'MpK' =mU (11)
i=1 i=1

which provide a convenient numerical test for pandiagonality.

The term panmagic is applied to a pandiagonal magic square. An ultra-magic square My is both
panmagic and regular. It is known that other than U there are no order-2 magic squares, no order-
3 panmagic squares, and no order-4 ultra-magic squares [17]. Furthermore, Rosser and Walker [19,
Theorem 5.2] proved that there are no natural panmagic squares of singly-even order (n = 6, 10, .. .).
A simple derivation of the identity used in their proof is given in Appendix A. Also, it follows from a
known transformation (to be discussed in the next section) that there are no natural regular squares
of singly-even order either.
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As an extension of regular magic squares, we define a quasi-regular (QR) magic square Mg as one
that satisfies

Mo +Q 'MoQ =1U or QMg + MpQ = 1U, (12)
where r is given by (8) and the operator Q is a nonsingular matrix of the same order as Mg that satisfies
UQ=QU =U and detQ # 0. (13)
A quasi-regular magic square Mg with a centrosymmetric operator Qc is called QRC.
Lemma 1. A QRC semi-magic square Mg is a magic square.

It follows from (12), (5), and (8) that M satisfies the diagonal sum condition (3). This lemma will be
used in a later section to prove that odd powers of a QRC magic square are QRC magic squares. Also, if
Mg is QR with operator Q, then it follows from (12) that the phases RMg, MgR, and RMgR are QR with
operator Q, whereas the phases (Mo)", R (Mg)”, (Mo)" R, and R (Mq)" R are QR with operator Q.

On comparing (7) with (12), we see that a regular magic square is QRC with operator Q¢ = R.
This case was studied extensively by Mattingly [12], who also gave a condition of the form (12) but
with a different right-hand side and without (13). The case Q ~' = Q was studied by Chu et al. [5]
with application to order-4 magic squares and their Moore-Penrose inverses. Also, Staab et al. [20]
considered the case where Q = Q! = P = PT is a symmetric permutation matrix of various special
forms. In the present paper Q need not be a permutation matrix nor must Q = Q~!.

An important subclass of QR magic squares follows from noting that, by (12) and (13), we have

Q*Mgy = MpQ? (14)
which is satisfied if
Q=@ =0-BnI+pU, B#n " (15)

Here, B = 0 corresponds to Q ~! = Q which includes the case where Q is a symmetric permutation
matrix. However, other forms of Q are possible. A quasi-regular magic square Mg with operator Qs
that satisfies (14) is called QRS and it need not be QRC.

A useful special form for the QR operator is

w=>q (K" + 1<—") , wheref = [n/2] (16)
i=0

and, in order to satisfy (13), the constants a; must satisfy

n

2> a;=1 and detQy #0. (17)

i=0

A QR magic squares Mg with operator Qy is called QRK and it also is QRC.
The matrix Q = n~'U also satisfies (12) but not (13) since U is singular. For a given operator Q,
the following associated operator Q satisfies (12) and (13):

O_:(l—om)Q+aU, a;én_l, (18)
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where o # n~! ensures that Qis nonsingular as seen from the identity
det [é] = det[Q]det[(1 — an) [+ aU] = (1 — an)" ' det[Q] . (19)

Often, o can be chosen so that Q has a simple form. In addition, it can be shown that Q ~! and Q 'are
suitable QR operators and that Q, Q' and Q‘1 retain the special property of Qc, Qs, or Qk.

For a given magic square or a class of magic squares of a particular form, one may attempt to
construct Q by solution of (12) and (13). However, for most magic squares this turns out to be impossible
and they are not QR. Nevertheless, the study of QR magic squares leads to interesting results as will be
seen in what follows.

The following theorem generalizes a result given by Ollerenshaw and Brée [15] for the special case

Qx = K2 (neven):
Theorem 2. A QRK magic square is pandiagonal.
Proof. From (12) and (10), we have
K'Mg + K'Q¢ 'MqQx = rU
K'RMq + K'RQ¢ "M Qx = 1U. (20)

On taking the trace of these two equations and noting that QgK ! — K'Qg and QR = RQx follow from
(16) and (10), we see that the pandiagonal conditions (9) are satisfied. [J

A most-perfect (MP) magic square My of doubly-even order (n = 4, 8, ...) has the following
additional properties:

(1) Two elements that are n/2 elements apart along all diagonals (including broken ones in both
directions) sum tor, i.e.,

My + KZMyK? = rU. (21)

(2) The elements of all 2 by 2 subsquares (including broken top-bottom, broken left-right, and the
four corners) sum to the constant 2r, i.e.,

(I+K)My (I +K) = 2rU. (22)

On comparing (21) with (12) and (13), we see that a MP matrix is QRK with operator Qg = QK_] =K3.
Thus, in view of Theorem 2, a MP matrix must be pandiagonal as noted by Ollerenshaw and Brée [15].
For an order-4 panmagic square, the pandiagonality conditions (11) and Eq. (21) lead to the known
fact [17] that all such squares are MP and QRK with operator Qx = K2. A method of constructing
and counting the number of MP natural magic squares of doubly-even order is given in [15]. Next, we
derive the matrix form of identities for My, given in subscript form in [15].

Theorem 3. A MP matrix My; satisfies the following identities:

My (I +K) = K'My (I + K)
t. ieven (23)
I+ K)My = (I + K) MyK'

My (I + K) (1 + K%) —2U
. , ndoubly-even. (24)
(1 +1<i) (I + K) My = 2rU
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Proof. Eq. (22) may be written as
My (I +K) + KMy (I + K) = 21U,
KMy (I + K) + K*My (I + K) = 2rU, (25)
S My (I +K) = K2My (I + K)
and (23); follows by induction. Since n is doubly-even, by (23); and (21), for (24); we have
My (4 K) (I 4+ K?) = My (I + K) + K2 MyK? (I + K)
=My (I +K)+ (tU—My) (I +K) =2rU. (26)
The proofs of (23); and (24), are similar. [
On multiplying (24); and (24), by U and noting (10), it follows that (2) is satisfied and M), is semi-
magic. Since M), is QRK, by Lemma 1, it is magic as stated in its definition. In a later section (24) will be

used to prove that odd powers of MP magic squares are MP magic squares. Next, we present a general
result for order-5 panmagic squares.

Theorem 4. Any order-5 panmagic square Mps is QRKS with operators
Qs = (142K +2K7") /5 and Qs = (I+2K> + 2K%) /5 (27)
with B = 4/25in (14).

Proof. It is easy to show that Qgs and @(5 satisfy (13), (16), and (17). On adding the two pandiagonal
conditions (11) on Mps and noting that K> = K~2 and K* = K~!, we find that

2Mps + (K + 1<‘1) Mps (K + K_l) + (K2 + 1<‘2) Mps (1(2 + 1<‘2) = 2muU (28)
which, by the identity (10),, becomes

Qxs (QxsMps + MpsQgs) = rU. (29)

Since Qs is not singularand U = QgsU, it follows that Mps satisfies the QR condition (12) with operator
Qxs. The associated operator Qs in (27) comes from (18) with @« = 2/5 and (10). The relation (14)
with B = 4/25 is easily verified using (10). O

The QR equation (12) on Mps with operators Qgs and QKS given by (27) shows that the elements
corresponding to those marked with v in the following matrices sum to m:

[00 0 00] [0 0% 00|
00 % 00 00000
Ui=|0% % % 0|, Y2=|5%0%0% |, (30)
00 % 00 00000
|00 0 00| | 0 0% 00 |

and these patterns can be shifted up/down and left/right. Other sum invariants also can be derived
from (12) and (27). The W sum invariant was obtained in a different manner by Andress [2] who found
similar sum invariants for other panmagic squares. Sum invariants also follow from the QR condition
(12) for other magic squares which need not be pandiagonal.
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A necessary and sufficient condition for an order-n matrix A to have distinct elements is
A—KAK =@y, i,j=1,2,...,n, (i=j#n), (31)

where ®j; is an order-n matrix that has no zero elements. Also, a check for distinct elements and
naturalness follows from sorting the elements of A into numerical order.

3. Transformations

In this section we examine matrix transformations between regular, QR, pandiagonal, and MP
magic square matrices. The phase transformations mentioned after (1) preserve each of these special
properties as is easily verified. First, we note a basic transformation for semi-magic squares.

Lemma 5. A semi-magic square My can be transformed to a semi-magic square M, by the transfor-
mation

My = P{M; P, (32)

where Py and P, are perturbation matrices. If My is natural, then so is M .

This follows from (2) and the fact that row/column interchanges do not effect naturalness. The next
four theorems establish sufficient conditions for the transformed square to be magic and retain any
special properties. The straightforward proofs of the first three of these are left as exercises.

Theorem 6. A magic square My can be transformed to a magic square M, by the transformation

M, = PM;P", where RPR = P. (33)
If My is QR with operator Qq, then M; is QR with operator

Q = PQiP". (34)

If My is regular, QRC, or QRS, then so is M.

Theorem 7. If Mg is a QR magic square with operator Q, then so are QMq and Mq Q. If Mg is QRK (hence
pandiagonal) or MP, then so are QMg and Mq Q.

Theorem 8. A panmagic square Mpy can be transformed to a panmagic square Mp; by the transformation
Mpy = K'Mp K/, i,j=0,1,2,..., orn. (35)

Here, (35) is the well-known row/column shift transformation [17]. Next, we present the matrix form
of a known transformation.

Theorem 9. A regular magic square Mg of even order n can be transformed to a panmagic square Mp by
the transformation

Mp = WMRW, (36)
where the permutation matrix W is expressed in terms of order-n/2 submatrices IAQ, 1, and O as

RO [0
W=W;=|, . | or W=W,=RW;R=| . _ |, (37)
01 O R

where O is the order-n /2 matrix with all elements zero. Furthermore, Mp is QRK with operator Qx = K 3
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Proof. From (37), we have the identities
WRW =K2? and W '=w (38)

from which the regularity condition (7) with (36) leads to (21). Thus Mp is QRK with operator Qg = K 2
and, by Theorem 2, Mp is pandiagonal. [

The transformation (36) was known to Planck [ 18] who called it the “A-D method.” Also, for order-8
magic squares, this transformation was given by Setsuda as posted on the Suzuki website [21]. However,
the convenient matrix formulation (36) and the QRK condition on Mp are believed to be new.

Corollary 10. A QRK panmagic square Mp of even order n with operator Qg = K 2 can be transformed to
a regular magic square Mg by the transformation

Mg = WMpW. (39)

The proof follows in reverse the proof of Theorem 9. In view of (21), this corollary applies to all MP magic
squares. Since all order-4 panmagic squares are MP, they can be transformed to a regular magic square
by (39). In addition, some other panmagic squares of higher even order can be transformed to a regular
magic square My by transformations similar to (39). However, the author has been unable to establish
such a transformation for all panmagic squares of even ordern > 4and it appears that this isimpossible
(conjecture) since there are more elemental regular conditions from (7) than elemental pandiagonal
conditions from (9) for such squares. Also, we note that the foregoing transformations, including the
phase transformations, can be combined sequentially where appropriate, e.g., Mp, = RK> (Mp1)T RK?.

Some natural panmagic squares Mp of odd order can be transformed to a natural regular square

Mg by the shift transformation (35) with i and j chosen such that the element (n2 + l) /2 of Mp

is shifted to the center of My as required for regularity. In some cases a further permutation of rows
and/or columns results in a regular magic square. For example, the following natural order-9 panmagic
square given by Pickover [17, p. 255] (attributed to Gakuho Abe):

[ 1 16 51 30 45 77 56 71 22 |
41 47 616773 9 15 21 35
69 75 8 14 20 34 40 46 63
13 19 36 42 48 62 68 74 7

Mpg = | 53 32 64 79 58 12 27 6 38 (40)

81 60 11 26 5 37 52 31 66

25 4 39 54 33 65 80 59 10

29 44 76 55 70 24 3 18 50

57 72 23 2 17 49 28 43 78

is QRKS with operator
Qo = (Qxo) " = (2K> + 2k — 1) /3 (41)

and Mpg can be transformed to the following natural ultra-magic square by row/column shifts and
permutations:
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77 56 71 22 1 16 51 30 45
24 3 18 50 29 44 76 55 70
34 40 46 63 69 75 8 14 20
65 80 59 10 25 4 39 54 33
Myg = | 9 15 21 35 41 47 61 67 73 |. (42)
49 28 43 78 57 72 23 2 17
62 68 74 7 13 19 36 42 48
12 27 6 38 53 32 64 79 58
37 52 31 66 81 60 11 26 5 |

Again, Myg is QRKS with operator Qg, thus ensuring that Myg is pandiagonal according to Theorem
2.In addition, the elements of all 3 by 3 subsquares of Mpg and Myg sum to m = 369, i.e.,

(1+K+K")Myo (I +K+K") =mu, (43)

a property similar to (22) for MP squares. Thus, Myg might be called ultra-perfect. Furthermore, the
QR condition (12) with the operator Qg leads to the following sum invariant: for any element, the
sum of its four neighboring elements (with wrap around) three squares right, left, above, and below
minus the element itself is 123. An order-9, ultra-perfect magic square also was constructed by Frost
[7]. His square also is QRK with operator Qgg and he noted the sum condition given by (43).

The author doubts (conjecture) that the above transformation method can be applied to all odd-
order panmagic squares since here again there are more elemental regular conditions from (7) than
elemental pandiagonal conditions from (9) for n > 5. Also, I have been unable to transform a generic
regular magic square Mg of odd order to a panmagic square Mp by a matrix transformation and this
appears to be impossible (conjecture). Furthermore, not all panmagic squares of order n > 5 are QR,

e.g.,

[ 4 2029 45 12 28 37 |
10 26 42 2 18 34 43
16 32 48 8 24 40 7

Mp; = | 22 38 5 21 30 46 13 (44)

3544 11 27 36 3 19

41 1 173349 9 25

47 14 2339 6 15 31

is a natural order-7 panmagic square that is not QR as will be verified in the next two sections. However,
we have encountered many QR panmagic squares of order n > 6 with various Q operators, some of
which are given in [14]. Use will be made of the QR property in the next two sections.

4. Spectra

First, the main concepts of the spectral analysis of matrices are briefly reviewed. A fuller presentation
of this subject is available in standard texts on matrices.
For an order-n matrix M, the characteristic equation is obtained from

det[M —All =0 (45)
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which leads to a polynomial equation of degree n having roots A1, Ao, ..., A, called the eigenvalues
of M. The eigenvalues may be real or complex and they need not be distinct. Corresponding to each
distinct eigenvalue A; there is a simple eigenvector S;; such that

(M — 20 Sip =0, (46)

where Sj; is determined only to within a scalar multiple. If an eigenvalue is repeated k times it is said
to have algebraic multiplicity k. Repeated eigenvalues A; may have generalized eigenvectors S for
which
k
M — M) Sk =0 o
( ’k)_l”‘ k=23, <k <n, (47)
M — )\.jl) Sik #0

where k is the rank of Sj, and k; is the algebraic multiplicity of A;. There may be several sets of
such S, the number of which is the geometric multiplicity of A;. In some cases there also may be
several simple (rank-1) eigenvectors corresponding to the repeated eigenvalue. For a matrix with real
elements, if there is a complex eigenvalue A; with eigenvector S, then, by (46) or (47), there also must

be a complex conjugate eigenvalue A; with eigenvector §jk. By (47), Sjk satisfies the recursion relation
(M= XD Sje = Sik—1, k=12,3,...,k. (48)

The simple and generalized eigenvectors can be assembled into a matrix S such that
M=S5"", (49)

where the columns of S are the eigenvectors and J is a matrix with their corresponding eigenvalues
on the main diagonal and zeros elsewhere if all eigenvectors are simple (diagonable case). If there
are generalized eigenvectors (nondiagonable case), then ] has ones on the diagonal above or below
the main diagonal (depending on the ordering of Sj, in S) corresponding to the repeated eigenvalues.
Equation (49) is called the Jordan form of M. The character of the eigenvalues and eigenvectors for
various special magic squares is examined next.

Lemma 11. A semi-magic square M with positive real elements has an eigenvalue m of algebraic
multiplicity one with a simple eigenvector S; = u, i.e.,

MS; = mS;, whereS; =u=1[1,1,...,1]". (50)

Furthermore, the magnitude of all other eigenvalues is less than m.

Equation (50) follows from the summation condition (2). As noted by Mattingly [12], the last part of
this lemma follows from Perron’s theorem.

Lemma 12. A simple or rank-k generalized eigenvector Sy of a semi-magic square with eigenvalue A
satisfies

USy =0 for A # m. (51)
Proof. Multiply (46) or (47) by U to obtain
(A —mkus, =0 (52)

which establishes (51). O

The next theorem extends to QR magic squares a result established by Mattingly [12] for regular
magic squares.



R.P. Nordgren / Linear Algebra and its Applications 437 (2012) 2009-2025 2019

Theorem 13. If a QR magic square Mg with operator Q has a nonzero eigenvalue A # m with a rank-
k generalized eigenvector Sy, then Mg also has a companion eigenvalue —A with a rank-k generalized
eigenvector QSy.

Proof. From the QR condition (12), (51), and (46), we have

Q 'MoQS; = —MyS; = —AS;, (53)
whence QS; # 0 and
Mg (QS1) = =24 (QS1) . (54)

Therefore QS; is a simple eigenvector with eigenvalue —A. For the generalized eigenvector Sk, on
multiplying (48) by Q and using (12) and (51), we find that

(M+ A QS = —QSk_1, k=2,3,...,k (55)
Then, by induction, starting with (54) for k = 2, it follows from (55) and (47) that

M + ADK QS =0 .
(M + A" QS k=2,3,... k (56)
M+ ADK1Qs, #£0

Therefore, QSy satisfies (47) and is a rank-k generalized eigenvector with eigenvalue —A . O

The foregoing proof does not require the introduction of an auxiliary matrix as in Mattingly’s proof
[12] for Q = R. It is essential that Q be nonsingular so that QS; 7 0 follows from (53), for we have
found specific cases where QS; = 0 when Q is singular. However, our proof does not require that
Q be centrosymmetric. Recently, Staab et al. [20] proved Theorem 13 when Q is a special symmetric
permutation matrix Q = P = PT. Previously, Thompson [22] proved the existence of signed pairs of
eigenvalues for panmagic squares of orders 4 and 5 using vector space methodology. Since we have
already shown that all panmagic squares of orders 4 and 5 are QRK, Theorem 13 confirms Thompson’s
result.

It follows from Theorem 13 that if a magic square M has nonzero eigenvalues that do not come
in signed pairs, then M is not QR. For example, the natural panmagic square Mp7 of (44) has nonzero
eigenvalues that are not signed pairs and therefore it is not QR.

The converse of Theorem 13 would imply that a magic square having only signed pairs of eigenvalues
(except 0 and m) is QR. However, a counterexample to this converse is furnished by the following order-
6 natural magic square given by Mattingly [12]:

35 1 6 26 19 24 |
332 7 212325
31 9 2 222720

Mg = (57)
8 283317 10 15

30 5 3412 14 16

| 4 3629 13 18 11

which has eigenvalues 0, 111, 27, +4+/6. Computations in [14] attempting to determine Q lead
to the conclusion that Mg is not QR. Therefore, the QR property is a sufficient condition, but not a
necessary condition, for the existence of signed pairs of eigenvalues. We note that Mg is generated
by MATLB® and it can be constructed by the Strachey method for singly-even order, natural magic
squares as described by Pasles [16]. Also, we have constructed an order-10 Strachey magic square
that has signed pairs of eigenvalues [14] and we conjecture that this is a property of all such singly-
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even-order squares. For the doubly-even order, regular, rank-3, natural magic squares generated by
MATLB®, Kirkland and Neumann [9] derived explicit equations for their three nonzero eigenvalues,
two of which are signed pairs.

Next, we generalize to QR magic squares Mattingly’s [ 12] results on the number of zero eigenvalues
of regular magic squares.

Theorem 14. An odd-order QR magic square has an even number of zero eigenvalues, whereas an even-
order QR magic square has an odd number of zero eigenvalues and is singular.

Proof. From (49), the trace of a matrix M equals the sum of the eigenvalues of M and it follows from
(3) that

wM =3 A =m. (58)

For an odd-order Mg, according to Lemma 11 and Theorem 13, (58) is satisfied by the signed pairs of
eigenvalues, A = m, and an even number of zero eigenvalues. For an even-order Mg, by (58) together
with the signed pairs of eigenvalues and A = m, there must be an odd number of zero eigenvalues.
Thus, an even-order My is singular. [

As an example of Theorems 13 and 14, the eigenvalues of the panmagic square Mpg of (40) are
0,0,0,0, 369, £3(369 + 31'«/2343)%, where the four zero eigenvalues all have simple eigenvec-
tors, i.e., Mpg is diagonable. The ultra-magic square Myqg of (42) has eigenvalues 0, 0, 0, 0, 0, 0, 369,
+124/39, where the six zero eigenvalues correspond to four simple eigenvectors and two generalized
eigenvectors of ranks 2 and 3, so Myg is nondiagonable. Next, we consider the effect the transformation
(33) on the spectra of magic squares.

Theorem 15. The transformations
My = PMyP" and Ms; =P (M;)" PT (59)

leave eigenvalues unchanged and the eigenvector matrices S in their Jordan forms are related by
~1\T
S, =PS; and S3 =P (sl ) . (60)

The proof follows from the Jordan forms (49) of My, M,, and M3. Since WT = W in (37), Theorem 15
applies to the transformation (36) between regular and pandiagonal magic squares of even order. For
a magic square M, Theorem 15 shows that the normal phases M, MT, RMR, and RMTR all have the
same eigenvalues and ] matrix as do the reflected phases RM, MR, RM”, and MR as noted previously
by Loly et al. [11]. The next theorem connects the eigenvalues of these two phase groups for regular
magic squares.

Theorem 16. If a QRS magic square Mq with operator Qs has nonzero eigenvalues A and —A with cor-
responding rank-k generalized eigenvectors S, and QsS, then the QRS magic squares QsMq and Mq Qs

have eigenvalues iy A and iy A, respectively, with corresponding rank-k generalized eigenvectors S
and Q5§k, where

Sk = QsSk +iySe and y =,/1— fn. (61)

Proof. Theorem 7 ensures the magic property of QsMg and MgQs, and Theorem 13 ensures that
nonzero eigenvalues occur as signed pairs. On applying QsMq to (61), noting (14), and appealing to
Theorem 13, we find that

(QsMq — iy2)§; = 0. (62)
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Thus, §1 is a simple eigenvector of QsM with eigenvalue i\ and, by Theorem 13, Qg§1 is a simple
eigenvector of QsMq with eigenvalue —iy A. The proof for generalized eigenvectors of rank k depends
on the recursion relation

(QsMq — iy M) S = iS—1, k=2,3,....k (63)

which follows from (48), (61), (12), and (51). Then, by induction, from (63) starting with (62) fork = 2,
it follows from (63) and (47) that

. k&
Mg — iyA)f S =0 .
(QsMq — iy k)_]’i . k=2,3,... k (64)
(QsMq — iy AD)K 1§ #£ 0

Thus, §k satisfies (47) and is arank-k generalized eigenvector of QsMq with eigenvalue iy A. By Theorem

13, Qg§k is a rank-k generalized eigenvector of QsMq with eigenvalue —iy A. The proof for Mg Qs is
similar. [J

There are two important special cases of Theorem 16. First, for regular magic squares (Qq =Q5 1
=R, B =0, y = 1) the result of this theorem regarding eigenvalues was proved by Thompson [22]
for order-3 magic squares and order-4 panmagic squares and a general proof (different from ours) was
given by Abu-Jeib [1].

Second, in view of (21), the case Qs = Qs_1 =K2 (neven)applies to all MP magic squares, including
all order-4 panmagic squares. In addition, all order-5 panmagic squares are covered by Theorem 16
since their operators Qgs and @(5 from (27) satisfy (14). Theorem 16 also applies to the squares Mpg and
Myg of (40) and (42) sinlce Qg9 = (QKg)’1 in (41). For example, QggMpg has eigenvalues 0, 0, 0, 0, 369,
+3i (369 =+ 3iy/ 2343) * . where the signed pairs are i times the signed pairs of Mpg given above. Also,

by Theorem 7, QgoMpg is QRK and panmagic. Furthermore, QggMpg is natural (for no apparent reason)
and it can be formed by row/column interchanges using (32). However, for other Mp we have found
that Qg Mp is not strictly-magic [14].

5. Products and powers
In this section we study the matrix products and powers! of various special magic squares. Our
results are stated as theorems for matrix products of magic squares. These theorems can easily be

specialized to matrix powers. First, we give a general result that is applicable to all semi-magic squares.

Lemma 17. The matrix product of any number of semi-magic squares My, M», ..., My of the same
order is a semi-magic square, i.e.,

UM = MU = mU, where M = M;M, . ..My, M = mymy...m. (65)

This result follows directly from (2). Next, we establish sufficient conditions for M to satisfy the diagonal
sum conditions (3) and be magic.

Theorem 18. The matrix product of an odd number k of QR magic squares Mq1, Mgq2, ..., Mgk of the
same order and with the same operator Q is a QR magic square 1\71Q with operator Q, i.e.,

Mo +Q 'MQ = U, where Mg = Mo1Mo3 . .. Mg, T = 2mn"". (66)

If Mq; are QRK (hence pandiagonal) with operator Qy, then so is 1\7IQ.

1 Matrix powers (formed by matrix multiplication) are not to be confused with matrices formed from powers of the individual
elements of a matrix as discussed in [17].
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Proof. By Lemma 17 1\7IQ is semi-magic. Each QR square M; satisfies (12) which may be written as
Moi = 1iU — Q 'MgiQ, wherer; = 2mn™". (67)

On forming M1M;M3 from (67) for M, and using (67) for M; and M3, by (2), (13), and (8), we obtain
(66) for k = 3. Thus, by Lemma 1, Mg is magic. The QRK property of Mg follows from (66) for Q = Q.
Induction extends these results to higher odd k. O

Theorem 19. The matrix product of an odd number k of most-perfect magic squares M1, My, - . .,
My is a most-perfect magic square, i.e.,

My + KZMyK? = U, where My = MyiMya - - - Mk

(I+K) My (I+K)=2fU, and 7 =2mn"". (68)

Proof. The first equation follows from (21) and Theorem 18 with Q = K 2. For the second equation,
from (24), we form

I+ K) My (14 K) (14 K2) = 47U
(1+K2) (1 +K) By (1 + K) = 47U. (69)

Addition of these, together with (68)1, yields (68),. O

The foregoing lemma and two theorems have counterparts for odd powers of special magic squares
of the same type. They follow from setting M; = M and m; = m so that M = M* and /i = m* in each
case. Furthermore, if Mg is nonsingular with operator Q, then it can be shown that odd negative powers
of Mg also are QR magic squares with operator Q and index m~¥. In line with these results, the cube
of the QR magic square Mpg is magic, whereas the cube of Mp7 (44) is only semi-magic which again
shows that it is not QR. Theorem 18 applies to all order-3 magic squares since they are regular and to
all panmagic squares of orders 4 and 5 since they are QRK. This confirms the results of Thompson [22]
based on vector space methodology. In addition, Theorem 19 applies to all order-4 panmagic squares
since they also are MP.

There is an alternate proof of Theorem 18 for powers of Mg based on its spectrum. From Lemma 11
and Theorem 13, Mg has an eigenvalue m and signed pairs of eigenvalues and/or eigenvalues 0. Thus,
it follows from (49) that

tr[(Mo)"] = tr[s/*s™"] = ixﬁ‘ =m, kodd. (70)
i=1

Similarly, using (66), we have

tr[R (Mo)*] = tr [ (RMq)"] = m", K odd. (71)

Therefore, (MQ)k (k odd) satisfies (3) and, by Lemma 17, it is magic. This result provides insight on the
connection between the signed pairs of eigenvalues of My and odd matrix powers of Mg.

Next, let us consider the odd powers of Mattingly’s order-6 magic square Mg of (57). By the Cayley-
Hamilton theorem, Mg must satisfy its characteristic equation which gives

Mg (Mg — 1111) ([1\/16]2 - 7291) ([1\/16]2 - 961) =0. (72)
Since Mg is magic, by (2), this becomes

[Mg]®> = 825 [Mg]® — 69984Mg + 2621675700U (73)
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and recursion leads to

1 1
Mgt = — (272 — 96%) [Mg]® + — (243 x 96X — 32 x 27%) M
[Ms] 633( )[61+2“( ) M

1 2k 2k k
+E (7807 X 117" — 150775 x 27" 4 142968 x 96 ) u, k=2. (74)

It can be verified that [Mg ]2"‘H (k > 2) satisfies the magic square conditions (2) and (3) with myk41 =
1112K+1 Also, [Ms? is strictly-magic and it follows that [Mg]***" is strictly-magic since the [Mg]® term
in (74) is greater than the Mg term. A formula similar to (74) for powers of an order-3 natural magic
square was given as a problem with solution by Brillhart [3]. Furthermore, our result generalizes a
result of van den Essen [6] who used the Cayley-Hamilton theorem to show that odd powers of all
order-3 magic squares are magic but odd powers of higher order ones may not be. Formulas similar to
(74) can be derived for other magic square matrices; see [14] for examples.

6. Conclusions

The results presented here have furthered our knowledge of transformations, spectra, products,
and powers of special magic squares. In particular, the introduction of the quasi-regular property has
led to new insights on these topics. Numerical examples in this paper illustrate some of our theoretical
results and more numerical examples are presented in [13,14]. As noted in the body of the paper, there
are unresolved issues regarding special magic squares.
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Appendix A. Panmagic squares of even order

Here we give a short proof of a basic identity for even-order panmagic squares due to Rosser and Walker
[19]. As noted by them, this identity leads to the fact that natural panmagic squares of singly-even order
do not exist.
With Mj; denoting the elements of an even-order panmagic square Mp, the Rosser-Walker identity
can be written as
n/2—1
> Mijoxjroy = mn/4, i,j=1or2. (75)
x,y=0
The proof of (75) given by Rosser and Walker [19] is rather complicated. A simpler proof follows from
forming (75) by subtracting alternate rows, alternate columns, and alternate diagonals from 2Mp and
summing over all elements of each matrix to obtain (75). A formal proof can be developed using the
lattice matrix with elements

Lj = [1 _ (—1)1] [1 - (—1)1'] /4. (76)
The column, row, and pandiagonal sum conditions on Mp can be expressed as

(L+LK)Mp = m (L + LK),
Mp (L+KL) = m (L +KL), (77)

mn
LKMpL + LMpKL = —~L,
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respectively. These identities lead to
(L + LK) MpL + LMp (L + KL) = 2LMpL + LKMpL + LMpKL = mnL,
mn
whence LMpL = TL (78)

which is equivalent to (75) fori = j = 1. The other three cases of i, j = 1 or 2 follow from Theorem 8.

As noted by Rosser and Walker [19], for natural panmagic squares of singly-even order (n = 6, 10,
...),by(75)and (4), mn/4is a fraction whereas the left-hand-side of (75) is an integer. Therefore, (75)
is violated and such squares do not exist. Furthermore, by Theorem 9, a regular magic square of even
order can be transformed to a panmagic square. Thus, natural regular magic squares of singly-even
order do not exist either.

Unfortunately, the oft-cited proof of nonexistence of natural panmagic squares of singly-even order
given by Planck [18] is faulty since his assumed element pattern does not apply to all even-order
panmagic squares. For example, in certain natural panmagic squares of order-8 from [21] the sum
of the 16 main 2 x 2 subsquares is not 130 as Planck assumes. Thus, he proved only that natural
most-perfect squares of singly-even order do not exist.

At History Museum, Xi’an, China (photo by the author).
Another application of magic squares!
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Also Called Double-Six Magic Square. It Gon
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