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In this paper, a new approximate solution of time-fractional order multi-dimensional
Navier—Stokes equation is obtained by adopting a semi-analytical scheme: “Fractional
Reduced Differential Transformation Method (FRDTM)”. Three test problems are car-
ried out in order to validate and illustrate the efficiency of the method. The scheme is found to be
very reliable, effective and efficient powerful technique to solve wide range of problems arising in
engineering and sciences. The small size of computation contrary to the other schemes, is its
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1. Introduction

The idea of fractional derivative was first given by a great
mathematician Leibniz, in 1695, in a letter to L’Hospital. Frac-
tional calculus deals with the differential and integral opera-
tors with non-integral powers. Noting that the integer-order
differential operator is a local operator while the fractional-
order differential operator is non-local, it means that the next
state of a system depends not only upon its current state but
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also upon all of its previous states. It is more realistic and is
one of the main reasons why the fractional calculus has
become so popular. In the recent years, advances of fractional
differential equations have a great attention due to their
numerous applications in a wide range of nonlinear complex
systems arising in fluid mechanics, viscoelasticity, mathemati-
cal biology, life sciences, electrochemistry and physics [1-8].
For instance, the non-linear oscillation of earthquake can be
modeled with fractional derivatives [9], and the fluid-
dynamic traffic model with fractional derivatives [10] can elim-
inate the deficiency arising from the assumption of continuum
traffic flow. Based on experimental data fractional partial dif-
ferential equations for seepage flow in porous media are sug-
gested in [11]. Fractional differential equations have created
attention among the researcher due to exact description of
non-linear phenomena, especially in nano-hydrodynamics
where continuum assumption does not well, and fractional
model can be considered to be a best candidate. These findings
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invoked the growing interest of studies of the fractal calculus
in many branches of science and engineering.

In the recent various analytical techniques such as
Homotopy perturbation method (HPM) [10], homotopy
perturbation Sumudu transform method [12,13], homotopy
analysis method (HAM) [14,15] and Adomian decomposition
method (ADM) [16,17] have been developed to solve the frac-
tional partial differential equations. By coupling of HPM and
Laplace transform algorithm (LTA), Kumar et al. solved ana-
lytically the nonlinear fractional Zakharov—Kuznetsov equa-
tion in [18]. At first, Keskin and Oturanc [19] introduce
reduced differential transform method (RDTM) as a reduced
form of differential transform method, and implement it to
find the approximate solutions of partial (and factional partial)
differential equations [19,20]. Fractional reduced differential
transform method (FRDTM) has been adopted in many arti-
cles to solve the differential equations prevailing in mathemat-
ics, physics and engineering [21-36].

A famous governing equation of motion of viscus fluid flow
called Navier—Stokes (NS) equation has been derived in 1822
[37]. The equation can be regarded as Newton’s second law
of motion for fluid substances, and is a combination of
Momentum equation, continuity equation and the energy
equation. This equation describes many physical things such
as ocean currents, liquid flow in pipes, blood flow and air flow
around the wings of an aircraft. The fractional modeling of NS
equations was first done in 2005 by El-Shahed and Salem [38].
The authors [38] generalized the classical NS equations using
Laplace transform, finite Hankel transforms and finite Fourier
Sine transform. By coupling of HPM and LTA, Kumar et al.
[39] solved analytically a nonlinear fractional model of NS
equation. Ragab et al. [14] and Ganji et al. [15] solved nonlin-
ear time-fractional NS equation by adopting HAM. Birajdar
[16] and Momani and Odibat [17] adopted ADM for numerical
computation of time-fractional NS equation. Analytical solu-
tion of time-fractional NS equation is obtained using coupling
of ADM and LTA by Kumar et al.[40] while Chaurasia and
Kumar [41] solved the same equation by coupling of Laplace
transform and finite Hankel transform. This paper presents
an approximate analytic solution of multi-dimensional, time-
fractional model of NS equation by adopting FRDTM.

The rest of the paper is organized as follows: some basic
definitions and notations on fractional calculus are revisited
in Section 2 while the preliminary on FRDTM is presented
in Section 2.1. In Section 3.1, the approximate analytic solu-
tions of three test problems of time-fractional order NS equa-
tion are obtained. Section 4 concludes the study.

2. Fractional calculus theory: basic definitions and notations

In this section, among several definitions of fractional integrals
or fractional derivatives, available in the literature due to
Riemann-Liouville, Grunwald-Letnikov, Caputo, etc., only
those basic definitions and preliminaries are revisited, which
we need to complete our study.

Definition 1 ([1.2]). Let u€ R and m & N. A real valued
function /: R* — R belongs to C, if there exists k € R, k > u
and g€ C[0,00) such that f(x) = x¥g(x), for all xe& R".
Moreover, f € C}/ if " e Cy,.

Definition 2 ([1,2]). The Riemann—Liouville fractional integral
of f'e C, of the order o« > 0 is defined as

) f(t) if o = O,
Ji) = { L[ (t— 1) fr)dr, ifa>0, W

(o)

where I' denotes gamma function: I'(z) = [* ¢ '#*"'dt,z € C.

In their work, Caputo and Mainardi [3] proposed a modi-
fied fractional differentiation operator D? to describe the the-
ory of viscoelasticity in order to overcome the discrepancy of
Riemann-Liouville derivative [1,2]. It is mentioned that the
proposed Caputo fractional derivative allows the utilization
of initial and boundary conditions involving integer order
derivatives.

Definition 3 ([1.3]). The fractional derivative of f'€ C, of the
order o > 0, in Caputo sense, is defined as

Dif(e) = J7 Dy /()

1

__Lr — )" () de
T | T e )

form—1<a<m meN, >0, feC}, p> -1

The basic properties of Caputo fractional derivative are
given as follows:

Lemma 1 ([1-4]). Let m—1<a<mmeN, and feC},
= —1, then

TA) = A0
PO =)~ SO07)E, for t5 0.

k=0

D

In the present work, Caputo fractional derivative is consid-
ered because it includes traditional initial and boundary condi-
tions in the formulation of the physical problems. For more
details on fractional derivatives, one can refer [1-5].

2.1. Fractional reduced differential transform method
(FRDTM)

This section describes the basic properties of fractional
reduced differential transform method [25,26]. Let y(x, ) be
a function of two variables such that y(x, ) = f{x)g(¢), then
from the properties of one-dimensional differential transform
(DT) method, we have

Yix ) = if(i)xf ijgmﬂ - i iw.i)x"zh (3)

where (i,j) = f(i)g(j) is referred as the spectrum of (x,1).
Throughout the paper Rp and R;;' denote the operators for
fractional reduced differential transform (FRDT) and inverse
FRDT, respectively. Further, the lowercase ¥(x,¢) is used
for the original function whereas its fractional reduced trans-
formed function is represented by the uppercase W (x).

The basic definitions and properties of FRDTM are
described below.
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Definition 4 ([25,26]). Let y(x,¢) be an analytic and continu-
ously differentiable with respect to space variable x and time
variable ¢ in the domain of interest, then

(a) FRDT of ¢ is given by
1
(ko + 1)

where o describes the order of time-fractional derivative.
(b) The inverse FRDT of W,(x) is defined by

Zq}k t—l /»oz
(c) From (a) and (b), we have

W) =3 i (7 )] 1 0

k=0

Yi(x) = [DFW(x.0)],_,, k=0,1,2,...

In particular, for ¢, = 0, above equation becomes
D“k ! .
0= i) o Pr ),

It shows that FRDTM is a generalization of the power
series expansion.

Theorem 1 ([24-26]). Let u(x,t) and v(x,t) be any two analytic
and continuously differentiable functions with respect to space
variable x and time t such that u(x,t) = Rp'[Ux(x)] and

v(x, 1) = Rp' [Vi(x)], then

@) Rofu(w, 0l 0} = Us(x) @ Vi) = S5 U0V (0
(b) Rp{aiu(x,t) £ ao(x,0)} = a1 Ug(x) £ ar Vi (x);

(©) Rp{x"t"u(x,1)} = {gnUk—n(x) ;flslé >n
(d) RD{DN“ ))} _ %UHN( );

(e) RD{D’ xt} DU (x); Rp{x"} = x"8(k); & Rp{e}

s

klv

where the convolution ® denotes the fractional reduced
differential transform version of multiplication and the function o

. 1 ifk=0
is defined by (k) = {() otherwise ’

3. Implementation of FRDTM on Navier—Stokes equation

In this section, the numerical study of time-fractional model of
NS equation of order oo < 1) is presented. The time-
fractional model of NS equation for an incompressible fluid
flow of kinematic viscosity v =n/p and constant density p is
given as follows [16,37]:

DiU+ (U-V)U = p,V?U ~1Vp, on Qx(0,7)
V.U=0, on Qx (0,7) (4)
U=0, on 9Q x (0,7)

where U = (u,v,w), t, p denote the fluid vector, time and the

pressure, respectively. (x, y,z) are spatial components in Q and

0Q is the boundary of Q, 5 denotes dynamic viscosity and p is
the density while the ratio p, =n/p denotes the kinematic
viscosity of the flow. In Cartesian co-ordinates, the above
equation becomes

o u u ()u _ Ou 31{ u _19p
Diu+tug+va+wyt po(mﬂ— 7+ 5 ) s

Ox

D?V+“%+V%+‘V%:PO<%+%+§5)*ig_fm (5)
C W W , ow w w 2]1' a
Diw +uGt+v3e 4wt = po(a +2y +‘3_,2> — &
Further, if p is known, then g, = f% %, &= :) gf
g = ,L ()—" can be determined. Applying FRDTM on Eq. (5),
we have
Hl(ﬂi)“) Ui + Z(OU‘ Up—o + %2 Vi + Wi /)
= poV2(Us) + g,6(k),
1+1(H:)1) Vi + Z(am Uer + a\é Vi + af Wi /) ()

= po V2 (Vi) + 2,0(k),

7”1(12:)1) Wi + Z(dw[ Ui + W‘ Vi—e + a—( Wi /)

= po V(W) + g58(k),

2 PP —
where V mg 4+ o7 T om and U, =
obtain the recursive values of Uy, Vi, W, by solving above
equation simultaneously once the values U,, V,, W, are

known.

Ui (x,y,z), etc. One can

3.1. Illustrative examples

Example 1. Consider time-fractional order 2-dimensional NS
equation with g, = —g, = g as

D“u+u@+u@— @Jraz +
! ox ' oy Po\ B2 0y? &

7
byt (0 P "
ax oy Pl\owTa2)
subject to the initial condition
u(x,y,0) = —sin(x + ), v(x,»,0) =sin(x +y), (8)

Using FRDTM on the above two equations, we obtained the
following recurrence relation:

A2 U +Z("°” Ut o+ 5 Vi ) = po V2 (U) + g3 k),
i VH1+Z(‘ Ui o+ 5V o) = pVA(Ve) — g0 (k),
Up=—sin(x+y), Vo=sin(x+y)

)

On solving the system (9), we have
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On solving the system (15), we have

sin(x + ),

)

200)*

(

T(1+ko

) =

y

)

X

2l sin(x +1); Vil

(
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)
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for any integer k

By using inverse FRDT, we have

00

k

u(x,y,1)

(16)

(11)

(17)

) )

gt
T(1+o

+

)
%)

0!
1+

(2p
I(

o0
e 2 :
=0

—eVE, 1 (2p0") +

0

> Uilx,p)r*

oo
k=

By using inverse FRDT, we have

u(x,y,t)

)7

gt
T(1+a

00

T(14%)

for a, f > 0 denotes the Mittag—

Leffler function with two parameters [1], and notice that

El,l(Z)

-k

o0
k=0 T(j-+ka)’

where E, 43(z)

(2po")*

(18)

NEDR

gt

T(1-+ka)

ex+y

0 and o =1 Egs. (11), (12) reduces to

e’. Forg

gt*

eVE, 1 (2pyt*) —

—e M sin(x + p);
e~ sin(x + ),

u(x,y,t)
v(x,p, 1)

0, the solution of the problem is obtained by Bira-

With g
jdar [16]. For g

(13)

which is the exact solution of classical NS equation for the
velocity field. The behavior of velocity field of the classical

0 and « = 1, we have

(19)

which is the exact solution of classical NS equation for the
velocity field. The behavior of velocity field of the NS equation
is depicted for o = 1 and 0.5 in Figs. 5 and 6, respectively.

I

ex+y+2pnt

v(x,», 1)

)

_ ex+y+2;)gt

|, and the behavior of N§ "%

equation with time-fraction order o =0.1, 0.5 and 0.8 is

NS equation is depicted in Fig.
depicted in Figs. 2-4, respectively.

Example 2. Consider time-fractional order two dimensional

NS Eq. (7) subject to the initial condition

Example 3. Consider time-fractional order three dimensional

g3 = O subject to the initial condition

NS Eq. (5) with g, = g,

(14)

Using FRDTM on Egs. (7) and (14), we obtained the

following recurrence relation:

= _ex+y7 V(X7 Vs 0) = ex+y,
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The behavior of u and v of NS equation in Example 1 at z = 3 with the parameters « =1, g

Figure 1
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Figure 2 The behavior of u and v of NS equation in Example 1 at 1 = 3 with the parameters « = 0.5, g
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Figure 3  The behavior of u and v of NS equation in Example 1 at 1 = 3 with the parameters « = 0.1, g
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Figure 4 The behavior of u and v of NS equation in Example 1 at 1 = 3 with the parameters « = 0.8, g

Using FRDTM on these equations, we obtained the follow-

ing recurrence relation:

Wk—z) = poV*(Up),

AU,
Viee + 6—;

Uy
dy

Ui +

o
Ox

(21

pOVZ(Vk)>

kaz) =
Wk—é)

o,
0z

Vie +

vy
dy

Ui_ +

v,
Ox
—05x+y+z,

vaz(Wk)v

oW,

0z

Uiy + aa_v;q Viee +

oW,
Ox

C(1+(1+k)
T(1+ko)

=x+y—0.5z

WO(xvyvz)

x—0.5y+z,

VO(X,Y,Z)

Uo(xayaz)
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v a4

Figure 5 The behavior of u and v of NS equation in Example 2 with the parameters « =1, g =0, p, = 0.5 at t = 0.05.

(. 2,0.5,2)

w(z,4,0.5,¢)
<w(z, 9, 0.5,2)

Figure 7 The velocity profile (u, v, w) of NS equation in Example 3 at 1 =0.1 with o = 1.

On solving the simultaneous equations in (21) and denoting
Uk(x,y,z) = Uy, etc., we have

2 2
U, = _r(ziisa) x U= rz((z.zzsz) Uy: Us = (2.25) (4+ T(1422) )x; Uy = (2.25) (8 T (2F(1+2a)2 4 4T(1+3) )) Us:...

1+ T T(1+3%) (T(1+a))’ T T(1+42) T(1+a)) T(1+o)T(1+22
_ 225 . _2(225) . (2257 r(+22) \ ... (225 oI (1422) 4T (1432) .
Mi=-mimy V=tom " V3= "rimm (4 + <r<1+a>)2)y V4 = Fia (8 i) FUWF(HM) Voi.- (22)
_ 225 . 2225 . (2257 r(+22) \ .. _ (2257 20(1424) 4T (14+3%) .
W= - T(ita) 2 W, = T(1+22) Wo; W3 =~ T(1+32) (4 + (r(lﬂ)y)zv W= T(1+42) (8 + (T(1+2))? 1"(1+ot)1"(1+20c)> Wo;
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By using inverse FRDT, we have
u(x,y7z, l) = U() + U " + (/21‘2oc =+ L/g,lhc + U4l4a 4+ ...
_ . a | 2(2.25) x (225 (1422) 30
=—05x+y+z— r(zlzju) X+ Fiay (F0.5x + y + 2) — SRy (4 + <r<l+x))2) xr?
(2.25)° 20(142%) 4T(1432) 4
T T4 (8 T T 1+z)r(1+2z)) (=0.5x+y+2)i +...
V()C,y7 z, t) = VO + V]fi —+ Vzl‘zx —+ V3t3“ =+ V4t4a + ...
_ 2(2.25) 2 (2.25)° I(1+2%) 3
=x—05y+z— 1+a y*+ (sz s (x = 0.5y 4+ 2) — 5555 (4+ﬁ)yl ”
(2.25) 20(1424) 4T(143a) :
RBYIEET) <8 + (mﬂsz + T 1121)) (x =05y +2) + ...
w(x,p,z,t) = Wy + Wit + Wyt + Wi + Wur* +
_ 2(2.25) (2.25)° I(1+22)
=xy =052 — G520 + Fiy (Y = 0.5 — i (4 + (ruﬂ?ﬁ) 2™
(2.25) 2T(1422) 4T(143a) "
+ I (1+40) (8 + (C(1+a))? + I (1+40)( 1+23<)) (x +y- 0'52)14 +
which is the required exact solution. For « = 1, we have
u(x,y,z,8) = (=0.5x + y 4+ 2)(1 + 2.252 +2.25%* +...) = 2.25x¢(1 +2.25 +...)
—0 Sx-y+z—2.25x1
1-2252
v(x,p,2,8) = (x — 0.5y + 2)(1 +2.252 + 2.25%¢ +...) — 2.25p1(1 +2.252 +...) 23)

_ x—=0.5p4+z-2.25yt
- 1-2.2572

w(x,p,z,0) = (x +y — 0.52)(1 + 2.25 +2.25%* +

__ Xx+y—0.52-2.25z¢
- 1-2.25¢2 :

which is the exact solution of the associated classical NS
equation for the velocity field which is same as reported in [42].
The velocity profile (u, v, w) of the Navier—Stokes equation for
o =1 is depicted in Fig. 7.

4. Conclusion

In this paper, fractional reduced differential
transformation method is adopted for the numerical sim-
ulation of time-fractional model of Navier—Stokes equations
with initial conditions. The fractional derivative is considered
in the Caputo sense. The analytical results have been given
in terms of a power series. Three test problems are carried
out in order to validate and illustrate the efficiency of the
method. The proposed solutions agree excellently with HPM
[15] and ADM [16], and are approximated without any dis-
cretization, transformation, perturbation, or restrictive condi-
tions. However, the performed calculations show that the
described method needs very small size of computation in com-
parison with HPM [15] and ADM [16]. Small size of computa-
tion contrary to the other schemes, is the strength of the
scheme.
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