
FEBS Letters 578 (2004) 316–322 FEBS 29052

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Influence of a mitochondrial genetic defect on capacitative calcium
entry and mitochondrial organization in the osteosarcoma cells

Joanna Szczepanowska*, Krzysztof Zabłocki, Jerzy Duszyński
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Abstract Effects of T8993G mutation in mitochondrial DNA
(mtDNA), associated with neurogenical muscle weakness, ataxia
and retinitis pigmentosa (NARP), on the cytoskeleton, mito-
chondrial network and calcium homeostasis in human osteosar-
coma cells were investigated. In 98% NARP and q0 (lacking
mtDNA) cells, the organization of the mitochondrial network
and actin cytoskeleton was disturbed. Capacitative calcium entry
(CCE) was practically independent of mitochondrial energy sta-
tus in osteosarcoma cell lines. The significantly slower Ca2+ in-
flux rates observed in 98% NARP and q0, in comparison to
parental cells, indicates that proper actin cytoskeletal organiza-
tion is important for CCE in these cells.
� 2004 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Mitochondria are unique organelles in their double genetic

origin. Eleven essential subunits of the respiratory chain and

two subunits of ATP synthase are encoded in mitochondrial

DNA (mtDNA). Unlike nuclear genes, mitochondrial genes

are present in high copy numbers. Most mtDNA alterations

can lead to human disorders [1,2] and usually wild type and

mutant mtDNA coexist in the cells of patients with mtDNA

diseases.

Neurogenic muscle weakness, ataxia and retinitis pigmen-

tosa (NARP), one of the common human mitochondrial dis-

eases, can be the result of the mtDNA mutation T8993G in

ATP6 gene encoding subunit 6 of the mitochondrial ATP syn-

thase. NARP develops when the level of T8993G mutation ex-

ceeds 70% penetration. At an extreme degree of heteroplasmy

(over 90%), the T8993G mutation can cause fatal Leigh syn-
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drome. The T899G mtDNA mutation is associated with a de-

creased capacity of ATP synthesis [3–6].

q0 cells that lack mtDNA have been used widely to study

the importance of mtDNA for cell functions. These cells

show a characteristic lack of mitochondrially encoded pro-

tein subunits, resulting in a disruption of respiratory function

and initiating cellular energy production by glycolysis [7].

These cells cannot carry out oxidative phosphorylation and

contain swollen mitochondria, which still import and process

most proteins encoded by nuclear DNA. Buchet et al. [8]

have shown that F1-ATPase and the adenine nucleotide

translocator are functional in q0 cells and are able to gener-

ate, at least to some extent, mitochondrial membrane electric

potential.

Proper intracellular distribution of mitochondria is essential

for normal cell function and the functionality of mitochondria

is reflected in their structure [9,10]. Confocal imaging of live

cells shows a continuous reorganization of mitochondrial

structures [10–13]. Rapid changes in mitochondrial morphol-

ogy appear to be controlled by a dynamic balance between

cytoskeletal organization and fission/fusion events [11,14,15]

and alterations in mitochondrial morphology have been corre-

lated with changes of mitochondrial metabolic state [15–19].

An increasing body of evidence indicates that mitochondrial

network dynamics is important for many aspects of cellular

function. Moreover, the importance of cytoskeletal proteins

as modulators of cell morphology and signaling has inspired

speculations that mitochondrial network dynamics and regula-

tion of intracellular calcium levels are closely related [9,20–22].

Elevated cytosolic calcium concentration ([Ca2+]c) is another

obvious candidate for causing cellular dysfunction in mito-

chondrial diseases. Mitochondria could transiently accumulate

an appreciable amount of calcium and thereby affect calcium

homeostasis. This function is related to the rapid uptake and

relatively slow release of calcium ions by mitochondria. Mito-

chondria localized in regions close to the endoplasmic reticu-

lum (ER) and plasma membrane (PM) are most effective in

[Ca2+]c buffering [9,23]. In electrically non-excitable cells, cal-

cium influx into the cell depends on the filling state of ER.

Mitochondria are postulated to play an important role in the

regulation of capacitative calcium entry (CCE) [24–26]. Re-

cently, Zabłocki et al. [27] have shown that extracellular pH af-

fects CCE regulation in Jurkat cells. Deenergization of

mitochondria greatly impairs the activity of CCE even under

conditions of full calcium release from the ER [28]. Mutations

in mtDNA can also result in reduction of calcium influx [29–

31], but do not influence the calcium content in mitochondria

in NARP cells [32].
blished by Elsevier B.V. All rights reserved.
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The aim of this study was to characterize changes in mito-

chondrial and cytoskeletal organization caused by various lev-

els of penetration of the mitochondrial T8993G mutation. We

have studied the morphology of mitochondria as well as the

distribution of actin, microtubules and vinculin in cells with

different degrees of T8993G penetration. We also determined

how the penetration of mtDNA T8993G mutation influences

CCE. We have compared the rate of calcium influx in osteosar-

coma cell lines before and after treatment with the protono-

phore CCCP and have demonstrated that mitochondria in

osteosarcoma cells do not control the rate of Ca2+ flux through

the PM.
2. Materials and methods

2.1. Materials
Fura-2/AM, 5,5 0,6,6 0-tetrachloro-1,1 0,3,3 0-tetraethylbenzimidazole

carbocyanide iodide (JC-1), MitoTracker CMXRos and rhodamine
phalloidin were from Molecular Probes (Eugene, OR). Thapsigargin
was purchased from Calbiochem (La Jolla, CA). Fluorescently labeled
anti-mouse and anti-rabbit IgG antibodies were purchased from Jack-
son ImmunoResearch Laboratories (West Grove, PA). Anti-tubulin
antibody was from BD Biosciences Pharmingen (Lexington, KY).
Other chemicals and antibodies were from Sigma Chemicals (St. Louis,
MO).

2.2. Cell lines and culture conditions
The parental human osteosarcoma cell line 143B (TK�), its 143B/

206 cybrids with different degrees of penetration (60% and 98%) of
the mtDNA T8993G mutation, and the q0 cell line lacking mtDNA,
derived from NARP skin fibroblasts, were prepared according to the
methods of King and Attardi [7] and were kindly provided by Dr.
M. Tanaka from the Department of Gene Therapy, Gifu International
Institute of Biotechnology, Japan.
Cells were grown at 37 �C in a humidified atmosphere with 5%

CO2 in high glucose Dulbecco�s modified Eagle�s medium (GIBCO
BRL), supplemented with 10% heat-inactivated fetal bovine serum
(FBS; GIBCO BRL), antibiotics such as 100 U/ml penicillin and
100 lg/ml streptomycin, 1 mM pyruvate and uridine 50 lg/ml
[33]. All experiments were performed on cells between 2 and 4 pas-
sages.

2.3. Immunocytochemical staining
Cells seeded on glass coverslips were fixed with 4% paraformalde-

hyde in PBS for 15 min at room temperature, rinsed with 10% FBS/
PBS, and incubated for 1 h with primary antibodies in 10% FBS/
PBS supplemented with 0.2% saponin. After washing three times with
10% FBS/PBS to remove unbound antibody, the cells were incubated
for 1 h with the appropriate fluorescently conjugated secondary anti-
bodies diluted in 10% FBS/PBS containing 0.2% saponin. Coverslips
were washed three times with 10% FBS/PBS, once with PBS, and then
mounted on a slide.

2.4. Mitochondrial imaging
To visualize changes in morphology of mitochondria, the cells were

incubated with 100 nM MitoTracker CMXRos [34] in the dark at 37
�C for 10 min. The cells were then briefly rinsed with the medium,
incubated with all experimental reagents (CCCP, oligomycin and
thapsigargin) under the same conditions (temperature, time of incu-
bation and concentration) as for [Ca2+]c measurements, and fixed.
CMXRos is a cationic lipophilic dye, preferentially sequestered into
mitochondria and reacting with thiols of proteins in the mitochon-
drial matrix.

2.5. Mitochondrial membrane potential
Mitochondrial membrane potential was measured using JC-1 [35–

37]. This compound is a lipophilic cationic dye that accumulates in
the mitochondrial matrix proportionally to electric potentials across
the inner mitochondrial membrane. At higher concentrations, JC-1
forms aggregates. Fluorescence (excitation max. 490 nm) of the mono-
mer is green (emission max. 527 nm), whereas that of the aggregate is
red (emission max. 590 nm).
Cells grown on coverslips were incubated in the dark for 15 min at

37 �C with the medium containing freshly prepared 3 lM JC-1 and
then washed three times with the medium without JC-1. The cells were
observed immediately after labeling and for no more than 20 min.
Confocal microscopy was performed at room temperature. Back-
ground images were obtained from a cell-free section of the coverslip.
A ratio image generated by dividing the fluorescence intensity at 590
nm by the fluorescence intensity at 527 nm is reported as a relative
mitochondrial membrane electric potential (DW) value.

2.6. Confocal immunofluorescence microscopy and image analysis
Fluorescence microscopy was carried out using a Leica TCS SP2

Spectral Confocal and Multiphoton Microscope with 63· oil immer-
sion objective. Images were acquired from randomly selected fields
of non-confluent cells.
Imaging conditions (gain levels, confocal aperture size and laser

power) were held constant in a series of images and the fast scan option
was used to minimize bleaching and phototoxic effects. To quantify
changes in fluorescence intensities of particular cell areas, at least five
areas (about 100 cells in each area) were selected.

2.7. [Ca2+]c measurements
The standard medium consisted of 130 mM NaCl, 5 mM KCl, 25

mM HEPES, 1 mM MgCl2, 0.5 mM NaH2PO4, 1 mM pyruvate and
5 mM glucose; pH (7.2 or 7.8) was adjusted to the desired value with
NaOH. Where indicated: 0.12 lM oligomycin, 2 lM CCCP and 100
nM thapsigargin were added as DMSO solutions. In control samples,
CCCP was replaced by DMSO alone.
Cytosolic free Ca2+ was measured with the fluorescent probe Fura-2

[38]. Cells were loaded with this probe by incubation in the culture
medium supplemented with 1 lM Fura-2/AM at 37 �C for 15 min.
After washing the cells, the coverslip was placed in a cuvette filled with
the standard, nominally calcium-free, medium (supplemented with 50
lM EGTA). Thapsigargin, oligomycin, CCCP and 3 mM CaCl2 were
added as indicated and [Ca2+]c was monitored fluorimetrically. Fluo-
rescence was measured at 30 �C in a Shimadzu RF5000 fluorimeter
set in the ratio mode using 340 nm/380 nm as the excitation and 510
nm as the emission wavelengths. Time resolution of the measurement
was 1 s. [Ca2+]c was calibrated for cells in each run using 3 mM of
externally added CaCl2 and 3 lM ionomycin or digitonin (final con-
centration 0.001%).

2.8. Data analysis
Data presented are means ± S.D. of at least three different experi-

ments.
3. Results

3.1. Organization of mitochondria in normal and

mtDNA-mutated cells

Mitochondrial genetic defects may modify the organization

of this organelle within the cell [17,39]. The morphology and

organization of mitochondria were studied using the dye Mito-

Tracker CMXRos. In the parental and 60% NARP cybrid cell

lines, most of the mitochondria formed elongated, continuous

tubular structures, which had the appearance of branched

reticulum filaments distributed throughout the cell (Figs. 1A

and B). In the same field, we also observed a few cells with sin-

gle, round-shaped mitochondria. A quite different mitochon-

drial organization was seen in the 98% NARP and q0 cell

lines. In these cells, the mitochondrial reticulum appeared to

be disrupted, forming numerous isolated organelles (Figs. 1C

and D).

Thapsigargin (a selective inhibitor of Ca2+-ATPase in ER

membrane) or oligomycin (an inhibitor of mitochondrial



Fig. 2. Actin filaments and vinculin organization in the parental and
q0 cells before and after incubation with CCCP (2 lM, 2 min). Actin
was labeled with phalloidin-FITC (green) and vinculin with monoclo-
nal anti-vinculin and TRITC-conjugated secondary antibody (red).

Fig. 1. Visualization of mitochondria by mitoTracker CMXRos in:
(A) parental osteosarcoma cell lines; (B) 60% NARP cybrid cells; (C)
98% NARP cybrid cells; and (D) q0 cells.
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F1FO-ATPase) added to cells (time of incubation and concen-

trations identical as for [Ca2+]c measurements) did not modify

mitochondrial morphology. On the other hand, mitochondrial

uncoupler CCCP (2 lM) added to parental osteosarcoma and

60% NARP cells caused disorganization of the filamentous

network within 2 min (Fig. 1).

3.2. Cytoskeletal organization of normal and mtDNA-mutated

cells treated and untreated with CCCP

Mitochondria are known to move along microfilaments and

MTs cytoskeletal tracks. Confocal images revealed that MTs

formed bundles with mitochondria distributed along them.

The organization of MTs was the same in all investigated cell

lines. Incubation with thapsigargin and oligomycin plus CCCP

did not influence the MT network within the cell.

In parental osteosarcoma cells, F-actin formed a well-orga-

nized microfilament network with strong cortical actin fila-

ments (Fig. 2). A similar actin organization was found in

60% NARP cybrid cells (not shown). In contrast, actin fila-

ments in q0 cells were uniformly distributed throughout the
cytoplasm and very few actin filaments were found close to

the PM (Fig. 2). The same organization of actin filaments as

in q0 cells was found in 98% NARP cybrid cells (not shown).

Treatment of cells with CCCP substantially reduced the

amount of F-actin at the cell cortex in all cell lines (Fig. 2).

Vinculin distribution differed slightly in the different osteo-

sarcoma cell lines. q0 cells showed a higher accumulation of

vinculin at the cell edge compared to parental control cells

(Fig. 2). The organization of vinculin in 60% NARP cells

was the same as in parental cells, but 98% NARP cells were al-

most identical to q0 cells.

3.3. Effects of T8993G mtDNA mutation and mtDNA depletion

on mitochondrial membrane electric potential

The morphology of different cell lines and the ability of

mitochondria to generate DW were simultaneously monitored.

Fig. 3 shows the extent to which mitochondria in the osteo-

sarcoma cell lines can generate DW. q0 cells contain mito-

chondria with relatively low DW. Mitochondria in 60%

NARP and 98% NARP cybrid cells could generate DW of

the same magnitude as parental cell mitochondria. Quantita-

tive estimation of DW with JC-1 is consistent with the obser-

vations shown in Fig. 4. There were many JC-1 aggregates

(red fluorescence) in mitochondria in the parental cells, but

such aggregates are nearly absent in q0 cells. Moreover, JC-

1 fluorescence showed coexistence of two populations of

mitochondria, one with high DW (red) and one with low

DW (green). In parental cells, filamentous mitochondria,

which stained green, occurred throughout the cytoplasm,

whereas mitochondria with intense red fluorescence were

found mainly near the PM. In q0 cells, granular mitochondria

emitted green fluorescence, indicating that a low DW was

established across their inner membrane (Fig. 4).



Fig. 5. [Ca2+]c changes in parental osteosarcoma cells. The effect of
CCCP. The cells were loaded with Fura-2 and incubated in the
standard calcium-free medium. Where indicated, 0.12 lM oligomycin,
2 lM CCCP, 0.1 lM thapsigargin and 3 mM CaCl2 were added.
Typical traces from 10 experiments are presented.

Fig. 4. Accumulation of JC-1 by mitochondria within parental and q0

cells visualized by confocal laser fluorescence microscopy. All pictures
were taken with the same exposure time. The insets show magnified
images of the equivalent areas in each JC-1 image indicated by squares.
Red, aggregated JC-1; green, monomeric JC-1.

Fig. 3. JC-1 fluorescence (DW) in human osteosarcoma parental cells,
98% NARP cybrid cells and q0 cells. Data from one experiment out of
3 are presented.
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3.4. Effects of defective mitochondria on the calcium influx

The addition of thapsigargin to cells incubated in Ca2+-free

media produced a [Ca2+]c transient, initially due to the release

of calcium ions from the ER (the phase of increase in [Ca2+]c)

and then to pumping of Ca2+ out of cells by PM calcium-

ATPase (the phase of return to the basal [Ca2+]c). Subsequent

addition of 3 mM CaCl2 to the extracellular medium produced

a rapid flow of Ca2+ into the cell and a corresponding sus-

tained enhancement of [Ca2+]c. The initial rates of Ca
2+ fluxes

into investigated osteosarcoma cell lines were: 1.02 ± 0.18,

0.50 ± 0.06 and 0.59 ± 0.11 mM/min, for the parental, 98%

NARP and q0 cells, respectively. In addition, pretreatment of

the parental cells with oligomycin plus CCCP did not influence

the rate of calcium flux into thapsigargin-pretreated cells, trig-

gered by CaCl2 addition (Fig. 5). The same observation was

made in the case of other investigated osteosarcoma cell lines

(not shown).
4. Discussion

4.1. Characterization and comparison of mitochondrial network

in the osteosarcoma cell lines

Apart from the abnormalities in assembly of ATP synthase

and decrease of ATP synthesis capacity, there is little informa-

tion about the phenotype of NARP mutant cells. The results

presented in this paper clearly demonstrate that there are dif-

ferences in mitochondrial organization in cells with high

T8993G mtDNA penetration. In parental osteosarcoma cells

and in 60% NARP cells, mitochondria exist predominantly

as a tubule-like organized network (Figs. 1 and 4). A similar

mitochondrial network has been described in many wild-type

cell lines [9,17,20]. On the other hand, swollen and fragmented

mitochondria were observed in 98% NARP and in q0 cells.
It seems that a single parental cell contains heterogeneous

mitochondria with respect to DW (Fig. 4). This heterogeneity

may reflect discrete roles of different mitochondria depending

on their localization within the cytosol. Collins et al. [9] have

shown that peripheral mitochondria accumulate substantially

more Ca2+ than those in the perinuclear region. Perhaps,

peripheral mitochondria sequester Ca2+ entering through

CCE, whereas perinuclear mitochondria may be important in
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regulating bulk phase calcium signals. Thus, various subpopu-

lations of mitochondria sequester Ca2+ from different sources.

Mitochondria at different localizations in the cytosol can be

activated by calcium ions to different degrees [13,39].

In the present paper, in agreement with [35], we also demon-

strated a lower level of energized mitochondria in q0. In con-

trast, Garcia et al. [40] reported that in NARP and q0

fibroblasts DW seemed to be even higher than in parental cells,

although ATP synthesis was reduced to 60%. In 98% NARP

cells, DW was on the same level as in parental cells which is

in agreement with [41].

We found that dissipation of mitochondrial membrane po-

tential by CCCP induced mitochondrial fragmentation (Fig.

1). This result agrees with results recently published by others

[11,15,42,43] and shows that mitochondrial fusion depends on

DW. In parental and 60% NARP cells, fragmentation was

clearly visible 2 min following CCCP addition but it was not

completed as we could see both fragmented and reticular mito-

chondria in these cells (Fig. 1). At longer times after CCCP

addition, all mitochondria appeared fragmented (data not

shown). Probably, the fragmented mitochondria observed in

q0 could not fuse because their DW was not high enough or

structure impaired [44]. Although in 98% NARP cells, DW
was on the same level as in parental cells, mitochondria in

the former cell line were fragmented. This suggests that fusion

of mitochondria depends not only on DW. Meeusen et al. [45]

have shown that a few factors can influence mitochondrial fu-

sion. For example, ATP synthase can be involved in modifying

mitochondrial cristae morphology [46] and, moreover, Gero-

mel et al. [47] have found that NARP mutation is associated

with elevated superoxide production and apoptosis.
4.2. Cytoskeletal proteins may play an important role in

maintaining the shape of mitochondria

The cytoplasmic environment and the presence of cytoskele-

tal proteins may play an important role in maintaining the

shape and organization of mitochondria in situ [48]. MTs seem

to be the major component of cytoskeletal systems responsible

for the distribution of mitochondria in mammalian cells but are

not required for mitochondrial fusion and fission [11,15]. We

did not observe any differences inMTs organization in the oste-

osarcoma cell lines, even after treatment with CCCP, oligomy-

cin and thapsigargin. However, we found clear differences in

arrangement of actin filaments and vinculin in 98% NARP cy-

brid and q0 cells in comparison to the parental cell line.

Actin filaments form a complex network providing a struc-

tural basis for the interaction between intracellular structures

and the PM [49–51]. The actin cytoskeleton comprises a cyto-

plasmic actin network and membrane-associated F-actin. Vin-

culin is one of the membrane-associated proteins involved in

attaching actin filaments to the PM. Our observations indicate

that cytoskeletal reorganization can influence mitochondrial

distribution and the architecture of the subsarcolemma mem-

brane compartment and therefore may affect CCE. Few stud-

ies involving disruption of actin microfilaments demonstrate

that the cytoskeleton is integral to CCE regulation. For exam-

ple, Rosado et al. [49] found that in human platelets the actin

cytoskeleton in the vicinity of the PM plays a key regulatory

role in Ca2+ entry. Lin et al. [52] showed that disruption of

cytoskeletal elements diminished calcium influx in myenteric

glia cells.
4.3. Mitochondrial dysfunction and calcium influx

As shown in Fig. 5, addition of thapsigargin to osteosar-

coma cell lines produced identical transients in [Ca2+]c. This

suggests that in the cells suspended in nominally calcium-free

media, calcium loading of the ER reached similar levels. Re-

lease of calcium ions from the ER activates CCE. Upon addi-

tion of 3 mM CaCl2 to the extracellular medium, we observed

significant enhancement of [Ca2+]c in all cell lines treated with

thapsigargin. This corresponds to a massive flow of Ca2+

across the PM. Energized mitochondria are essential for the

activity of CCE in many cell types, including human fibroblast,

Jurkat, Ehrlich ascites tumor and glioma cells [27,30,31]. Mito-

chondria localized close to the PM accumulate Ca2+ and

protect CCE against feedback inhibition. Therefore, mito-

chondrial uncouplers as well as inhibitors of the respiratory

chain can significantly influence CCE.

However, the lack of an inhibitory effect of CCCP on Ca2+

flux into human osteosarcoma cell lines questions the general-

ity of the above statement. Our finding that Ca2+ entry into

these cells is independent of the mitochondrial energy state

strongly suggests that CCE in these cells does not exhibit feed-

back inhibition by Ca2+. The insensitivity of PM calcium chan-

nels to intracellular Ca2+ may be related to a high calcium

bone environment and be specific to osteoblast-like cells.

Higher amplitude of Ca2+ transients observed in the osteo-

sarcoma cells with collapsed DW due to treatment with CCCP

resembles, to some extent, the effects of mitochondrial uncou-

plers on the calcium entry into electrically excitable cells. In ex-

cited neurons, mitochondrial sequestration of the entering

Ca2+ decreases the amplitude of Ca2+ spikes and thereby mod-

ulates the intensity of calcium signals. Under normal condi-

tions, gradual release of Ca2+ accumulated in the

mitochondrial matrix prolongs Ca2+ signal after the initial

stimulus has been turned off. Reduction of the calcium buffer-

ing capacity by mitochondria (e.g. by depolarization of the

mitochondrial inner membrane) results in the enhanced ampli-

tude and shortened duration of the cytosolic Ca2+ signals [53–

55].

Ca2+ influx rates in 98% NARP and q0 cells, that are

approximately 50% slower than in the parental osteosarcoma

cell line, may indicate that proper actin filament organization

under the PM is important for CCE. In these cell lines, actin

cytoskeleton was disturbed (Fig. 3). However, a controversy

still exists regarding the role of cytoskeleton in CCE. There

are many evidences that cytoskeleton plays an integral role

in transmitting to the PM the information about the state of

intracellular calcium stores [49,56–58].
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