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Abstract

We present here a second step in solving the Algebraic Identi�cation Problem for the causal
analytic functionals in the sense of Fliess. These functionals are symbolically represented by non-
commutative formal power series G=

∑
w∈Z?〈G |w〉w, where w is a word on a �nite-encoding

alphabet Z. The problem consists in computing the coe�cients 〈G |w〉 from the choice of a
�nite set of informations on the input=output behaviour of the functional. In a previous work,
we already presented a �rst step: we showed that one can compute the contributions of G rela-
tive to a family of noncommutative polynomials g� with integer coe�cients, indexed by the set
of partitions. Hence it remains to inverse these relations by computing the words w as linear
combinations of the g�. An answer could be found in two ways: �rstly by providing an iden-
ti�cation computation tool, secondly by solving the ‘Identi�ability Problem’: is the previous
identi�cation e�ectively computable at any order? A computational tool is here presented, in the
form of a concise Maple package IDENTALG that computes the polynomials g� by a block
recursive matrix implementation, and allows then to test the identi�cation (when possible) at
any order by matrix inversion. It requires a combinatorial study of the di�erential monomials on
the inputs. The computation of a test set covering the identi�cation of 2048 words is presented.
This package is given in the widely signi�cant case of functionals depending on ‘a single input
with drift part’. It can be used without change in case of ‘two inputs without drift’. It could
be extended very easily to the case of ‘several inputs with drift part’. Finally, we discuss the
Identi�ability Problem: we summarize the current state of our results, and we conclude with a
conjecture in a weak form and in a strong form. c© 2000 Published by Elsevier Science B.V.
All rights reserved.

1. Introduction

The causal functionals (see [3]) are the time input=output functionals that can be
described symbolically by some noncommutative formal power series. The correspond-
ing functional is recovered via Chen iterated integrals (see [1]). We present �rst the
background, as can be found also in [12], and the de�nition of the Chen series of an
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input. The precise de�nition of the ‘Algebraic Identi�cation Problem’ is then given. The
iterated derivatives of the output are then computed by means of the iterated deriva-
tives of the Chen series. This allows to state the ‘generic equation’, that summarizes
all di�erential properties of causal functionals.

1.1. Causal functionals

Let us consider the n-dimensional dynamical system

(�)



q̇= f0(q) +

∑
j=1; :::;m

fj(q)aj(t);

y(t) = h(q(t))

• a(t) = (aj(t))j=1; :::;m is the real m-dimensional input,
• q(t) ∈ V is the current state, with V a real di�erentiable manifold,
• {fj(q)}j=1; :::;m is a family of smooth vector �elds on V,
• h :V 7→ R is a smooth function called the ‘observation map’.
• y(t) ∈ R is the output.

The functional that associates the input a(t) with the resulting output y(t) of the
system (initialized in a state q(0) = q0) is called the input=output behaviour.
The vector �eld f0 is called the drift of (�). It is currently studied by introducing

a �ctitious input a0(t) ≡ 1. A system without drift (f0 ≡ 0) is also called homo-
geneous in the inputs. With the m + 1 vector �elds fi(q) we associate an alphabet
Z= {z0; z1; : : : ; zm} of (m+1) letters. Each word w= zi1zi2 · · · zik on Z can be viewed
as a multi-index. It belongs to the free monoid Z? on Z. The empty word on Z is
denoted �.
Let n be the dimension of the state variety V. The integration of the system, ex-

pressed in local coordinates, can begin as follows:

d
dt
h(q) =

n∑
i=1

@h
@qi

d
dt
qi =

n∑
i=1


fi0(q) + m∑

j=1

fij (q)aj(t)




@
@qi
h(q) =

m∑
j=0

(fj ◦ h)(q)aj(t);

where fj ◦ h is the Lie derivative of h along the vector �eld fj. A standard iterative
integration process then allows the computation of the output of the system (�) as
a power series expansion, as shown by Dyson [2] (see also Lappo-Danilevsky, [13]),
and also known, in the control theory context, as the ‘Peano–Baker formula’ (see
[3; 11; 12]). It can be interpreted as a separation property between input and geometric
contributions. This power series expansion is

y(t) = 〈G� ||Ca(t)〉=
∑
w∈Z?

〈G� |w〉〈Ca(t) |w〉 (1)
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• 〈G� |w〉 is the geometric contribution (independent of input). We have 〈G� | �〉=h|q0 ,
and for any word w = zi1zi2 · · · zik , the coe�cient 〈G� |w〉 is the following iterated
Lie derivative of h (evaluated in q0):

〈G� | zi1zi2 · · · zik 〉= fi1 ◦ fi2 ◦ · · · ◦ fik ◦ h|q0 (2)

• 〈Ca(t) |w〉, the input contribution (independent of system), is the iterated integral
recursively de�ned as follows: 〈Ca(t) | �〉=1, and for any w=uzj; u ∈ Z?; zj ∈ Z:

〈Ca(t) | uzj〉=
∫ t

0
〈Ca(�) | u〉aj(�) d�: (3)

These two in�nite families of coe�cients are summarized in two noncommuta-
tive formal power series. A noncommutative power series S on Z is any map from
Z? to R, and is usually written as a formal sum S =

∑
w∈Z?〈S |w〉w. So the ge-

ometric contributions can be summarized in the generating series, or Fliess series
G� =

∑
w∈Z?〈G� |w〉w of the system (�). The input’s contributions can be summa-

rized in the Chen series Ca =
∑

w∈Z?〈Ca |w〉w of the input a.

1.2. The identi�cation problem

By the expansion formula (1), the Fliess series appears as a symbolic encoding
of the input=output behaviour of the system. More generally, following Fliess [3; 5],
any formal power series G can be interpreted as the symbolic encoding of the causal
functional obtained by replacing each word w by the corresponding Chen iterated
integral 〈Ca(t) |w〉. In other words,

y(t) = 〈G ||Ca(t)〉=
∑
w∈Z?

〈G |w〉〈Ca(t) |w〉:

A natural question is to decide if the generating series is a ‘canonical form’ of
the causal functionals. The answer is yes: two power series de�ne the same causal
functional if and only if they are equal. We know three proofs of this fact, by Fliess
(see [4]), by Reutenauer [14] and by Sonntag and Wang [15]. They are discussed
in [10]. None of these proofs produces a way to identify the generating series, i.e. to
e�ectively compute the unknown coe�cients of the generating series, from information
or measures on its input=output behaviour.
Here we deal with a stronger property, designed as the Algebraic Identi�cation

Problem: can we compute the generating series of a causal functional by an iterative
process, that only involves a chosen panel of polynomial inputs and the resulting jet
coe�cients of the outputs?

1.3. Output derivatives and Chen series

The �rst derivative of the output of a causal functional G is given by

d
dt
y(t) =

∑
w∈Z?

〈G |w〉
〈
d
dt
Ca(t) |w

〉
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in which the time derivative of the Chen series appears. Hence, we have for any
u ∈ Z? and zj ∈ Z, by Eq. (3):〈

d
dt
Ca(t) | uzj

〉
= 〈Ca(t) | u〉aj(t): (4)

Therefore, the Chen series satis�es the di�erential equation

d
dt
Ca(t) = Ca(t)La(t)

with initial condition Ca(0) = 1, where La(t) is the polynomial
∑

zj∈Z aj(t)zj.
In the same way, we obtain the nth derivative of the output y(t) by computing the

nth derivative of the Chen series. A straightforward computation gives

dn

dtn
Ca(t) = Ca(t)An(t);

where the noncommutative polynomials An are recursively de�ned as follows:

A0(t) = 1; An+1(t) =La(t)An(t) +
d
dt
An(t): (5)

For instance,

A2 =LaLa +
d
dt
La =

∑
i; j

aiaj : zizj +
∑
j

ȧjzj

=
∑
i¡j

aiaj : (zizj + zjzi) +
∑
j

a2j : z
2
j +

∑
j

ȧjzj:

We are interested in computing the jets of the output at time t = 0. Since Ca(0) = 0,
we obtain

dn

dtn
y(0) =

∑
w∈Z?

〈G |w〉〈An(0) |w〉 (6)

and consequently, in the current example (second derivative) we have

d2

dt2
y(0) =

∑
i¡j

ai(0)aj(0)〈G | zizj + zjzi〉+
∑
j

a2j (0)〈G | z2j 〉+
∑
j

ȧj(0)〈G | zj〉;

where we set 〈G |P〉=∑w∈Z∗〈G |w〉〈P |w〉 for any noncommutative polynomial P.
In this example it is clear that we can proceed in two steps. Firstly by an adequate

choice of the values aj(0) and ȧj(0), we identify the constants 〈G | zj〉, 〈G | z2j 〉 and
〈G | zizj+ zjzi〉 (for i¡ j), which we call the ‘contributions’ in G of the noncommuta-
tive polynomials zj, z2j and zizj + zjzi. Secondly, we have to separate the contributions
〈G | zizj〉 and 〈G | zjzi〉 for i¡ j. But that requires to carry out the calculation to at
least the third derivative (d3=dt3)y(0).
In our approach, we shall proceed by following the same two computation steps.
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1.4. The generic equation

Let us summarize the family of polynomials An in the in�nite graded sum A =∑
n∈N An. Thus, the recurrence relations (5) must be translated into the following

generic equation:

A= �+LaA+
d
dt
A with La(t) =

∑
zj∈Z

aj(t)zj: (7)

The series A is a combinatorial object that contains all di�erential information on the
family of causal functionals. The nth derivative of the output is obtained by selecting
the terms indexed by words of length n, and then by specifying these words as iterated
derivatives of the vector �elds of the system. A, however, also allows the calculation of
the contribution to the output (and its iterated derivatives) of any di�erential monomial
on the inputs. For this purpose some combinatorial tools are required.

2. Di�erential monomials and coloured partitions

This section consists essentially in rephrasing the ‘generic equation’ in the combi-
natorial language of partitions.
In the case of a system without a drift part, we are led to compute with usual

di�erential monomials. These are encoded in partitions (single input case), and coloured
partitions (several inputs).
In the case of a system with a drift part, we are led to use a special constant

di�erential letter a0. So we get a kind of nonhomogeneous (coloured) partitions.
In any case, as it will be shown in the third section, each coloured partition is

used as an index for a noncommutative polynomial that produces a contribution in a
derivative of the output.

2.1. Partitions and single di�erential letter

If there is a system with a single input without drift, we become concerned with the
di�erential monomials on a single di�erential letter a1 = a. These take the form

a� = (a(i1−1))e1 (a(i2−1))e2 : : : (a(iq−1))eq ; 16i1¡i2¡ · · ·¡iq;

where a( j) is the jth derivative of a, and a(0) = a. The powers eq are strictly positive
integers. Such a monomial a� is indexed by the partition: � = ie11 i

e2
2 : : : i

eq
q (where ij ∈

N?). The integers ij are called the parts of the partition �. The weight and the size
of � are de�ned as follows:

wgt(�) =
∑
k

ek :ik ; size(�) =
∑
k

ek :

The empty partition is denoted �. In particular, we get wgt(�) = size(�) = 0.
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2.2. Coloured partitions and several di�erential letters

If there is a system with several inputs without drift, the di�erential monomials on
the �nite set {a1; a2; : : : ; am} take the form

a� = a�11 a
�2
2 : : : a

�m
m ;

where each a�jj is a monomial on the single di�erential letter aj. The encoding alphabet
Z={z1; : : : ; zm} is an alphabet of colours, in bijection with the input set {aj}mj=1. Thus,
the combinatorial encoding of a� is the coloured partition

� = �1 ⊗ �2 ⊗ · · · ⊗ �m;
where each �j is a one-colour partition. The tensor notation is justi�ed in order to
extend it to linear combinations of coloured partitions. With this notation, the weight
and the size of � are de�ned as follows:

wgt(�) =
∑

j=1;:::;m

wgt(�j); size(�) =
∑

j=1;:::;m

size(�j):

2.2.1. Derivation rule
The time derivative on the di�erential monomials is re
ected in the following deriva-

tion rule D on (coloured) partitions:

• For a di�erential letter a, one has (d=dt)(a(ik−1)) = a(ik ), and then D(ik) = ik + 1.
• We extend D to any one colour partition by the Leibnitz derivation rule and com-
mutative reordering (the result being a linear combination of partitions):

D(ie11 i
e2
2 : : : i

eq
q ) =

∑
k=1; ::: ;q

ek?(i
e1
1 : : : i

ek−1
k (ik + 1)i

ek+1
k+1 : : : i

eq
q ): (8)

• We extend D on coloured partitions by

D(�1 ⊗ �2 ⊗ · · · ⊗ �m) =
∑

j=1;:::;m

�1 ⊗ · · · ⊗ �j−1 ⊗ D(�j)⊗ �j+1 ⊗ · · · ⊗ �m:

(9)

For clarity, we adopt the notation
∑

k ck?�k for the linear combination of (coloured)
partitions �k with coe�cients ck ∈ R. For example, we get

D(11233261) = 243261 + 3?11223361 + 2?1123314161 + 11233271:

Notation 2.1. For any (coloured) partition � we de�ne the symbol 〈� | �〉 by the
equalities

D� =
∑

�∈(coloured) partitions
〈�; �〉?�; with 〈� | �〉 ∈ N: (10)

Lemma 2.1. 1. For any �; the symbol 〈� | �〉 is equal to 0 for all but a �nite set of
partitions �.
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2. For any �; the symbol 〈� | �〉 is equal to 0 for all but a �nite set of partitions �.
3. Furthermore; 〈� | �〉 6= 0 implies wgt(�) = 1 + wgt(�) and size(�) = size(�).

2.3. Unhomogeneous coloured partitions

If there is a system with a drift part, in addition to the di�erential letters {a1; a2; : : : ; am},
we get a new nonfree di�erential letter a0, that satis�es a0 ≡ 1, and a(n)0 = 0 for any
n¿ 0. In this way, we are in an unhomogeneous case. The di�erential monomials take
the form

� = 1p ⊗ �; with � homogeneous coloured partition:

The integer p= depth(�) is called the depth of �. In addition, we get:

wgt(1p ⊗ �) = p+wgt(�) and size(1p ⊗ �) = p+ size(�):
The derivation rule is given by

D(1p ⊗ �) = 1p ⊗ D(�):
The symbol 〈� |�〉 is de�ned exactly as in (10). Lemma 2.1 remains true unchanged.

3. Combinatorial analysis of the generic equation

3.1. Homogeneous case

Let us interpret A as a series A=
∑

� � : g� in the di�erential monomials �; with
coe�cients g� in the noncommutative polynomial algebra R〈Z〉. We intend to compute
recursively these polynomials. With these notations, the generic equation becomes∑

�

� : g� = �+
m∑
j=1

∑
�

aj� : zjg� +
∑
�

D(�) : g�: (11)

By identifying the factor of the same coloured partition � in both sides, we obtain
the recursive equation

g� =
m∑
j=1

zjg�.aj +
∑

�∈(coloured) partitions
〈�|�〉?g�; with g� = 1; (12)

where the operator . is used as follows:

g�.aj =
{
g� if � = aj�; (in other words �j = 1�j; and �k = �k for k 6= j);
0 in other cases:

The last sum, in accordance with the de�nition of the symbol 〈�|�〉, is in fact extended
to the �nite set of the coloured partitions � that are primitives of the partition �.
These equations (12) appear as a linear recursive de�nition of the polynomials g�

involving either the partitions � . aj (of size strictly smaller than size(�)); or the
primitive partitions of � (of weight strictly smaller than wgt(�)). These also allow an
easy proof by recurrence of the result:
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Lemma 3.1. For any coloured partition � = �1 ⊗ · · · ⊗ �m; the polynomial g� is ho-
mogeneous of degree size(�j) in the letter zj; for j = 1; : : : ; m.

In a previous paper (see [10]) we have shown:

Theorem 1. For any generating series G; each contribution 〈G | g�〉 can be computed
from an adequate choice of a panel of polynomial inputs; and of a �nite set of jet
coordinates of the corresponding outputs.

We actually deduce that the algebraic identi�cation problem can be solved if and
only if any word w ∈ Z? is a linear combination of the polynomials g� ∈ R〈Z〉.

3.2. The unhomogeneous case

In the unhomogeneous case (systems with a drift part), the recursive equations (12)
become

g1p⊗� = z0g1p−1⊗� +
∑

j=1;:::;m

zjg1p⊗�.aj +
∑

�∈col: part:
〈�|�〉?g1p⊗�; with g�⊗� = 1;

(13)

where it must be supposed that the �rst term on the right-hand side vanishes if p=0.
The jth term of the second sum vanishes if the jth component �j of � has no part
equal to 1. The third sum, extended to the primitives � of �; is �nite.
Eq. (13) also allows the easy proof by recurrence of the lemma:

Lemma 3.1 (bis). For any unhomogeneous coloured partition 1p⊗�=1p⊗�1⊗· · ·⊗�m;
the polynomial g1p⊗� is homogeneous of degree p in the letter z0; and of degree
size(�j) in the letter zj; for j = 1; : : : ; m.

Theorem 1 remains true for functionals with drift part, as follows:

Theorem 1 (bis) (see [10]). For any generating series G; if there is a drift part; each
contribution g1p⊗� can be computed from an adequate choice of a panel of polynomial
inputs; and of a �nite set of jet coordinates of the corresponding output.

As in the homogeneous case, we deduce that the algebraic identi�cation problem can
be solved if and only if any word w ∈ Z? is a linear combination of the polynomials
g1p⊗� ∈ R〈Z〉.

Remark 3.1. Any solution of the algebraic identi�cation for n inputs with drift provides
a simple solution for the same problem in case of n+ 1 inputs without drift.
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4. The recursive building in matrix form

In this section, we restrict ourselves by clarity to the signi�cant case of one colour
partition, in the non homogeneous case (corresponding to a system with a single
input a1(t) = a(t) with a drift part). Our purpose here is to compute explicitely the
polynomials g1p⊗�. We �rst give a recursive de�nition of these polynomials. This
de�nition requires the computation of the matrices of ‘primitive coe�cients’. The same
tools then allow us to start a splitting procedure, which is the �rst step in expressing
each word as a linear combination of the polynomials g1p⊗�.
In this case, the recursive equations satis�ed by the polynomials g1p⊗� can be written

as

g1p⊗� −
∑
�

〈� | �〉?g1p⊗� = z1g1p⊗�.a + z0g1p−1⊗�: (14)

The �rst term on the right-hand side vanishes if � has no part equal to 1, and the
second term vanishes if p = 0. Recall that � denotes the empty partition, and that
g�⊗� = 1 (see Eqs. (11)). In particular we obtain g�⊗1m = z1g�⊗1m−1 = · · · = zm1 ; and
g1p⊗� = z0g1p−1⊗� = · · ·= zp0 .
These equations bring to light the fact that the right-hand side polynomials split

along the �rst occuring letter (either z0 or z1). This would be underlined via the
following matrix notation.

4.1. The matrix encoding

Let p and m be two positive integers. Let us note Zm;p the set of homogeneous
words of degree p in z0, and m in z1, ordered by the lexicographical ordering with
respect to z1¡z0. For each (one colour) partition � of size m, the polynomial g1p⊗�
is a linear combination of words in Zm;p. The computation of the polynomials g1p⊗�
on this basis can be done via a matrix encoding, as follows.
For any positive integers m and k, let Mk

m be the set of (one colour) partitions
�= j1j2j3 : : : jm of size m that satisfy

16j16j26j36 · · ·6jm6k + 1
ordered by the lexicographical ordering. For each �xed positive integer p, we denote
by G km(p) the column vector of the polynomials g1p⊗� for all � ∈ Mk

m. All of these
polynomials are linear combinations of words in Zm;k . The dimensions of the matrices
G km(p) are given by the following lemma:

Lemma 4.1. The application from Mk
m in Zm;k de�ned by

j1j2 : : : jm 7→ z j1−10 z1z
j2−j1
0 z1z

j3−j2
0 : : : z1z

jm−jm−1
0 z1z

k+1−jm
0

is an ordered bijection. Their common cardinality is equal to (m+km ).
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Lemma 4.2. Expanded on the polynomial basis Zm;p; the column vector G km(p) ap-
pears as a rectangular matrix; and satis�es the following recursive de�nition:

J kmG
k
m(p) =

(
G km−1(p)

0

∣∣∣∣G km(p− 1)
)

(15)

and in the degenerate cases

J kmG
k
m(0) =

(
G km−1(0)

0

)
and G k0 (p) = (0) (16)

with the following notations and conventions:

1. J km is the square matrix indexed by Mk
m×Mk

m the coe�cient of which on the row
of index � and on the column � is equal to

1 if � = �; −〈� | �〉 if � 6= �:
So J km is sparse, lower triangular, and with only 1’s in the main diagonal.

2. According to Lemma 4.1, the dimension of G km(p) is (
m+k
m )× (m+pm ). It is a square

matrix if and only if k=p. (Each matrix G km(p) is a submatrix of G
k+1
m (p), formed

by extracting adequate rows.)
3. The vertical block structure expresses the splitting of the right-hand side of Eq. (14)
with respect to the �rst letter (either z0 or z1). The ‘0’ left lower block corresponds
to the rows indexed by partitions � having no part equal to 1.

If we denote T km as the inverse of the matrix J
k
m, we get:

Theorem 2. The matrices G km(p) can be computed by the following recursive algorithm:

G km(p) = T
k
m

(
G km−1(p)

0

∣∣∣∣G km(p− 1)
)

(17)

with initializing conditions

G km(0) = T
k
m

(
G km−1(0)

0

)
; G k0 (p) = (1): (18)

This recursive de�nition of the matrices G km(p) is implemented in the package
IDENTALG by the procedure call Gstar(k;m;p).

4.2. Computation of the matrix J km and its inverse T km

Let us denote Pkm as the square matrix of primitives, indexed by Mk
m × Mk

m, the
coe�cient of which on the row of index � and on the column of index � is equal to
〈�|�〉.

De�nition 4.1. We say that a partition � of Mk
m has level j if it can be written as

�= 1m−j� where � has no part equal to 1, and size(�) = j.
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For 16l6m; we denote Mk
m(l) as the set of partitions of M

k
m of level up to l, and

Pkm(l) as the restriction of P
k
m to the partitions of M

k
m(l).

We have clearly Pkm = P
k
m(m). The aim of this de�nition is to give a recursive

computation of the matrix Pkm.

Proposition 4.1. The matrices Pkm(l) satisfy the recursive block description

Pkm = P
k
m(m) Pkm(l) =

(
Pkm(l− 1) 0
ltp Pk−1l (l)

)
(19)

with initializing conditions

Pkm(0) = P
0
m(l) = (0)

where the lower triangular part denoted here ‘ltp’ is the product of (m− l+ 1) and
of the identity matrix of dimension(

l+ k − 2
l− 1

)
= dim(Mk−1

l−1 );

prolongated by 0’s to the left and to the bottom in order to produce the convenient
matrix dimensions.

Proof. If �= 1m−j� is a partition of level j, since D(1) = 2, we have the equality

D(1m−j�) = (m − j)?1m−j−12�+ 1m−jD�:
The matrix Pkm(l) can be computed by a decomposition in four matrix blocks, as we
now show.

1. If � and � have a level smaller than l, then the coe�cient 〈� | �〉 is the same in
Pkm(l) as in P

k
m(l− 1).

2. If � has a level smaller than l and if � has level l, then 〈�|�〉= 0.
3. If � and � have level l, then we have �=1m−l� and �=1m−l�; where the partitions
�; � ∈ Mk

l (l) have no part equal to 1, and 〈�|�〉= 〈�|�〉.
Let us de�ne �̂ and �̂ by replacing in � and in � each part equal to j by the part
j − 1. Then 〈�|�〉 = 〈�̂|�̂〉; and �̂; �̂ ∈ Mk−1

l have level at most l. Therefore, the
restriction of Pkm(l) to the partitions of level equal to l is equal to P

k−1
l (l).

4. If � has level l and if � has level smaller than l, then 〈�|�〉 6= 0 if and only if �
has level l− 1, and

�= 1m−l+1� and � = 1m−l�;
�= 2� and 〈�|�〉= m− l+ 1:

Theorem 3. The matrices J km = Id− Pkm can be computed by the following recursive
algorithm:

J km = J
k
m(m) J km(l) =

(
J km(l− 1) 0
−ltp J k−1l (l)

)
(20)
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(where ‘ltp’ is the same as in Eq. (19)) with initializing conditions

J km(0) = J
0
m(l) = (1):

This recursive de�nition of the matrices J km(l) is implemented in the package
IDENTALG by the procedure call Jstar(k;m; l).
In the same way, we get a recursive de�nition of the inverse T km of J

k
m that avoids

any call to the procedure inverse:

Theorem 4. The matrices T km can be computed by the following recursive algorithm:

T km = T
k
m(m) T km(l) =

(
T km(l− 1) 0

T k−1l (l) ∗ ltp ∗ T km(l− 1) T k−1l (l)

)
(21)

(where ‘ltp’ is de�ned as in Eq. 19 and ‘ ∗ ’ is the matrix product); with initial
conditions

T km(0) = T
0
m(l) = (1):

This recursive de�nition of the matrices T km(l) is implemented in the package
IDENTALG by the procedure call Tstar(k;m; l). (It is quite more e�cient in compu-
tation time than a call to matrix inversion.)

4.3. Splitting analysis

Our ‘splitting algorithm’ consists in computing an inverse (or a left inverse) of
the matrix G km(p) in order to express any word of Z

m;p as a linear combination of
polynomials g1p⊗� with size(�) = m.
For any integer m, and any 16j6k; we denote by M

[ j; k]
m the set of partitions of

size m that can be written in the form

ij11 i
j2
2 : : : i

jm
m with j + 16j16j26j36 · · ·6jm6k + 1:

The restriction on G km(p) to the rows on M
[ j; k]
m will be denoted by G [ j; k]m (p). In

particular, we get G [0; k]m (p) = G km(p).
The block triangular decomposition given in Eq. (15) shows that, up to left multi-

plication by the invertible matrix J km, the matrix G
k
m(l) is in a clear sense equivalent

to the direct sum of the two diagonal blocks:

G km(p) ∼= G km−1(p)⊕ G [1; k]m (p− 1): (22)

With a similar notation, set J [ j; k]m the restriction of J km to the partitions � ∈ M
[ j; k]
m . It

can be proved that in fact J [ j; k]m = J k−jm . By a convenient restriction of Eqs. (14), we
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obtain again an upper block triangular decomposition

J [ j; k]m G [ j; k]m (p) =

(
H [ j; k]
m−1(p)
0

∣∣∣∣∣G [ j; k]m (p− 1)
)
; (23)

where H [ j; k]
m−1(p) is a rectangular matrix of the same dimensions as G

[ j; k]
m−1(p), namely(

m− 1 + k − j
m− 1

)(
m− 1 + p− j

m− 1
)
:

It can be easily computed if we know the matrix G km(p).
In other words, we obtain, for j¡k+1, up to the invertible matrix J k−jm , the direct

sum structure

G [ j; k]m (p) ∼= H [ j; k]
m−1(p)⊕ G [ j+1; k]m (p− 1): (24)

Lemma 4.3. By iterating this process; for p6k; we obtain �nally (up to restrictions
and left multiplications by invertible matrices):

G km(p) ∼= G km−1(p)⊕H [1; k]
m−1(p− 1)⊕ · · · ⊕H [p−1; k]

m−1 (1)⊕H [p;k]
m−1 (0): (25)

The matrix G km−1(p) and the matrices H
[ j; k]
m−1(p− j) (for j=1; : : : ; p) will be called

the ‘head matrices’ of Gpm (p).
If k ¡p, the matrix G km(p) de�nes an underdeterminated equation systems on the

unknowns in Zm;k .
If k =p, the matrix Gpm (p) and all its head matrices are square matrices. Therefore,

the determinant of Gpm (p) is the product of the determinants of its ‘head matrices’. We
can suppose already computed the �rst one G km−1(p) by the same splitting process.
The other head matrices can be computed by a repeated use of Eq. (23). In all our test
sets, these determinants are not equal to 0. Moreover, they are strictly positive integers,
and their values increase very strongly when the integer m + p is increasing. (These
head matrices could also be more shortly obtained, because they appear as extracted
submatrices of Gpm (p − 1). This fact is used in the complete implementation of our
package IDENTALG.)
In case that k ¿p, the same computation leads to an overdetermined linear system.

The same splitting technique could be explored, and requires the computation of left
generalized inverses.

5. Conclusion

The present identi�cation results and tools will be used for computing all the co-
e�cients of a given causal functional up to some word length. We can then either
simulate the corresponding polynomials, or simulate a rational series approximant (that
is a noncommutative Pad�e-type approximant), and thereby obtain a bilinear system
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along the lines of our previous papers [9,7]. Our particular intent is, by using these
computation tools, to progress in solving the identi�ability problem:

De�nition 5.1. We say that the identi�ability problem can be solved if and only if
any word w ∈ Zm;p (for any positive integers m and p) can be computed as a linear
combination of the polynomials g1p⊗� with size(�) = m.

Firstly, we recall our previous result on this problem. Secondly, we present the
package and discuss its usefulness. Finally, we present two forms of our conjecture
concerning the identi�ability property.

5.1. Our previous results and perspectives

By using the direct sum decomposition (25), it can be shown [8] that

• det(G 1m(1)) = 1 (for any m, it is the determinant of a binomial matrix).
• det(G 2m(2)) ∈ N∗

+ by a theorem of Gessel and Viennot [6] (it is the determinant of a
matrix extracted from a binomial determinant, for some ordered selected sequences
of rows and of columns).

• For the depth p¿ 2 the same technique could be used, but becomes very tedious.

5.2. The package and its use

We give in Appendix C a self-contained kernel of the package IDENTALG. It con-
tains three recursive procedures. The �rst one computes the matrix J km by the procedure
call J(m; k). The second one computes the inverse T km of the matrix J

k
m by the call

T(m; k). The third one computes the matrix G km(p) by the call Gstar(k;m;p). These
three procedures only consist of an exact software translation of the recursive de�ni-
tions (20), (21), (17) and (18).
The restriction operators are computed by calls of the Maple procedure submatrix,

the dimensions of which are controlled by the binomial coe�cients, given in Lemma
4.1 and in the proof of Eq. (15).
The computation of the determinant of the matrix Gstar(p;m;p) can be carried out

by the call of the Maple function det. It can also be done by using the intermediate
computation of the ‘head matrices’ described in Eq. (25). But these head matrices
can be preferably obtained by selecting them as submatrices of the smaller matrix
Gstar(p;m;p− 1). We have used these observations to optimize the time computation,
in a small extension of the package IDENTALG given in Appendix C. It allowed
us to compute the determinants of all the ‘head matrices’ of Gpm (p) for m + p611
(corresponding to the identi�cation of 2048 words of the generating series). All the
computed determinants are strictly positive and quite big integers (see Appendix B).

5.3. The conjectures

Our previous results and our study of the structure of the matrices G km(p) via the
package IDENTALG lead to the following conjecture:
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Conjecture 5.1 (Weak form). For any integers p and m there is a (computable) integer
k¿p such that the matrix G km(p) has full rank.

This form would su�ce to solve the identi�ability problem.

Conjecture 5.2 (Strong form). For any integers p and m the matrix Gpm (p) is
invertible.

This form would imply that the identi�ability problem can be solved by chosing a
panel of ‘small order’ jet coordinates for inputs and of corresponding outputs.

Appendix A: Splitting example of the matrix Gstar(4; 2; 4)




1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 3 4 5 6 5 6 7 7 8 9
1 3 6 10 15 4 7 11 16 9 13 18 16 21 25
1 4 10 20 35 5 11 21 36 14 24 39 30 45 55
1 5 15 35 70 6 16 36 71 20 40 75 50 85 105
0 0 0 0 0 3 4 5 6 8 10 12 15 18 24
0 0 0 0 0 4 7 11 16 19 28 39 51 69 106
0 0 0 0 0 5 11 21 36 29 50 81 94 143 230
0 0 0 0 0 6 16 36 71 41 82 153 155 265 435
0 0 0 0 0 0 0 0 0 10 15 21 45 63 126
0 0 0 0 0 0 0 0 0 15 26 42 99 154 364
0 0 0 0 0 0 0 0 0 21 42 78 161 278 680
0 0 0 0 0 0 0 0 0 0 0 0 35 56 224
0 0 0 0 0 0 0 0 0 0 0 0 56 98 476
0 0 0 0 0 0 0 0 0 0 0 0 0 0 126




:

The �rst head matrix of Gstar(4; 2; 4) is a binomial matrix, equal to Gstar(4; 1; 4).
Its determinant is equal to 1. The determinants of the four other head matrices
are, respectively,

9 84 294 and 126:

Appendix B: Examples of analysis of G(m; k) = Gstar(k;m; k)

We give here the prime decompositions of the determinants of the ‘head matrices’
of some Gkm(k), (except for the �rst one, equal to G

k
m−1(k), that should be beforehand

computed).

• analysis of Gstar(9;2;9) (dimension: rowdim = 55).
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The �rst head matrix of Gstar(9;2;9) is equal to Gstar(9;1;9) and has a deter-
minant equal to 1. The prime factor decompositions of the nine other head matrices
are given below. Their product is equal to the determinant of Gstar(9;2;9):

primes; (19)
primes; (3)(17)(19)

primes; (2)2(3)(17)(19)
primes; (2)4(3)(13)(17)2(19)
primes; (2)3(11)(13)2(17)2(19)
primes; (2)2(11)(13)3(17)2(19)
primes; (2)2(11)(13)3(17)2(19)
primes; (2)2(11)(13)2(17)2(19)
primes; (2)(11)(13)(17)(19)
computation time = 9:000

• analysis of Gstar(9;3;9) (dimension: rowdim = 220).
The �rst head matrix of is exactly Gstar(9;2;9) (computed just before). The de-
terminant of Gstar(9;3;9) is the product of the determinant of Gstar(9;2;9) and
of the determinants of the other nine head matrices, whose prime decomposition
is the following:

primes; (2)15(3)8(5)3(7)2(11)6(13)13(17)14(19)9(23)(29)
primes; (2)20(3)8(5)8(7)4(11)8(13)14(17)13(19)8(23)3(29)
primes; (2)17(3)10(5)7(7)6(11)10(13)14(17)12(19)8(23)6(29)
primes; (2)19(3)14(5)6(7)3(11)12(13)14(17)10(19)8(23)7(29)
primes; (2)12(3)8(5)7(7)(11)13(13)13(17)9(19)8(23)8(29)
primes; (2)8(3)6(5)7(11)11(13)14(17)6(19)6(23)7(29)
primes; (2)3(3)5(5)7(11)8(13)10(17)4(19)4(23)6(29)
primes; (2)3(3)2(5)4(7)(11)5(13)6(17)3(19)2(23)3(29)
primes; (2)(3)(5)(7)(11)2(13)2(17)(19)(23)(29)

computation time = 236:000

• analysis of Gstar(7;4;7) (dimension: rowdim = 330).
The �rst head matrix of Gstar(7;4;7) is equal to Gstar(7;3;7), and should be
beforehand computed. The prime factor decomposition of the determinants of the
other head matrices is the following:

primes; (2)21(3)74(5)32(7)24(11)55(13)44(17)16(19)23(23)10(29)2(31)
primes; (2)35(3)58(5)38(7)25(11)48(13)36(17)13(19)21(23)13(29)3(31)
primes; (2)16(3)54(5)26(7)24(11)39(13)30(17)11(19)18(23)14(29)4(31)
primes; (2)22(3)49(5)17(7)15(11)26(13)22(17)8(19)13(23)11(29)4(31)
primes; (2)13(3)29(5)12(7)5(11)17(13)14(17)7(19)8(23)7(29)4(31)

primes; (2)7(3)17(5)7(11)7(13)8(17)3(19)4(23)3(29)3(31)
primes; (3)5(5)3(11)2(13)2(17)(19)(23)(29)(31)

computation time = 8448:000
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The package ‘IDENTALG’ (a short MAPLE �le) can be obtained by E-mail address:
jacob@li
.fr.

Appendix C: The kernel of the package IDENTALG

• Left and right extension by ‘0’ coe�cients
¿ restart;with(linalg):

¿ myext:= proc(cf,h,l,t)

¿ local bd;

¿ bd:= band([cf],t);

¿ extend(concat(matrix(t,l-t,0),bd),h-t,0,0)

¿ end;

¿ with(linalg):

• Building of the matrices J(k,m)
The matrix J km is obtained by the call jstar(k;m;m);

¿ jstar:= proc(k,m,lev) option remember;

¿ local tg,td,tmini,udiag;

¿ if k=0 or lev=0 then RETURN(matrix(1,1,1)) fi;

¿ tg:= binomial(lev+k-1,lev-1);

¿ td:= binomial(lev+k-1,lev);

¿ tmini:= binomial(lev+k-2,lev-1);

¿ udiag:= myext(-m+lev-1,td,tg,tmini );

¿ stackmatrix(

¿ extend(jstar(k,m,lev-1),0,td,0 ),

¿ concat(udiag,jstar(k-1,lev,lev) ) )

¿ end;

¿ J:= proc(k,m) option remember; jstar(k,m,m) end;

• The matrix T(k,m), inverse of the matrix J(k,m)
The matrix Tkm is obtained by the call tstar(k;m;m);

¿ tstar:= proc(k,m,lev) option remember;

¿ local tg,td,tmini,udiag;

¿ if k=0 or lev = 0 then matrix(1,1,1)

¿ else

¿ tg:= binomial(lev+k-1,lev-1);

¿ td:= binomial(lev+k-1,lev);

¿ tmini:= binomial(lev+k-2,lev-1);

¿ udiag:= multiply(tstar(k-1,lev,lev),

¿ myext(m-lev+1,td,tg,tmini ),

¿ tstar(k,m,lev-1) );



190 C. Hespel, G. Jacob /Discrete Mathematics 225 (2000) 173–191

¿ stackmatrix(extend(tstar(k,m,lev-1),0,td,0 ),

¿ concat(udiag,tstar(k-1,lev,lev) ) )

¿ fi

¿ end;

¿
¿ T:= proc(k,m) option remember; tstar(k,m,m) end;

• The identi�cation matrices Gstar(k;m;p)
The matrix Gkm(p) is obtained by the call Gstar(k;m;p);

¿ Gstar:= proc(k,m,p) option remember;

¿ if k=0 or m=0 then matrix(1,1,1)

¿ elif p=0 then multiply(tstar(k,m,m) ,

¿ extend(Gstar(k,m-1,p), binomial(m+k-1,k-1),0,0)

¿ )
¿ else multiply(tstar(k,m,m),

¿ concat( extend(Gstar(k,m-1,p), binomial(m+k-1,k-1),0,0),

¿ Gstar(k,m,p-1) )

¿ )
¿ fi

¿ end;

In case k=p, the square matrix Gpm(p) is obtained by the procedure call Gstar(p;m;p):
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