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Abstract

The Fisher information matrix is of fundamental importance for the analysis of

parameter estimation of time series models. In this paper the exact information matrix

of a multivariate Gaussian time series model expressed in state space form is derived. A

computationally e�cient procedure is used by applying matrix di�erential rules for the

derivatives of a matrix function J � J�h� with respect to its vector argument. An al-

gorithm is given. It is sketched for the general state space structure without specifying a

parametrization. It is then detailed for the vector autoregressive moving average

(VARMA) model, with a given parametrization, where explicit recurrent relations are

developed. Ó 2000 Elsevier Science Inc. All rights reserved.
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1. Introduction

This paper is concerned with the construction of the exact (®nite sample)
Fisher information matrix of a Gaussian time series model expressed in a state
space form. A straightforward way of solving the problem is to explore the
properties of matrix derivatives.

The interest among statisticians in the algebra of the Kronecker product of
matrices and matrix vectorization has been growing over the last decade.
Pollock [17] focuses on the connection between the algebra of Kronecker
products and the abstract algebra of tensor products. Material on matrix de-
rivatives and their applications in classical (i.e. with independent observations)
statistical models depending on a vector h of parameters, can be found in [23].
In both papers relevant references are provided.

Time series models introduce an additional dimension: time. Even in the
Gaussian case, maximum likelihood estimation requires numerical optimiza-
tion. The Fisher information matrix plays an important role in describing the
covariance structure of the estimator. In a simpler case than that considered
here, Klein and Spreij [8] have already pointed out the relationship between the
information matrix of time series models and linear algebra concepts. We do
not attempt to go in that direction here. We are more interested in the mere
evaluation of the information matrix J, as a whole, of a general multivariate
time series model, instead of element by element, Jij, as it is generally done by
considering the pair of scalar parameters indexed by i and j with respect to
which derivatives are carried out.

Each approach has its relative advantages. One advantage of our approach
is that all derivatives are explicitly stated in arrays (vectors and matrices). The
explicitness of the full-array form can be useful for gaining mathematical in-
sights and facilitating programming. Practically speaking, the key is having
mathematical expressions which are easy to program as dense-matrix com-
putations. If all the matrices in the Kronecker products in Section 4 were
dense, then a program which duplicates what is written on the paper will be
more or less e�cient. But other routine things still need to be done, like making
sure that only about one half of symmetric matrices are computed, etc. The
point is that the full-array form is not always better. The scalar form involves
much simpler algebraic structures because it does not require Kronecker
products.

Since the purpose of this paper is to construct an algorithm of the exact
Fisher information matrix for a Gaussian time series model expressed in a state
space form it is worth mentioning that it is now more than three decades that
statisticians and econometricians have the Kalman ®lter [5] at their disposal.
Schweppe [19] had ®rst noticed that the full information likelihood function of
time series models expressed in a state space form can be evaluated by means of
the Kalman ®lter. Often the state space system is time-invariant (i.e. the
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coe�cients of the state space and observation equations are constant, not
random or functions of time). For that case of the time invariant model, Morf
et al. [13] have introduced the so-called Chandrasekhar equations, which are
computationally more e�cient by an order of magnitude. Fast procedures are
often more complex but it is not the case here. On the contrary, the Chan-
drasekhar equations are also slightly simpler than the corresponding Kalman
®lter equations. Of course, the Chandrasekhar equations do not work in time-
varying situations. Even with a time-invariant state space equation, the ob-
servation equation can be time-varying, for example when di�erent series are
observed at di�erent frequencies [26].

The asymptotic Fisher information matrix of time series models has a long
history. It was ®rst introduced by Whittle [22]. It is based on an approximation
of the Gaussian likelihood which is valid asymptotically. Subsequent devel-
opments are well covered in [16,2,24,12,6]. More recently, the sample or exact
information matrix J�h� has been studied. It is de®ned as minus the mathe-
matical expectation of the Hessian of the exact likelihood function, evaluated
at the ®nal estimated value of the parameters. It can be written as
J�h� �PN

t�1 Jt�h�, where N is the length of the time series (see (22)). Porat and
Friedlander [18] have described an algorithm for a univariate ARMA model
with a deterministic additive component. The method is both complex and
computationally intensive. The number of scalar operations is indeed of order
N 2. Independently, Zadrozny [24,25] and Teircero [21] have given a much more
e�cient algorithm, since the number of operations is proportional to N. The
method is based on the Kalman ®lter, and has been applied to the vector
autoregressive moving average (VARMA) model by the former, and to the
general state space form by the latter. However, in all cases, the corresponding
algorithm is given for one element (i; j) of Jt�h�. MeÂlard and Klein [11] have
described a method for computing the exact information matrix of a univariate
ARMA model. That method is based on the alternative expression of the
Gaussian exact likelihood in terms of the Chandrasekhar equations instead of
the Kalman ®lter equations. Note that in this case Jt�h� is computed as a
matrix. Klein et al. [7] have used that approach for a univariate single input
single output (SISO) model.

In this paper a generalization to multivariate models is considered, starting
from a general state space model with a detailed treatment for VARMA
processes, including the initialization issues.

The main term of Jt�h� is of the form

E
oezt
ohT

�

 oezt
ohT

�T

;

where ezt is the innovation (de®ned below in (10)). The purpose is to obtain a
recurrence equation for the matrix as a whole. This is done by writing an
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expression for �oezt=ohT� using a suitable vectorization of the Chandrasekhar
recursion. An algorithm is set sketched for the general vector state space
form without specifying a parametrization. It is then detailed for the VAR-
MA model with a given parametrization. Since a parametrization is not given
for the general vector state space model, the corresponding algorithm pre-
sented is incomplete because some terms are still unspeci®ed, whereas for the
VARMA case an explicit form of the recurrence relations can be established.
A test program in the MATLAB environment is available from the authors
for the VARMA model (at address http://ulb.ac.be/�gmelard/e®mvarma.
html).

This paper is organized as follows. In Section 2 some preliminaries are given.
In Section 3 we formulate the closed form for the exact information matrix for
general state space. The VARMA version of the exact information matrix, with
the complete recursions, is studied in Section 4. The aspect of initialization is
described in Section 5, which is followed by the conclusion.

2. Some preliminaries

2.1. The model

We ®rst present the general state space system described by

xt�1 � Uxt � Cut � Fwt; �1�
zt � Hxt � Dut � Cvt; �2�

where zt 2 Rm is the vector of observations, xt 2 Rn is the vector of the state
variables, ut 2 Rr the vector of exogenous variables, t 2 N, wt 2 Rq and vt 2 Rg,
and �vt;wt� is a Gaussian white noise process with E�wt� � 0, E�vt� � 0,

E
wt

vt

� �
wT

t vTt
� � � Q S

ST R

� �
P 0; �3�

where QP 0, R > 0, and T denotes transposition. These are standard as-
sumptions (e.g. [1]). Note that R, the covariance matrix of the innovation
process, is supposed to be invertible to avoid degeneracy problems. The con-
ditions for identi®cation of state space models can be found in [3]. Finally, the
usual Gaussian inferential process which uses the information matrix requires
the data generating process to be stationary.

We suppose that the model (1)±(3) depends on ` parameters denoted by the
vector h � �h1; . . . ; h`�T. Thus U, C, F, H, D, C, Q, S, and R are functions of h
and are supposed to be two times continuously di�erentiable.
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2.2. The Chandrasekhar equations

There are several ways to express the exact likelihood function of a time
series fz1; . . . ; zNg of length N. Except for the closed form expression of a
normal multivariate density, the simplest representation is based on the
Chandrasekhar recurrence equations, which are also the most computationally
e�cient, even with respect to the Kalman ®lter.

The Kalman ®lter consists in a system of several recurrences for computing
x̂tjtÿ1, the prediction of the state vector, and ẑtjtÿ1, the prediction of the obser-
vation vector. Let ~zt be the (one-step-ahead) prediction error of the observa-
tions, and ~xt the prediction error of the state vector by

~xt � xt ÿ x̂tjtÿ1: �4�
Let Ptjtÿ1 � EfextexTt g, the covariance matrix of the prediction error of the state
vector, an n� n matrix.

The Chandrasekhar equations make use of smaller matrices and are based
on the assumption that rank�Ptjtÿ1 ÿ Ptÿ1jtÿ2� (which is non-increasing in t)
6 k � rank�P1j0�6 n. The following recurrence equations can then be written
[13] to derive ~zt, and Bt � E ~zt~zTt

� �
Bt � Btÿ1 � HYtÿ1Xtÿ1Y T

tÿ1H
T; �5�

Kt � Ktÿ1Btÿ1

� � UYtÿ1Xtÿ1Y T
tÿ1H

T
�
Bÿ1
t ; �6�

Yt � U� ÿ Ktÿ1H �Ytÿ1; �7�

Xt � Xtÿ1 ÿ Xtÿ1Y T
tÿ1H

TBÿ1
t HYtÿ1Xtÿ1; �8�

ẑtjtÿ1 � Hx̂tjtÿ1 � Dut; �9�

~zt � zt ÿ ẑtjtÿ1 �10�

x̂t�1jt � Ux̂tjtÿ1 � Cut � Kt~zt: �11�

The auxiliary matrices Kt, Xt and Yt have dimensions n� m, k � k and n� k,
respectively. We also introduce the prediction error of the state vector based on
(1) and (2)

~xt�1 � Ut~xt ÿ KtCvt � Fwt; �12�
where we denote Ut � Uÿ KtH . We can rewrite the innovation

~zt � H~xt � Cvt: �13�
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The initial conditions will be discussed in the VARMA case in Section 5, where
k � m.

Given a time series of length N, the Chandrasekhar equations (5)±(11) are
used to compute the negative logarithm of the likelihood of the system de-
scribed by (1) and (2)

l�h� � ÿ log L�h� �
XN
t�1

m
2
log�2p�

�
� 1

2
log jBtj � 1

2
~zTt B

ÿ1
t ~zt

�
: �14�

3. Closed form recurrences for the exact Fisher information matrix

In this section, we derive the matrix recurrences which are needed in order to
obtain the exact information matrix. We start with an expression of the exact
information matrix based on the derivatives with respect to one element of the
vector h from which we will deduce the corresponding derivatives with respect
to the vector h as a whole.

For the element (i; j) of the exact information matrix J we have

J�h�� �ij � E
o2l�h�
ohiohj

� �
: �15�

It can be shown that ([4,18,21])

J�h�� �ij �
XN
t�1

1

2
Tr Bÿ1

t

oBt

ohi
Bÿ1
t

oBt

ohj

� �"
� Tr Bÿ1

t E
o~zt
ohi

o~zTt
ohj

( ) !#
�16�

which is always given as a scalar in the literature. By applying the following
rules [10]

Tr�ATB� � �vec A�Tvec B; where A 2 Rm�n and B 2 Rm�n; �17�

vec�ABC� � �CT 
 A�vec B; where A 2 Rm�n;

B 2 Rn�p and C 2 Rp�s; �18�

Tr�ABC� � Tr�CAB�; where A 2 Rm�n;

B 2 Rn�p and C 2 Rp�m; �19�

�A
 B��C 
 D� � AC 
 BD; where A 2 Rm�n; B 2 Rp�q;

C 2 Rn�k and D 2 Rq�l; �20�

214 A. Klein et al. / Linear Algebra and its Applications 321 (2000) 209±232



where 
 is the Kronecker product (see also [9]), the ®rst term of (16) is

Tr Bÿ1
t

oBt

ohi
Bÿ1
t

oBt

ohj

� �
� vec

oBT
t

ohi
BÿT
t

� �� �T
vec Bÿ1

t

oBt

ohj

� �� �

� ovec Bt

ohi

� �T

Bÿ1
t

ÿ 
 Bÿ1
t

� ovec Bt

ohj

� �
�21�

and the general expression of the exact Fisher information matrix can be
written as the following `� ` matrix

J�h� �
XN
t�1

1

2

ovec Bt

ohT

� �T

Bÿ1
t

ÿ24 
 Bÿ1
t

� ovec Bt

ohT

� �

� E
o~zt
ohT

 !T

Bÿ1
t

o~zt
ohT

 !8<:
9=;
35: �22�

Note that �ovec Bt�=�ohT� is an m2 � ` matrix. Of course (22) can also be de-
rived directly from (14) and (15), but the derivation is more complex than the
one used in this paper.

For solving the ®rst term of (22) the derivatives of the Chandrasekhar
equations are used, whereas the situation is di�erent for the second one, which
involves the expected value of stochastic elements. In order to obtain an ap-
propriate covariance structure, vectorization of J�h� is recommended. Conse-
quently we obtain

vec J�h� �
XN
t�1

1

2

ovec Bt

ohT

� ��8<: 
 ovec Bt

ohT

� ��T
vec Bÿ1

t

ÿ 
 Bÿ1
t

�

� E
o~zt
ohT

(

 o~zt
ohT

)T

vec Bÿ1
t

9=;: �23�

For developing a recurrence for the second term of (23) new recurrences have
to be constructed. To achieve this goal, a di�erential rule is used to derive an
expression of the derivatives of ~xt�1 in (12) and ~zt in (13). This will be given in
the following theorem.

Theorem. Let ~xt�1 and ~zt be described by (12) and (13), respectively, then

o~xt�1

ohT
� �~xTt 
 In� o vec Ut

ohT
� Ut

o~xt
ohT

ÿ �vTt CT 
 In� o vec Kt

ohT

ÿ �vTt 
 Kt� o vec C

ohT
� �wT

t 
 In� o vec F

ohT
ÿ KtC

ovt
ohT

� F
owt

ohT
�24�
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and

o~zt
ohT

� �~xTt 
 Im� o vec H

ohT
� H

o~xt
ohT

� �vTt 
 Im� ovec C
ohT

� C
ovt
ohT

: �25�

Proof. The following di�erential rule is used [10]. Consider a real, di�erentiable
(m� n) matrix function X �h� of real (`� 1) vector h � �h1; . . . ; h`�T, where m, n
and ` are positive integers. Let (m� n) matrices orX � �oXij=ohr� with
r � 1; . . . ; ` be the ®rst order derivatives of X �h� in partial derivative form with
Xij being the ®rst element (i; j) of X. Write dXij �

P`
r�1�oXij=ohr�dhr, where dhr

is an arbitrary perturbation of hr. The (m� n) matrix dX � �dXij� is the dif-
ferential form of the ®rst order derivative X �h�. An expression in di�erential
form can instantaneously be put into a partial derivative form by replacing d
with or for r � 1; . . . ; `.

Let X �h� and Y �h� be real (m� n) and (n� p) di�erentiable matrix functions
of the real vector h�`� 1�, where m; n; p; and ` are positive integers. The usual
scalar product rule of di�erentiation yields

d�XY � � �dX �Y � X �dY �: �26�
By applying this approach, ®rst for ~xt�1 in (12), we have

d~xt�1 � �dUt�~xt � Utd~xt ÿ �dKt�Cvt ÿ Kt�dC�vt
ÿ KtC�dvt� � �dF �wt � F �dwt�: �27�

Let us vectorize the matrix X �h� de®ned above according to (18), then the
�mn� `� matrix ovec X �h�=ohT is the gradient form of ®rst order derivatives of
X �h� and can be de®ned as vec dX �h� � �o�vec X �h��=ohT� dh � d vecX �h� (see
also [14]). Componentwise application of this rule gives

d~xt�1 � �~xTt 
 In�d vecUt � Utd~xt ÿ �vTt CT 
 In�d vecKt ÿ �KtC�dvt
ÿ �vTt 
 Kt�d vecC � �wT

t 
 In�d vecF � F dwt

� �~xTt 
 In� ovec Ut

ohT
dh� Ut

o~xt
ohT

dhÿ �vTt CT 
 In� ovec Kt

ohT
dh

� F
owt

ohT
dhÿ �vTt 
 Kt� ovec C

ohT
dh

� �wT
t 
 In� ovec F

ohT
dhÿ KtC

ovt
ohT

dh �28�
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which yields (24). Analogously, the di�erential of ~zt in (13) is

d~zt � �dH�~xt � Hd~xt � �dC�vt � �C� dvt
� �~xTt 
 Im�dvecH � Hd~xt � �vTt 
 Im� dvecC � C dvt

� �~xTt 
 Im� ovec H
ohT

dh� H
o~xt
ohT

dh� �vTt 
 Im� ovec C
ohT

dh

� C
ovt
ohT

dh �29�

which yields (25). �

The following rules will be used where the orders of the matrices involved
are supposed to be such that all the following operations are de®ned.
Rule 1. �A� B� 
 �C � D� � A
 C � A
 D� B
 C � B
 D.
Rule 2. A
 B
 C � �A
 B� 
 C � A
 �B
 C�.
Rule 3. Let A 2 Rm�n and B 2 Rp�q, then Mp;m�A
 B�Mn;q � B
 A; where the
commutation matrix Mm;n 2 Rmn�mn is de®ned by (see [15])

Mm;n �
Xm
i�1

Xn
j�1

�Hij 
 HT
ij �; �30�

where HT
ij � enj �emi �T; and emi is the unit column vector of order m. Note the

additional properties which are of interest

MT
n;m � Mm;n;M1;n � Mn;1 � In;

Mn;mMm;n � Imn �orthogonality property�: �31�

Rule 4. Let the random vectors x 2 Rn and y 2 Rm be jointly distributed with
E�x� � l1, E�y� � l2 and Ef�y ÿ l2��xÿ l1�Tg � X. Then (see [15])

E�x
 y� � vec X� l1 
 l2

In order to simplify the presentation of the results, we introduce the fol-
lowing notations in the recurrences, �ovec A�=�ohT� � Ah and �ob�=�ohT� � bh,
for any matrix A and any vector b. Be careful, however, that Ah and bh are
matrices.

Note that ~xt and ~xht are uncorrelated with the vector wT
s ; v

T
s

ÿ �
for sP t: In-

deed, from (12), ~xt�1 ÿ Ut~xt � KtCvt � Fwt is uncorrelated with vt�1 and wt�1

since the noises are white noise processes. To express E ezht 
ezht� 	T
in an ap-

propriate form, it is straightforward to combine the theorem given above, rules
(1±4) and (20):
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E ~zht
n


 ~zht
oT

� H h
� 
 H h

	T
Mnm;n E ~xt

nh�n

 ~xt

o

 Im

i�

 Im

o
� H h

ÿ �Tn

 I`

o
Mnm;` E ~xht

� �T���

 ~xt

�

 Im

�
Mn;m

�
Im
ÿ 
 HT

�
� I`
n


 H h
ÿ �To

E ~xht
� �T���


 ~xt

�

 Im

�
HT
ÿ 
 Im

��
� E ~xht
n


 ~xht
oT

H� 
 H�T � E vht
n


 ~xht
oT

C� 
 H�T

� Ch
� 
 Ch

	T
Mgm;g vec R�ÿ� 
 Im�

�
 Im
	

� H h
ÿ �Tn


 I`
o

Mmn;` E vht
ÿ �Tnh�


 ~xt
o
CT 
 Im

i
Mm;m

�
� Ch

ÿ �Tn

 I`

o
Mgm;` E vht

ÿ �Tnh�

 vt

o
CT 
 Im

i
Mm;m

�
� E ~xht
n


 vht
oT

H� 
 C�T � E vht
� 
 vht

	T
C� 
 C�T

� I`
n


 Ch
ÿ �To

E vht
ÿ �Tnh


 vt
o
CT 
 Im

i
� I`
n


 H h
ÿ �To

E vht
ÿ �Tnh


 ~xt
o
CT 
 Im

i
�32�

with E vt 
 vtf g � vec R and Efext 
 extg � vec EfextexTt g � vec Pt (see rule 4 above)
where Pt is the solution of the Riccati equation

Pt�1jt � UtPtjtÿ1U
T

t � FQF T ÿ KtBtKT
t : �33�

In all the recurrences, the notation Mab;c will be used as in rule 3 with m � ab
and n � c, where a, b and c are integers.

We shall not go on because, in the general case considered here, it is not
possible to obtain the derivatives of the state space and observation distur-
bances. [24] encountered the same di�culty and solved it in [25] along the lines
of [21]. This problem disappears in Section 4, where the general recurrences are
applied to the VARMA model, because the process disturbance, the obser-
vation disturbance and the innovation are identical.

4. The vector ARMA model

In this part of the paper, the complete form of the algorithm described in
Section 3 will be developed for the VARMA model.

We set forth a special case of (1±2) which is the VARMA model of order
(p; s). The parametrization of this structure is given by
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zt � a1ztÿ1 � a2ztÿ2 � � � � � apztÿp � wt ÿ b1wtÿ1 ÿ b2wtÿ2 ÿ � � � ÿ bswtÿs;

�34�
where wt is the innovation process (a sequence of independently and normally
distributed random vectors with mean 0 and an invertible covariance matrix
Q). We assume that the stationarity and invertibility conditions are ful®lled,

det �Im ÿ a1zÿ a2z2 ÿ � � � ÿ apzp� 6� 0 for jzj6 1; �35�
det �Im ÿ b1zÿ b2z

2 ÿ � � � ÿ bsz
s� 6� 0 for jzj6 1 �36�

and that the model is uniquely speci®ed which implies that the autoregressive
and moving average matrix polynomials are left coprime.

The state space form can be written (for example, [20])

xt�1 � Uxt � Fwt; �37�
zt � Hxt � wt; �38�

where

U �

a1 Im 0m � � � 0m

a2 0m Im . .
. ..

.

..

. ..
. . .

. . .
.

0m

..

. ..
. . .

.
0m Im

ah 0m � � � � � � 0m

0BBBBBBBB@

1CCCCCCCCA
; F �

a1 ÿ b1

a2 ÿ b2

..

.

ah ÿ bh

0BBBB@
1CCCCA and

HT �

Im
0m

..

.

0m

0BBBB@
1CCCCA; �39�

h � max�p; s�, ai � 0m; i > p, bi � 0m; i > s, and consequently n � hm. Note
that H h � 0.

We start from an equivalent representation of (12±13), which is

~zt � H~xt � wt �40�
and

~xt�1 � Ut~xt � �Ftwt �41�
with Ut � Uÿ KtH , and �Ft � �F ÿ Kt�. Instead of writing the recurrences in
function of t ÿ 1 we write them in function of t for typographical brevity, like
in (33) above.
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Expression (24) becomes

o~xt�1

ohT
� �~xTt 
 In� ovec Ut

ohT
� Ut

o~xt
ohT

� �wT
t 
 In� ovec

�Ft
ohT

� �Ft
owt

ohT
�42�

and the equivalent of (25) is

o~zt
ohT

� H
o~xt
ohT

� owt

ohT
: �43�

We additionally need the following recurrence equations which can be derived
from (37) and (38)

oxt�1

ohT
� xTt
ÿ 
 In

� ovec U
ohT

� U
oxt
ohT

� wT
t

ÿ 
 In
� ovec F

ohT
� F

owt

ohT
�44�

and
owt�1

ohT
� ÿ xTt

ÿ� 
 H
� ovec U

ohT
� HU

oxt
ohT

� wT
t

ÿ 
 H
� ovec F

ohT
� HF

owt

ohT

�
;

�45�
because the derivatives of the observations zt with respect to h are equal to 0.
Notice that (45) is fully implementable because wt is now the innovation, but
the corresponding recurrences in Section 3 are not implementable. By taking
the equations (37), (38), (40), (41), (42), (44) and (45) into account it can be

seen that E wh
t

ÿ �T 
 wt

n o
� 0, E xht 
 wT

t

� 	 � 0, and E exht 
 wT
t

� 	 � 0: By using

the di�erential rule applied in the theorem, we formulate the derivatives of
the Chandrasekhar equations which are necessary for solving the obtained
recurrences.

We additionally apply the di�erential rule d�Aÿ1� � ÿAÿ1 �dA�Aÿ1:

Bh
t � Bh

tÿ1 � HYtÿ1X T
tÿ1

ÿ �� 
 H
�
Y h
tÿ1 � HYtÿ1� �� 
 HYtÿ1� ��X h

tÿ1

� H� 
 HYtÿ1Xtÿ1� �� Y T
tÿ1

ÿ �h
; �46�

Kh
t � Bÿ1

t Btÿ1

ÿ �� 
 In
�
Kh

tÿ1 � Bÿ1
t HYtÿ1X T

tÿ1Y
T
tÿ1

ÿ �� 
 In
�
Uh

� Bÿ1
t

� 
 Ktÿ1

�
Bh
tÿ1 � Bÿ1

t HYtÿ1X T
tÿ1

ÿ �� 
 U
�
Y h
tÿ1

ÿ Bÿ1
t

� 
 Ktÿ1Btÿ1Bÿ1
t

ÿ ��
Bh
t � Bÿ1

t HYtÿ1

ÿ �� 
 UYtÿ1

�
X h
tÿ1

� Bÿ1
t H

ÿ �� 
 UYtÿ1Xtÿ1� ���Y T
tÿ1�h

ÿ Bÿ1
t

� 
 UYtÿ1Xtÿ1Y T
tÿ1H

TBÿ1
t

ÿ ��
Bh
t ; �47�

Y h
t � Y T

tÿ1

� 
 In
�
Uh � Im� 
 U�Y h

tÿ1 ÿ Y T
tÿ1H

T
ÿ �� 
 In

�
Kh

tÿ1

ÿ In� 
 Ktÿ1H� ��Y h
tÿ1; �48�
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X h
t � X h

tÿ1 ÿ X T
tÿ1Y

T
tÿ1H

TBÿ1
t HYtÿ1

ÿ �� 
 Im
�
X h
tÿ1

ÿ X T
tÿ1Y

T
tÿ1H

TBÿ1
t H

ÿ �� 
 Xtÿ1

��Y T
tÿ1�h

� X T
tÿ1Y

T
tÿ1H

TBÿ1
t

ÿ �� 
 Xtÿ1Y T
tÿ1H

TBÿ1
t

ÿ ��
Bh
t

ÿ X T
tÿ1

� 
 Xtÿ1Y T
tÿ1H

TBÿ1
t H

ÿ ��
Y h
tÿ1

ÿ Im
� 
 Xtÿ1Y T

tÿ1H
TBÿ1

t HYtÿ1

ÿ ��
X h
tÿ1: �49�

We then have the VARMA version of (32)

E ~zht
n


 ~zht
oT

� E ~xht
n�


 ~xht
oT
�
�H 
 H�T � E wh

t

� 
 wh
t

	T
� E ~xht

n�

 wh

t

oT
�
�HT 
 Im�

� E wh
t

n�

 ~xht

oT
�
�Im 
 HT�: �50�

We can now give the recurrences, in the order they will be used in the
computer program which is available for the interested reader

E ~xht�1

n

 ~xht�1

oT

� U
h
t

n

 U

h
t

oT

Mn2;n E ~xt
nh�n


 ~xt
o

 In

i�

 In

o
� U

h
t

� �T�

 I`

�
Mn2;` E ~xht

� �T����

 ~xt

�
U

T

t

�

 In

�
Mn;n

�
� I`

�

 U

h
t

� �T�
E wh

t

ÿ �Tnhn

 ~xt

o
�F T
t

i

 In

o
� U

h
t

� �T�

 I`

�
Mn2;` E wh

t

ÿ �Tnh�n

 ~xt

o
�F T
t

i

 In

�
Mn;n

o
� I`

�

 U

h
t

� �T�
E ~xht
� �T���


 ~xt

�
U

T

t

�

 In

�
� �F h

t

n

 �F h

t

oT

Mmn;m vec Q��f 
 In�� 
 Ing

� E wh
t

�h 
 wh
t

	Ti �Ft
�


 �Ft
�T

� E ~xht
n�


 wh
t

oT
�
�Ut 
 �Ft�T

� E wh
t

n�

 ~xht

oT
�

�Ft
�


 Ut

�T
� E ~xht

n

 ~xht

oT

Ut

ÿ 
 Ut

�T
;

�51�
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E ~xht�1

� �T�

 ~xt�1

�
� U

h
t

� �T�

 Ut

�
Mn2;n E ~xt

nh�

 ~xt

o

 In

i�
� �I` 
 Ut�E ~xht

� �T�

 ~xt

�
U

T

t � �I` 
 Ut�E wh
t

ÿ �Tn

 ~xt

o
�F T
t

� �F h
t

� �T�

 �Ft

�
Mmn;m vec Q�� 
 In��; �52�

E xht�1

n

 ~xht�1

oT

� Uh
n


 U
h
t

oT

Mn2;n E ~xt
nh�n


 xt
o

 In

i�

 In

o
� Uh

ÿ �Tn

 I`

o
Mn2;` E ~xht

� �T���

 xt

�

 In

�
Mn;n

�
In
�


 U
T

t

�
� I`

��

 U

h
t

� �T�
E xht
ÿ �Tnh


 ~xt
o

 In

i�
UT
ÿ 
 In

�
� E xht

n�

 ~xht

oT
�
U
ÿ 
 Ut

�T � E xht
�h 
 wh

t

	Ti
U
�


 �Ft
�T

� F h
n


 �F h
t

oT

Mnm;m vec Q��f 
 In�� 
 Ing

� E wh
t

n�

 ~xht

oT
�

F
ÿ 
 Ut

�T � E wh
t

�h 
 wh
t

	Ti
F
�


 �Ft
�T

� Uh
ÿ �Tn


 I`
o

Mn2;` E wh
t

ÿ �Tn�hn

 xt

o
F

T

t

�

 In

i
Mn;n

o
� I`

��

 U

h
t

� �T�
E wh

t

ÿ �Tnh

 ~xt

o

 In

i�
F T
ÿ 
 In

�
;

�53�

ÿE wh
t�1

n

 ~xht�1

oT

� Uh
n


 U
h
t

oT

Mn2 ;n E ~xt
�nh�


 xt
�

 HT

oi

 In

�
� M`;` I`

h��

 Uh
ÿ �Ti

E ~xht
� �T��


 xt

�

 HT

��
Mn;m

�
Im
�


 U
T

t

�
� M`;` I`

hn�

 Uh
ÿ �Ti

E wh
t

ÿ �Tnh

 xt

o

 HT

io
Mm;m

�
Im
ÿ 
 F T

�
� I`

�

 U

h
t

� �T�
E wh

t

ÿ �Tnh�

 exto�HF �Ti
 In

�
� I`

��

 U

h
t

� �T�
E xht
ÿ �Tnh


 ~xt
o

 In

i�
HU� 
 In�T

� E xht
n�


 ~xht
oT
�
HU
ÿ 
 Ut

�T � E xht
�h 
 wh

t

	Ti
HU
�


 �Ft
�T

� E wh
t

n�

 ~xht

oT
�

HF
ÿ 
 Ut

�T � E wh
t

�h 
 wh
t

	Ti
HF
�


 �Ft
�T

� F h
n


 �F h
t

oT

Mmn;n vec Q
�ÿ� 
 HT

��
 In
	
; �54�
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E xht�1

� 
 xht�1

	T � Uh
� 
 Uh

	T
Mn2;n E xtf�ÿ� 
 xtg 
 In�

�
 In
	

� Uh
ÿ �Tn


 I`
o

Mn2;` E xht
ÿ �Tnh�


 xt
o

 In

i
Mn;n

�
In
ÿ 
 UT

�
� Uh

ÿ �Tn

 I`

o
Mn2;` E wh

t

ÿ �Tnh�

 xt

o

 In

i
Mm;n

�
In
ÿ 
 F T

�
� E xht

�h 
 xht
	Ti

U� 
 U�T � E xht
�h 
 wh

t

	Ti
U� 
 F �T

� I`
n


 Uh
ÿ �To

E xht
ÿ �Tnh�


 xt
o
UT
i

 In

�
� F h
� 
 F h

	T
Mnm;m vec Q��f 
 In�� 
 Ing

� I`
n


 Uh
ÿ �To

E wh
t

ÿ �Tnh

 xt

o

 In

i
F T
ÿ 
 In

�
� E wh

t

� 
 xht
	T

F� 
 U�T � E wh
t

� 
 wh
t

	T
F� 
 F �T; �55�

ÿE xht�1

� 
 wh
t�1

	T � Uh
� 
 Uh

	T
Mn2;n E xtf�ÿ� 
 xtg 
 In�

�
 HT
	

� Uh
ÿ �Tn


 I`
o

Mn2;` E xht
ÿ �Tnh�


 xt
o

 In

i
Mn;n

�
In� 
 HU�T

� Uh
ÿ �Tn


 I`
o

Mn2;` E wh
t

ÿ �Tnh�

 xt

o

 In

i
Mm;n

�
In� 
 HF �T

� E xht
�h 
 xht

	Ti
U� 
 HU�T � E xht

�h 
 wh
t

	Ti
U� 
 HF �T

� I`
n


 Uh
ÿ �To

E xht
ÿ �Tnh�


 xt
o
UT
i

 HT

�
� F h
� 
 F h

	T
Mmn;m vec Q��� 
 In�� 
 HT

	
� I`
n


 Uh
ÿ �To

E wh
t

ÿ �Tnh

 xt

o

 HT

i
F T
ÿ 
 Im

�
� E wh

t

� 
 xht
	T

F� 
 HU�T � E wh
t

� 
 wh
t

	T
F� 
 HF �T;

�56�
E wh

t�1

� 
 wh
t�1

	T � Uh
� 
 Uh

	T
Mn2;n E xtf��ÿ 
 xtg 
 HT

��
 HT
�

� Uh
ÿ �Tn


 I`
o

Mn2;` E xht
ÿ �Tnh�n


 xt
o
UTHT

i

 HT

�
Mm;m

o
� Uh

ÿ �Tn

 I`

o
Mn2;` E wh

t

ÿ �Tnh�n

 xt

o
F THT

i

 HT

�
Mm;m

o
� I`
n


 Uh
ÿ �To

E xht
ÿ �Tnh�


 xt
o
UTHT

i

 HT

�
� E xht
� 
 xht

	T
HU� 
 HU�T � E xht

� 
 wh
t

	T
HU� 
 HF �T

� F h
� 
 F h

	T
Mmn;m vec Q

�ÿ� 
 HT
��
 HT

	
� I`
n


 Uh
ÿ �To

E wh
t

ÿ �Tnh�

 xt

o
F THT

i

 HT

�
� E wh

t

� 
 xht
�T

HF� 
 HU�T � E wh
t

� 
 wh
t

�T
HF� 
 HF �T;

�57�
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E ~xht�1

� �T�

 xt�1

�
� U

h
t

� �T�

 U

�
Mn;n2 E xt

nh�

 ~xt

o

 In

i�
� �F h

t

� �T�

 F

�
Mnm;m vec Q�� 
 In��

� I`�
�


 U�E ~xht
� �T�


 xt

��
U

T

t

� I`�
h


 U�E wh
t

ÿ �Tn

 xt

oi
�F T
t ; �58�

E xht�1

ÿ �Tn

 ext�1

o
� Uh

ÿ �Tn

 Ut

o
Mn2;n E extf�ÿ 
 xtg 
 In�

�
� I`
ÿ 
 Ut

�
E xht
ÿ �Tnh


 extoUT
i

� I`
ÿ 
 Ut

�
E wh

t

ÿ �Tnh

 extoF T

i
� F h

ÿ �Tn

 F t

o
Mmn;m vec Q�� 
 In��; �59�

E xht�1

ÿ �Tn

 xt�1

o
� Uh

ÿ �Tn

 U

o
Mn2;n E xtf�ÿ 
 xtg 
 In�

�
� I`� 
 U� E xht

ÿ �Tnh

 xt

o
UT
i

� I`� 
 U� E wh
t

ÿ �Tnh

 xt

o
F T
i

� F h
ÿ �Tn


 F
o

Mmn;m vec Q�� 
 In��; �60�

ÿE wh
t�1

ÿ �Tn

 xt�1

o
� Uh

ÿ �Tn

 U

o
Mn2;n E xtf�ÿ 
 xtg 
 HT

��
� I`� 
 U� E xht

ÿ �Tnh

 xt

o
UTHT

i
� I`� 
 U� E wh

t

ÿ �Tnh

 xt

o
F THT

i
� F h

ÿ �Tn

 F

o
Mmn;m vec Q

�ÿ 
 HT
��
; �61�
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ÿE wh
t�1

ÿ �Tn

 ~xt�1

o
� Uh

ÿ �Tn

 Ut

o
Mn2;n E ~xt

nh�

 xt

o

 HT

i�
� I`
ÿ 
 Ut

�
E xht
ÿ �Tnh


 ~xt
o
UTHT

i
� I`
ÿ 
 Ut

�
E wh

t

ÿ �Tnh

 ~xt

o
F THT

i
� F h

ÿ �Tn

 �Ft

o
Mmn;m vec Q

�ÿ 
 HT
��
: �62�

The last recurrences needed are

E ~xt�1

n

 ~xt�1

o
� Ut

� 
 Ut

	
E ~xt
n


 ~xt
o
� �Ft
n


 �Ft
o
vec Q; �63�

E ~xt�1

n

 xt�1

o
� Ut

� 
 U
	
E ~xt
n


 xt
o
� �Ft
n


 F
o
vec Q; �64�

E xt�1f 
 xt�1g � Uf 
 UgE xtf 
 xtg � Ff 
 F gvec Q: �65�
Note that (63) is a variant of the Riccati equation (33) which also appears in
the Kalman ®lter. Its form is however simple because of the structure of Ut and
F t. Also, the following matrix is used: E wt 
 wtf g � vec Q. The recurrences in
this section require initial values which are presented in Section 5.

5. Initialization and computation of the likelihood

To start the computation of the relations (5±11), we need initial values. We
have adapted the initialization given by [20] to our slightly di�erent notation
(his Kt is equivalent to our KtBt)bx1j0 � 0;

B1 � HP1j0HT � Q;

Y1 � UP1j0HT � FQ;

K1 � Y1Bÿ1
1 ;

X1 � ÿ Bÿ1
1 :

�P1j0HT��i� �
Xp
j�i

ajC�jÿ i� 1� ÿ
Xh
i�1

Xs
j�i

bjd
T�jÿ i� 1�; �66�
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where

d�j� � ÿbjQ�Pp
i�1

aid�jÿ i�; j � 1; . . . ; s �d�0� � Q�;

C�j� �Pp
i�1

C�jÿ i�aTi ÿ
Ps
i�j

d�iÿ j�bT
i ; j � 0; . . . ; h:

Remark 1. C�j� and o vec C�j�=ohT represent respectively, the covariance

E zt zTtÿj

n o
and

o vec E zt zTtÿj

n o
=ohT:

We also need the derivatives of the initial values of (66)

o vecB1

ohT
� Im� 
 H� o vecP1j0HT

ohT
;

o vecY1
ohT

� Im� 
 U� o vecP1j0HT

ohT

� P1j0HT
ÿ �Th


 In
i o vecU

ohT
� Q� 
 In� o vecF

ohT
;

o vecK1

ohT
� Bÿ1

1

ÿ 
 In
� o vecY1

ohT
ÿ Im� 
 Y1� Bÿ1

1

ÿ 
 Bÿ1
1

� o vecB1

ohT
;

o vecX1

ohT
� Bÿ1

1

ÿ 
 Bÿ1
1

� o vecB1

ohT
;

o vec�P1j0HT��i�
ohT

�
Xp
j�i

Im
ÿ� 
 aj

� o vecC�jÿ i� 1�
ohT

� CT�jÿ ÿ i� 1� 
 Im
� o vecaj

ohT

�

ÿ
Xh
i�1

Xs
j�i

d�j�
�

ÿ i� 1� 
 Im�
o vecbj

ohT

� Im
ÿ 
 bj

� o vecdT�jÿ i� 1�
ohT

�
;
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where

o vecd�j�
ohT

� ÿ Q� 
 Im�
o vecbj

ohT

�
Xp
i�1

dT�jÿ� ÿ i� 
 Im
� o vecaj

ohT
� Im
ÿ 
 aj

� o vecd�jÿ i�
ohT

�
;

j � 1; . . . ; s

o vecC�j�
ohT

�
Xp
i�1

ai�
�


 Im� o vec C�jÿ i�
ohT

� Im� 
 C�jÿ i�� o vecaTi
ohT

�

ÿ
Xs
i�j

bi�
�


 Im� o vec d�iÿ j�
ohT

� Im� 
 d�iÿ j�� o vecbT
i

ohT

�
;

j � 1; . . . ; p and recursively for j � p � 1; . . . ; h:

Remark 2. We have to adapt some expressions because of vectorization. For
example, for o vec P1j0HT=ohT, we know that P1j0HT is a block matrix with the
following structure

P1j0HT

�mh�m�
�

�P1j0HT��1�
�m�m�
. . .

�P1j0HT��h�
�m�m�

26664
37775;

so if the vectorization is used

vec P1j0HT

�m2h�1�
� Mb

h;m
�m2h�m2h�

vec �P1j0HT��1�
�m2�1�
. . .

vec �P1j0HT��h�
�m2�1�

266664
377775;

where Mb
h;m is a block-permutation matrix, where the �i; j�th block is

given by

Mb
h;m

h iij
� Im for i � 1; h and j � 1� �iÿ 1�m mod�hmÿ 1�;

0m otherwise:

�
�67�
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We can now write

o vecP1j0HT

ohT
� Mb

h;m

o vec�P1j0HT��1�
ohT
. . .

o vec�P1j0HT��h�
ohT

2666664

3777775:

This matrix Mb
h;m is used also in order to compute other elements for example

o vecF =ohT
ÿ �

; o vecU=ohT
ÿ �

.

Remark 3. For computing o vecY T
t =oh

T
ÿ �

, where Y T
t , is a block matrix with the

following structure

Y T
t

�h�hm�
� �Yt��1�T

�m�m�
� � � �Yt��h�T

�m�m�

" #
;

we introduce an element-permutation matrix called M e
h;m, such that

vec Y T
t

�m2h�1�
� M e

h;m
�m2h�m2h�

vec Yt
�m2h�1�

;

where the element M e
h;m

� �
ij
follows

M e
h;m

� �
ij
� 1 for i � 1;m2h and j � 1� �iÿ 1�m mod m2hÿ 1� �

0 otherwise
:

�
�68�

We can also write

o vecY T
t

ohT
� M e

h;m

o vecYt
ohT

:

Remark 4. We have also to compute the initial values of the recurrence ex-
pressions (51±65)

E ~zh1 
 ~zh1
n oT

; E exh1ÿ �T 
 ex1n o
; E exh1 
 exh1� 	T

; E wh
1 
 exh1� 	T

;

E ex1 
 x1f g; E exh1ÿ �T 
 x1
n o

; E xh1
ÿ �T 
 ex1n o

; E xh1 
 exh1� 	T
;

E wh
1 
 wh

1

� 	T
; E x1 
 x1f g; E xh1

ÿ �T 
 x1
n o

; E wh
1

ÿ �T 
 x1
n o

;

E xh1 
 xh1
� 	T

; E xh1 
 wh
1

� 	T
; E wh

1

ÿ �T 
 ex1n o
; E ex1 
 ex1f g:
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The initial values of the Chandrasekhar relations are

bx1j0 � 0; x0 � 0:

By using the Eqs. (9) and (11), we have

ex1 � x1 � Fw0;

oex1
ohT

� ox1
ohT

� wT
0

ÿ 
 In
� o vec F

ohT
;

ow1

ohT
� ÿH wT

0

ÿ� 
 In
� o vec F

ohT

�
:

We know that E w1 
 w1f g � vec Q. We now give all the initial values we need
for the expressions (51±65).

E x1� 
 x1� � E ex1f 
 x1g � E ex1f 
 ex1g � F� 
 F �vec Q;

E exh1ÿ �Tn

 ex1o � E exh1ÿ �Tn


 x1
o
� E xh1

ÿ �Tn

 ex1o � E xh1

ÿ �Tn

 x1

o
� vec F h

ÿ �Tn

 F

o
Mmn;m vec Q�� 
 In��;

E wh
1

ÿ �Tn

 x1

o
� E wh

1

ÿ �Tn

 ex1o

� ÿ vec F h
ÿ �Tnh


 F
o

Mmn;m vec Q�� 
 In��
i
HT;

E exh1� 
 exh1	T � E xh1
� 
 exh1	T � E xh1

� 
 xh1
	T

� vec F h
� 
 vec F h

	T
Mmn;m vec Q��f 
 In�� 
 Ing;

E xh1
� 
 wh

1

	T � ÿ vec F h
� 
 vec F h

	T
Mmn;m vec Q��f 
 In�� 
 Ing In� 
 H�T;

E wh
1

� 
 exh1	T � ÿ vec F h
� 
 vec F h

	T �Mmn;m vec Q�f 
 In�� 
 Ing H� 
 In�T;

E wh
1

� 
 wh
1

	T � vec F h
� 
 vec F h

	T
Mmn;m vec Q��f 
 In�� 
 Ing H� 
 H�T:

Finally, also using these initial values, the logarithm of the likelihood is
computed by
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ol�h�
ohT

� ÿ o log L�h�
ohT

�
XN
t�1

1

2

o log jBtj
ohT

8<: � 1

2

o ~zTt B
ÿ1
t ~zt

� �
ohT

9=;
�
XN
t�1

1

2
vec BÿT

t

ÿ �T ovec Bt

ohT
� 1

2
Bÿ1
t ezt� �T o~zt

ohT

(

�ezTt Bÿ1
t

o~zt
ohT

"
ÿ �ezTt 
 Im��Bÿ1

t 
 Bÿ1
t � oBt

ohT

#)
;

where we use

o~zt
ohT

� ÿ obztjtÿ1

ohT
� ÿH

obxtjtÿ1

ohT
:

6. Conclusion

With respect to the asymptotic information matrix, severe algebraic prob-
lems are raised by the e�cient computation, using closed form recurrence re-
lations, of the exact information matrix of a Gaussian linear model in state
space form. Contrary to the literature, we have chosen to evaluate the infor-
mation matrix as a whole, not element-wise. Computational e�ciency is ob-
tained by the use of the Chandrasekhar equations instead of the Kalman ®lter
recurrences, provided that sparsity of U and H is taken into account. The
model is general enough so that there is no need to specify the parameters. We
have however treated the VARMA model as a special case, where the pa-
rameters are the elements of the coe�cients of the autoregressive and moving
average polynomials.

This has been made possible by applying appropriate matrix di�erential
rules, combined with Kronecker products and vectorization of matrices. It can
be seen as an illustration of the assertions put forth by [23] and [17] about
matrix di�erentiation concepts, for the former, and about the relation between
the algebra of Kronecker products and the abstract algebra of tensor analysis,
for the latter. It is also a successful application of the [10] approach. The
equations obtained cannot easily be simpli®ed except that some common
factors can still be found but removing them would produce less appealing
equations.

The algorithm in the VARMA case programmed in the MATLAB envi-
ronment is available from the authors. It can be translated in any other matrix
environment where the Kronecker product is de®ned.
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