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aDepartment of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200 A, B-3001,
Leuven (Heverlee), Belgium

bInstitute of Mathematics, Czech Academy of Sciences, Žitná 25, 115 67 Praha, Czech Republic

Received 2 December 1999; accepted 19 March 2001

Submitted by N.J. Higham

Abstract

Based on the approach introduced by B.D.O. Anderson and E.I. Jury in 1976, the definition
of finite Hankel and Bézout matrices corresponding to matrix polynomials is extended to the
case where the denominator of the corresponding rational matrix function is not necessarily
monic but is row reduced. The matrices introduced keep most of the well-known properties
that hold in the monic case. In particular, we derive extensions of formulas giving a connection
with polynomials in the companion matrix (usually called Barnett formulas), of the inversion
theorem and of formulas concerning alternating products of Hankel and Bézout matrices.
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1. Introduction/motivation

Bézout and Hankel matrices belong to classes of structured matrices which can
be defined based on scalar polynomials. They appear already in very classical works
written by such famous authors as Sylvester, Cayley and Hermite (see [20]). The
study of their properties and applications continued in fact during the whole 20th cen-
tury, although the strongest interest has been from the 1970s until the present time.
One of the most remarkable papers originating from the first half of the 21st century
is Ref. [22]. This survey paper describes different methods to separate roots of poly-
nomials and to solve other associated problems based on Bézout and Hankel matrices
(in the language of corresponding quadratic forms). A nice brief historical survey can
be found in the paper [19] (see also [32]). Other types of structured matrices connec-
ted with polynomials are Vandermonde, Toeplitz, Loewner, Sylvester, companion
matrices, etc. Different connections between these classes of matrices were investig-
ated. Stephen Barnett proved formulas relating the Bézout matrix with a polynomial
in the companion matrix [3, Theorem. 1.12, p. 46] and, similarly, relating the Hankel
matrix with a polynomial in the companion matrix.

Various applications, e.g., in interpolation theory and in control theory, showed
that an important direction is the generalization of these classes of matrices to the
case of matrix polynomials. These generalized classes keep most of the useful prop-
erties and mutual connections.

One of the oldest references where the generalization of Bézout matrices can
be implicitly found is Ref. [14]. Not long after this the explicit definition of the
Bézout matrix for the general case appeared in [1,16,17]. Another definition based
on the Kronecker product can be found in [4]. In [30], Pták and Wimmer gave a
Barnett factorization for the Bézoutian defined in this way. But it turned out that the
properties of the Bézoutian could be easily generalized from the scalar to the matrix
case when the definition of Anderson and Jury was taken.

Several properties and applications were generalized from the scalar to the matrix
polynomial case. For example in [5], Bitmead et al. showed how to obtain greatest
common right divisors from two matrix polynomials based on the generalized Bézout
matrix. Generalizations of classical root-separation results for matrix polynomials
can be found in [26]. In [28], the concept of a generalized Bézout matrix for sev-
eral matrix polynomials was introduced. Based on this definition, a generalization
of the Gohberg–Semencul formula for the inverse of a block Toeplitz matrix with
nonsquare blocks was given in [13]. Even more abstract notions of Bézoutians were
developed in the last two decades, e.g., Bézout matrices based on rational matrix
functions, Bézout operators for analytic operator functions, etc. We refer the reader
to [15,24,25] and the references therein.
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The main goal of the present paper is to generalize Barnett formulas and some
other properties to the matrix polynomial case. We could distinguish several levels
of generalization depending on the restrictions put on the matrix polynomials. The
case usually considered is when the matrix polynomials are monic, i.e., having their
leading coefficient equal to the identity matrix. For this case, Barnett-type formulas
can be easily obtained, similar to the scalar case.

In this paper, we shall concentrate our attention on structured matrices connected
to row reduced matrix polynomials. The motivation for this choice and the reas-
ons why we do not handle the case where the matrix polynomials have no special
properties will be explained in Section 3.

The organization of the paper is as follows. In Section 2, we introduce some
notation. In Section 3, we define the concept of row reducedness of a matrix poly-
nomial. For a row reduced matrix polynomial we introduce the finite and infinite
companion matrix. In the next two sections two other types of structured matrices
are defined connected to row reduced matrix polynomials: the finite Hankel matrix
and the finite Bézout matrix. These definitions differ slightly from the usual ones. All
these matrices are also interpreted as the representation of different operators with
respect to certain bases. In Section 6, we characterize Hankel and Bézout matrices
by intertwining relations. This result is a direct generalization of a special case of
common results of the second author and M. Fiedler, published in [6,7]. The operator
interpretation as well as the generating function concept is used to derive the Barnett-
type formulas of Section 7. In Section 8, we use these formulas to derive inversion
formulas corresponding to our definition of finite Hankel and Bézout matrices. The
Barnett-type formulas are also applied in Section 9 to compute mutual products of
finite Hankel and Bézout matrices. Also these results extend ideas which arose in
collaboration of the second-named author and M. Fiedler (see [6, Theorem 3.2.]).
Special cases pointed out in Lemma 32 generalize popular formulas concerning
connections between scalar Hankel and Bézout matrices which can be found, e.g.,
in [18]. For the matrix polynomial case, certain special cases of our product formulas
can be found in [33, formulas (1.7) and (1.10)].

2. Notation

In the sequel, the following notation will be used:
• F denotes an arbitrary (finite or infinite) field.
• Fq [z] denotes the set of the vector polynomials, i.e., the polynomials with

coefficients belonging to Fq .
• Similarly Fp×q [z] denotes the set of all p × q matrix polynomials. We will

make no distinction between the set of matrix polynomials Fp×q [z] and the set
of polynomial matrices F[z]p×q .

• F[[z−1]] denotes the set of all formal power series in z−1 of the form
∑∞
k=0 fk

z−k . Similarly for vector and matrix power series.
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• The coefficients of a matrix polynomial D ∈ Fp×q [z] are denoted by Dk , i.e.,
D(z) = ∑

k Dkz
k with Dk = 0 for k > degD.

3. Row reduced matrix polynomials, finite and infinite companion matrices

Our idea to deal with structured matrices corresponding to row reduced matrix
polynomials has its origin in our preceding study of generalized companion matrices.
In our paper [2], we introduced the concept of an extended infinite companion mat-
rix of an arbitrary nonsingular matrix polynomial, i.e., a square matrix polynomial
whose determinant is a nonzero polynomial. As shown in [2], this ∞ × ∞ matrix
has only a finite number of nonzero rows. Only in the case of a row reduced matrix
polynomial, these nonzero rows can be easily identified.

The extended infinite companion matrix is defined as the matrix representation of
the remainder operator introduced in [8]. For more information on the division by a
square nonsingular matrix polynomial, we refer the reader to [21].

We say that a rational function r is proper if

r(z) =
∞∑
k=0

rkz
−k, z → ∞.

We say that a rational function r is strictly proper if

r(z) =
∞∑
k=1

rkz
−k, z → ∞.

In these two cases, we will not make a distinction between the rational function
and the corresponding formal power series. Vector or matrix rational functions are
(strictly) proper if each component is (strictly) proper.

Any rational function r can be uniquely written as the sum of a polynomial part
r+ and a strictly proper part r−. The operator �− applied to a rational functions r
gives this strictly proper part

�−r = r−, r = r+ + r−.

Definition 1 (Remainder operator, remainder space). For any nonsingular D ∈
Fq×q [z], the remainder operator R(D) on Fq [z] (connected with the left division
by D ) is defined as

R(D)p = D�−D−1p. (1)

The remainder space R(D) is defined as

R(D) = Ran (R(D)).

The remainder operator and remainder space, resp. appear in [8] as πD andKD , resp.
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The extended infinite companion matrix will be the matrix representation of the
remainder operator R(D) with respect to the following basis.

Definition 2 (Monomial basis). In the space Fq [z] we choose the basis

B = {bt }∞0 where bt (z) = ekzj if t = jq + k, 0 � k < q.

Based on the remainder operator, we recall now the definition of the infinite
companion matrix. For the scalar case, this definition was given in [29].

Definition 3 (Extended infinite companion matrix). Assume that D is nonsingular.
The ∞ × ∞ matrix representation of the operator R(D) with respect to the basis B
will be denoted by C̃∞(D) and will be called the extended infinite companion matrix
of the matrix polynomial D.

As shown in the paper [2], the extended infinite companion matrix has only a finite
number of nonzero rows and its rank equals n = deg detD. It would be convenient
to cut off the zero rows. However, only in the case when D is row reduced we obtain
a straightforward way how all zero rows can be omitted.

Definition 4 (Degree, row/column degree, highest row/column degree coefficient).
Let D(z) be a q × q matrix polynomial. If we consider D(z) as an element of
F[z]q×q, D(z) = [dij (z)], then degD(z) = maxij deg dij (z). The row degrees are
hi =maxj deg dij (z), i = 0, . . . , q − 1. The highest row degree coefficient is the
q × q matrix Dhrdc = [aij ], where dij (z) = aij z

hi + O(zhi−1), z → ∞.
The column degrees and the highest column degree coefficientDhcdc are defined

analogously.

Definition 5. We say thatD(z) is row reduced ifDhrdc is nonsingular. Similarly, we
say that D(z) is column reduced if Dhcdc is nonsingular.

The definition of column and row reduced matrix polynomials was introduced in
algebraic system theory by Wolovich [36]. However, its origin is even much older.
The concept of a column reduced matrix polynomial occurs in the book [31, p. 49]
as the “normal basis of an integral set”.

When the matrix polynomial D is row reduced, the remainder subspace R(D)
is a coordinate subspace with respect to the basis B, i.e., a subspace spanned by n
elements of the basis B. This leads us to the following definitions:

Definition 6 (Index set). For any nonsingular D(z) with row degrees hi , we intro-
duce the index set I(D) by

I(D) = {t | t = jq + i, 0 � j < hi, 0 � i < q} .
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Lemma 7 (Remainder space for a row reduced D). Let D be row reduced with row
degrees hi . Then the remainder space R(D) is spanned by {eizj , 0 � j < hi} =
{bt, t ∈ I(D)}.

This lemma occurs in [21] (Lemma 6.3-11 on p. 385).

Definition 8 (Infinite companion matrix for a row reduced matrix polynomial). If D
is row reduced, then we introduce the infinite companion matrix C∞(D) as the mat-
rix representation of the operator R(D) : Fq [z] → R(D) with respect to the bases
B ∈ Fq [z] and {bt | t ∈ I(D)} in R(D). Equivalently, C∞(D) = C̃∞(D)(I(D)) in-
dicating the submatrix formed by the rows of C̃∞(D) with indices belonging to the
subset I(D).

We also define a generalization of the notion “finite companion matrix” (or
“Frobenius matrix”) to row reduced matrix polynomials. We introduce it as the
matrix representation of the operator of multiplication by z modulo D(z) on the
space R(D), i.e., the compressed shift, introduced by Fuhrmann in [8, formula (4.1)]
as the basic object in his theory of polynomial models. It is necessary to say that
our requirement that the matrix polynomial has to be row reduced is dependent on
our choice of the monomial basis B. However, another choice of basis would bring
another restriction and we believe that our choice is the most natural one.

Definition 9 (Operator S(D)). For any nonsingular D the operator S(D) : R(D)
�→ R(D) is defined by

S(D) = R(D)S|R(D),

where S denotes the “shift operator” on the space Fq [z], given by Sp(z) = zp(z) for
any p(z) ∈ Fq [z].

If D(z) is row reduced, the matrix of S(D) w.r.t. the basis {bt | t ∈ I(D)} equals

(C∞(D)Sq)(I(D)),

where S is the “infinite shift matrix”, S = [δi,j+1]∞i,j=0 , and M(I) denotes the sub-
matrix of M formed by columns of M with indices belonging to I.

Definition 10 (Finite companion matrix for a row reduced matrix polynomial). The
n× n matrix C(D) defined as

C(D) = (C∞(D)Sq)(I(D))

is called the finite companion matrix of D.
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4. Infinite and finite Hankel matrices and their operator interpretation

In this section, we first recall the standard notion of an infinite block Hankel
matrix. If this infinite matrix has a finite rank, it can be written as a finite submatrix
of the infinite block Hankel matrix multiplied to the left by the transpose of an in-
finite companion matrix and to the right by an infinite companion matrix. This finite
submatrix will be called the finite Hankel matrix. Our definition does not necessarily
keep the block Hankel structure but it will have the same properties as the finite
block Hankel matrix defined in the classical way when the highest degree coefficients
of the denominator matrix polynomials involved are nonsingular. For example, the
finite Hankel matrix as defined here corresponding to a left and right coprime matrix
fraction description is square and nonsingular (Remark 15).

Definition 11. The block matrix H = (
�ij

)∞
i,j=0 with blocks �ij of dimension

p × q is called an infinite block Hankel matrix if

�ij = �i+j .
For any formal power series �(z) = ∑

�kz−k−1 ∈ z−1Fp×q [[z−1]], the correspond-
ing Hankel matrix H(�) is defined as

H(�) = (�i+j )∞i,j=0 .

In the sequel we will often need stacking vectors of coefficients of vector polyno-
mials and of strictly proper rational functions. We indicate these stacking vectors by
a hat. For example, if a is a vector polynomial, then by â we mean the infinite column
vector obtained by stacking the coefficients of the vector polynomial a and complet-
ing by zeros. Thus the value of a at the point z equals a(z) = [Iq zIq z2Iq · · ·]â. If b
is a vector whose elements are strictly proper rational functions, the stacking vector
b̂ is defined so that b(z) = [z−1Iq z

−2Iq · · ·]b̂. Similarly, if we have a sequence of
vectors {yi} having finite length, the stacking vector is denoted by ŷ = [yT

0 , y
T
1 , . . .]T.

Lemma 12 (The Hankel operator). Define the operator H (�) : Fq [z] �→
z−1Fp[[z−1]]

H (�) : p �→ �−�p, (2)

where �(z) = ∑
�kz−k−1 ∈ z−1Fp×q [[z−1]]. Then

H(�)p̂ = ρ̂
if and only if the vector polynomial p(z) ∈ Fq [z] corresponding to the stacking
vector p̂ is mapped by H (�) onto the formal power series ρ(z) = ∑

ρkz
−k−1 ∈

z−1Fp[[z−1]] represented by the stacking vector ρ̂:
H (�)p = ρ .

Remark 13. It is a well-known fact that rank (H(�)) < ∞ if and only if � defines
a rational function. For the scalar case, this assertion appears in [12, Theorem 8,
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p. 207] and is generally attributed to Kronecker. The block case follows immediately
because the (block) Hankel matrix contains the scalar Hankel matrices corresponding
to all separate entries of �.

To motivate our Definition 16 below, we recall a factorization formula for Hankel
matrices from our paper [2].

Lemma 14. Let �(z) = D̂−1
1 (z)N̂1(z) = N̂2(z)D̂

−1
2 (z) be (not necessarily coprime)

left and right matrix fraction descriptions of a strictly proper rational matrix func-
tion � and suppose that D̂T

1 , D̂2 are row reduced. Denote m = deg det D̂1, n =
deg det D̂2. Then

H(�) = H = [
C∞(D̂T

1 )
]T
Hm,nC∞(D̂2), (3)

where Hm,n = H(I(D̂2))

(I(D̂T
1 ))

is an m× n submatrix of H.

Remark 15. Note that if both matrix fractions are coprime, then m = n and Hm,n
is a square nonsingular matrix.

We know that in the scalar case a formula similar to (3) holds:

H(ω) = H(h/f ) = [
C∞(f )

]T
Hn,nC∞(f ),

where n = deg f and the matrix Hn,n in the middle (which is the leading submatrix
ofH(h/f ) of order n and is nonsingular if h and f are coprime) is the classical scalar
finite Hankel matrix. The following definition keeps this analogy.

Definition 16. Given a strictly proper rational matrix function � and its left and
right matrix fraction descriptions

�(z) = D̂−1
1 (z)N̂1(z) = N̂2(z)D̂

−1
2 (z)

with D̂T
1 , D̂2 row reduced, we call the matrix

Hm,n(�) = H(�)(I(D̂2))

(I(D̂T
1 ))

the finite Hankel matrix (corresponding to � and the choice of D̂1, D̂2).

5. Bézout matrices and their operator interpretation

Like for the Hankel matrix, we shall define the finite Bézout matrix corresponding
to row reduced matrix polynomials in a way keeping analogous properties to the
scalar case but disturbing the block Bézout structure.

The definition can be explained easier if we start by an infinite extension of
the Bézout matrix. If we assume row reducedness, the number of nonzero rows,
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resp. columns in the Bézout matrix will be equal to deg detD1, resp. deg detD2
(see (4) for details). Our finite Bézout matrix is obtained by deleting all zero rows
and columns. Like in the Hankel case, this matrix keeps important rank proper-
ties known from the scalar case. Especially, if the corresponding rational function
� = D−1

1 N1 = N2D
−1
2 is proper and its left and right matrix fraction representations

are coprime, then the Bézout matrix is square of order deg detD1 = deg detD2 and
nonsingular.

Following the original definition of Anderson and Jury [1], we define the infinite
Bézout matrix as follows.

Definition 17. Suppose that D1, N2, N1, and D2 are matrix polynomials of dimen-
sions q × q, q × r, q × r , and r × r such that

D1(z)N2(z) = N1(z)D2(z).

Then the infinite Bézout matrix (but having a finite number of nonzero entries only)
is the matrix

B̃(D1, N2, N1,D2) = (Bij )
∞
i,j=0

with blocks Bij ∈ Fq×r such that
∞∑
i,j=0

Bij z
iyj = D1(z)N2(y)−N1(z)D2(y)

z− y = B(z, y).

If the rational function D−1
1 (z)N1(z) = N2(z)D

−1
2 (z) is proper, we can derive

a finite matrix by cutting off a zero part based on the degrees of the denominator
polynomials D1 and D2. (In [35], Wimmer drops the properness condition.) Let
degD1 = δ1 and degD2 = δ2, then in [1] a finite Bézout matrix is defined as

(Bij )
δ1−1,δ2−1
i=0,j=0 .

However, if DT
2 , D1 are row reduced, all zero rows and columns of the infinite

Bézout matrix can be deleted.
Hence, we define the finite Bézout matrix Bl,m as

Bl,m(D1, N2, N1,D2) = B̃(D1, N2, N1,D2)
(I(DT

2 ))

(I(D1))
(4)

(l = deg detD1, m = deg detD2).

Notation. We write B(D) for B(D, I, I,D).

Next we are going to derive an operator interpretation for the Bézout matrix. Our
interpretation will be based on the concept of generating function.

Definition 18. The generating function B(z, y) corresponding to an ∞ × ∞ block
matrix B = [bi,j ]∞i,j=0, where the blocks bi,j are q × r , is the formal power series in
two variables z and y defined as
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B(z, y) =
∞∑
i=0

∞∑
j=0

bi,j z
iyj .

For any generating function, we have the following operator interpretation.

Lemma 19. For any q × r generating function B(z, y) the corresponding matrix B
with a finite number of nonzero blocks bi,j represents the operator

B : z−1Fr [[z−1]] �→ Fq [z] : B (ω) = 〈B(z, y)ω(y)〉y−1

for any ω ∈ z−1Fr [[z−1]], where 〈· · ·〉y−1 denotes the coefficient connected to y−1

in the given function.

An operator interpretation for the Bézout matrix can be taken as a special case
of Lemma 19. In [9, Eq. (4.5)], Fuhrmann gives another operator interpretation for
the Bézout matrix as defined by Anderson and Jury in [1]. He defines the map Z :
R(D2) �→ R(D1) as

Zp = R(D1)N1p for p ∈ R(D2).

The block matrix representation of this map Z with respect to certain bases leads to
the Bézout matrix. Based on the intertwining property

ZS(D2) = S(D1)Z

several of the following results can be proven in an alternative way. 4 Note that the
relations described in [34] can easily be generalized to relations between the Bézout
matrix and the Hankel matrix as it is defined in this paper.

6. Intertwining characterizations of Hankel and Bézout matrices

We shall show that a matrix belongs to the class of all Hankel (Bézout, resp.)
matrices if and only if it satisfies certain intertwining relations. This result has vari-
ous theoretical applications. Among others, it implies the inversion theorem for
Hankel and Bézout matrices and the results of Section 9 below.

We start by an obvious fact:

Lemma 20 (Characterization of infinite Hankel matrices). An infinite matrix H is an
infinite Hankel matrix with blocks of dimension p × q if and only if H satisfies the
intertwining relation

4 We thank the referee for pointing our attention to this alternative operator interpretation and the
possibility to prove some subsequent results based on this interpretation. For the scalar case, we refer
the reader to the book [11].
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(ST)pH = HSq,

where S is the matrix of the shift operator with respect to the basis B.

Theorem 21 (Characterization of finite Hankel matrices). Let D̂T
1 , D̂2 be row redu-

ced, deg det D̂1 = m, deg det D̂2 = n and Hm,n an arbitrary matrix of dimension
m× n. Then the following assertions are equivalent:
(i) There exist N̂1, N̂2 such that

D̂−1
1 N̂1 = N̂2D̂

−1
2 (strictly proper)

and Hm,n is the corresponding finite Hankel matrix.
(ii) Hm,n satisfies the intertwining relation

CT(D̂T
1 )Hm,n = Hm,nC(D̂2). (5)

Proof. (i) → (ii) Using Lemma 14 we write the infinite Hankel matrixH(D̂−1
1 N̂1) =

H(N̂2D̂
−1
2 ) in the form (3). We apply the intertwining relation concerning the infinite

companion matrix,

C∞(D)Sq = C(D)C∞(D) , (6)

given in [2]. We also use Lemma 20 to get
[
C∞(D̂T

1 )
]T
C(D̂T

1 )Hm,nC∞(D̂2) = (
ST)p [

C∞(D̂T
1 )

]T
Hm,nC∞(D̂2)

= (
ST)p

H = HSq =
[
C∞(D̂T

1 )
]T
Hm,nC∞(D̂2)S

q

=
[
C∞(D̂T

1 )
]T
Hm,nC(D̂2)C∞(D̂2).

Since the infinite companion matrices
[
C∞(D̂T

1 )
]T
, C∞(D̂2) are full rank matrices,

the equality (5) follows.
(ii) → (i) Starting from (5) and proceeding in the opposite direction, we easily

verify the relation[
C∞(D̂T

1 )
]T
Hm,nC∞(D̂2)S

q = (
ST)p [

C∞(D̂T
1 )

]T
Hm,nC∞(D̂2) .

It follows that[
C∞(D̂T

1 )
]T
Hm,nC∞(D̂2) = H (7)

is an infinite Hankel matrix with blocks of dimension p × q which has a finite rank.
We conclude that H = H(�) where � is rational. Suppose that � = N0D

−1
0 where

N0, D0 are right coprime. Then, with respect to the operator interpretation (see, e.g.,
[21, Lemma 6.6-1, p. 471]),

Ker H (�) = D0Fq [z] .
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On the other hand, (7) shows that

Ker H (�) ⊃ KerR(D̂2) = D̂2Fq[z] .
The inclusion D0Fq [z] ⊃ D̂2Fq [z] is equivalent with the relation D̂2 = D0M for
some nonsingular matrix polynomial M so that � = (N0M)D̂

−1
2 and we put N̂2 =

N0M . The left matrix fraction for � can be found similarly. �

It remains to state a similar assertion for Bézout matrices.

Theorem 22 (Characterization of finite Bézout matrices). Let DT
2 , D1 be row

reduced, deg detD1 = l, deg detD2 = m and let Bl,m be an arbitrary matrix of
dimension l ×m. Then the following two assertions are equivalent:
(i) There are N1, N2 such that the rational functions D−1

1 N1, N2D
−1
2 are proper

and equal to each other and

Bl,m = Bl,m(D1, N2, N1,D2).

(ii) The matrix Bl,m satisfies the intertwining relation

C(D1)Bl,m = Bl,mC
T(DT

2 ).

Proof. The generating function L1(z, y) of C(D1)Bl,m has the following form:

L1(z, y) = zBl,m(z, y)−D1(z)Q1(y).

Similarly, the generating function L2(z, y) of Bl,mCT(DT
2 ) has the form

L2(z, y) = yBl,m(z, y)−QT
2 (z)D2(y).

(⇒) Proving the intertwining relation is equivalent to showing the equality of the
generating functions of the left-hand and right-hand sides. The matrix polynomial
Q1(y) can be determined as follows. By definition of the Bézout matrix, we derive

L1(z, y) = z

(
D1(z)N2(y)−N1(z)D2(y)

z− y
)

−D1(z)Q1(y).

Hence,

(z− y)L1(z, y) = z(D1(z)N2(y)−N1(z)D2(y))− (z− y)D1(z)Q1(y).

By multiplying both sides to the left by D−1
1 (z), we get

(z− y)D−1
1 (z)L1(z, y)

= z(N2(y)−D−1
1 (z)N1(z)D2(y))− (z− y)Q1(y). (8)

Because

D−1
1 (z)L1(z, y) = O−(z−1), D−1

1 (z)N1(z) = A+O−(z−1)

with A a constant matrix, taking the coefficient of z of both sides of (8) gives us
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0 = N2(y)− AD2(y)−Q1(y)

or

N2(y) = AD2(y)+Q1(y).

We get a similar relation for the matrix polynomialQT
2 (z):

N1(z) = D1(z)A+QT
2 (z).

We have to prove now that L1(z, y) = L2(z, y).

L1(z, y)=zBl,m(z, y)−D1(z) (N2(y)− AD2(y))

=yBl,m(z, y)+ (z− y)Bl,m(z, y)−D1(z)N2(y)+D1(z)AD2(y)

=yBl,m(z, y)+D1(z)N2(y)−N1(z)D2(y)−D1(z)N2(y)

+ D1(z)AD2(y)

=yBl,m(z, y)+ (D1(z)A−N1(z))D2(y)

=yBl,m(z, y)−QT
2 (z)D2(y)

=L2(z, y).

This proves the first part of the theorem.
(⇐)We start from the fact that

L1(z, y) = L2(z, y).

Hence,

(z− y)Bl,m(z, y) = D1(z)Q1(y)−QT
2 (z)D2(y)

or

Bl,m(z, y) = D1(z)Q1(y)−QT
2 (z)D2(y)

z − y .

Note that the row degrees of QT
1 (y) are smaller than the corresponding row degrees

of DT
2 (y). Similarly, the row degrees of QT

2 (z) are smaller than the corresponding
row degrees of D1(z). Hence, we can take N1 = QT

2 and N2 = Q1. This proves the
other part of the theorem. �

Theorems 21 and 22 give us a tool to show that, under certain assumptions, the
alternating product of Hankel and Bézout matrices starting and ending with a Hankel
matrix (with a Bézout matrix resp.) is again a Hankel matrix (a Bézout matrix). On
the other hand, Barnett formulas give another tool to prove the same and even a
quantitative version of this assertion (describing connections between the corres-
ponding polynomials). This motivates us to include first Barnett formulas and then a
section concerning the products.
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7. Barnett formulae

Like the classical scalar-case Barnett formulas, the following theorem relates a
generalized Hankel matrix based on a numerator and a denominator matrix polyno-
mial and the Hankel matrix only based on the denominator matrix polynomial, e.g.,
H(D̂−1

1 N̂1) and H(D̂−1
1 ). The sum expressions in the formulas reduce to polynomi-

als in the finite companion matrix if the scalar case is considered.

Theorem 23. Let D̂1, N̂1, D̂2, N̂2 be matrix polynomials, D̂T
1 , D̂2 square and

row reduced, deg det D̂1 = m, deg det D̂2 = n, and let

D̂−1
1 N̂1 = N̂2D̂

−1
2 (strictly proper).

Then:
H(D̂−1

1 N̂1) = H(D̂−1
1 )

∑
k

C̃k(D̂1)C̃∞(D̂1)diag ((N̂1)k), (9)

Hm,n(D̂
−1
1 N̂1) = Hm,m(D̂

−1
1 )

∑
k

Ck(D̂1)C∞(D̂1)
[
diag ((N̂1)k)

](I(D̂2))

,

(10)

H(N̂2D̂
−1
2 ) =

∑
k

diag ((N̂2)k)
[
C̃∞(D̂T

2 )
]T [

C̃k(D̂T
2 )

]T
H(D̂−1

2 ) , (11)

Hm,n(N̂2D̂
−1
2 ) =

∑
k

[
diag ((N̂2)k)

]
(I(D̂T

1 )

[
C∞(D̂T

2 )
]T [

Ck(D̂T
2 )

]T

×Hn,n(D̂−1
2 ) . (12)

Proof. It is sufficient to prove the first formula (9). Formula (10) follows just by
taking corresponding submatrices and omitting the zero part of the matrix C̃ (D̂1).

Formulas (11) and (12) are obtained as an application of (9) and (10) to transposed
matrices.

To prove (9), we apply the operator represented by the r.h.s. to a vector polynomial
p(z) (which is described by a stacking vector p̂). Due to (6),∑

k

C̃k(D̂1)C̃∞(D̂1)diag ((N̂1)k)p̂ = C̃∞(D̂1)
∑
k

(
Sq

)k diag ((N̂1)k)p̂

which evidently represents the remainder r under division of N̂1p by D̂1:

N̂1p = D̂1q + r .
Due to Lemma 12,

H (D̂−1
1 )r = �−D̂−1

1 r = D̂−1
1 r = D̂−1

1 N̂1p − q = �−D̂−1
1 N̂1p.

Using Lemma 12 once more, we see that this corresponds to H(D̂−1
1 N̂1)p̂. �
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Now, a similar theorem on Bézout matrices follows. It gives the connections
between a general Bézout matrix based on four matrix polynomials and the Bézout
matrix only based on one of the denominator matrix polynomials.

Theorem 24. Let D1, N1,D2, N2 be matrix polynomials, DT
2 ,D1 square and row

reduced, deg detD1 = l, deg detD2 = m, and let

D−1
1 N1 = N2D

−1
2 .

Then:
B̃(D1, N2, N1,D2) =

∑
k

C̃k(D1)C̃∞(D1)diag ((N1)k) B̃(D2), (13)

Bl,m(D1, N2, N1,D2)

=
∑
k

Ck(D1)C∞(D1)
[
diag ((N1)k)

](I(DT
2 )) Bm,m(D2), (14)

B̃(D1, N2, N1,D2)

= B̃(D1)
∑
k

diag ((N2)k)
[
C̃∞(DT

2 )
]T [

C̃k(DT
2 )

]T
, (15)

Bl,m(D1, N2, N1,D2)

= Bl,l(D1)
∑
k

[
diag ((N2)k)

]
(I(D1))

[
C∞(DT

2 )
]T

[
Ck(DT

2 )
]T
. (16)

Proof. Again, it is sufficient to prove the first formula (13). The others are derived
similarly as in the Hankel case.

The proof of (13) will be based on a formula for the generating function. We use
the equality N1(z)D2(z) = D1(z)N2(z):

D1(z)N2(y)−N1(z)D2(y)

z− y = D1(z)
N2(y)−N2(z)

z − y
+N1(z)

D2(z)−D2(y)

z− y .

Considering z as a variable and y as a parameter, we conclude that the right-hand
side is the remainder in division of

N1(z)
D2(z)−D2(y)

z− y
byD1(z). Since

D2(z)−D2(y)

z− y
is the generating function of B̃(D2), we obtain the matrix equality
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B̃(D1, N2, N1,D2)=C̃∞(D1)
∑
k

(
Sq

)k
diag ((N1)k) B̃(D2)

=
∑
k

C̃k(D1)C̃∞(D1)diag ((N1)k) B̃(D2)

(we used (6) again) and (13) is proved. �

8. Inversion of Hankel and Bézout matrices

It is a well-known fact that the inverse of any scalar nonsingular Hankel
matrix is a Bézout matrix and vice versa. We refer to the paper of Lander [23].
It is also well known that the same fact can be generalized to the case of block
matrices (the corresponding matrix polynomials satisfy some monicness conditions
[10,13,14,27,33]). It is natural to put the question whether an analogous property
holds also for our generalized definition, related to row reduced matrix polynomials.

In fact, intertwining characterizations themselves, given in Section 6, show that
the positive answer is true. We give a quantitative result (describing the connection of
the corresponding polynomials), based on the Barnett-type formulas of the previous
section.

Let us start by a simple lemma:

Lemma 25.
(i) For any square nonsingular D,

C̃∞(D) = B̃(D)H(D−1).

(ii) For D row reduced, deg detD = m,

Bm,m(D)Hm,m(D
−1) = Im.

This is in fact Theorem 8 of [2].
The next theorem will be important both for the inversion formulas of this section

and for the product formulas given in the next section.

Theorem 26. LetD1,D
T
2 ,D3 be row reduced, suppose thatD−1

1 N1 = N2D
−1
2 and

D−1
2 N̂2 = N̂3D

−1
3 . Then the matrix

P = Bl,m(D1, N2, N1,D2)Hm,n(D
−1
2 N̂2 = N̂3D

−1
3 )

satisfies the intertwining relation

C(D1)P = PC(D3) . (17)

Moreover,

P =
∑
k

Ck(D1)C∞(D1)
[
diag ((N)k)

](I(D3)) ,
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where N(z) = N1(z)N̂2(z).

Remark 27. This means in fact that P represents consecutive multiplication by N̂2
and by N1 and then taking remainder under division by D1.

Proof. Relation (17) is an obvious consequence of intertwining characterizations of
Hankel and Bézout matrices.

To prove the expression for P, we substitute first from the corresponding Barnett
formulas to get Bm,m(D2)Hm,m(D

−1
2 ) = Im (see Lemma 25) in the middle. Then

apply the matrix

P =
∑
k

Ck(D1)C∞(D1)
[
diag ((N1))k

](I(DT
2 ))

×
∑
j

Cj (D2)C∞(D2)
[
diag ((N̂2))j

](I(D3))

to a vector polynomial p ∈ R(D3):

N̂2p = D2q
′ + r ′

N1r
′ = D1q + r

N1N̂2p = D1N2q
′ +D1q + r

and D−1
1 r is strictly proper. From this, both assertions of the theorem are immedi-

ately clear. �
The next theorem concerning the rank of the Bézout matrix was already proven

by Anderson and Jury [1, Theorem 2.1]. See also [9, Corol. 4.5].

Theorem 28 (Rank of the Bézout matrix). Let D1, D
T
2 be square and nonsingular,

deg detD1 = l, deg detD2 = m and let the functionsD−1
1 (z)N1(z) = N2(z)D

−1
2 (z)

be proper. Then we can compute the rank of the Bézout matrix:
rank B̃(D1, N2, N1,D2) = µ,

where µ is the degree of the determinant of the denominator matrix polynomial of
any (right or left) coprime fraction defining the rational function � = N2D

−1
2 =

D−1
1 N1.

Proof. IfD1 = P1D
′
1, N1 = P1N

′
1, D2 = D′

2P2, N2 = N ′
2P2 such thatD′

1, N
′
1 are

left coprime,D′
2, N

′
2 are right coprime, then

B(z, y) = P1(z)B
′(z, y)P2(y).

In matrix representation,

B̃(D1, N2, N1,D2) = M(P1)B̃(D
′
1, N

′
2, N

′
1,D

′
2) (M(P2))

T
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and, cutting out the zero parts at the right, we get

B̃(D1, N2, N1,D2)

=M(P1)
(I(D′

1))Bµ,µ(D
′
1, N

′
2, N

′
1,D

′
2)

(
M(P T

2 )
T)
(I(D′T

2 ))
,

where M(P1) represents the multiplication by the polynomial matrix P1(z) to the
left of a polynomial vector. Similarly forM(P T

2 )
T. The Bézout matrix in the r.h.s. of

the second equality is square of order µ. Thus the rank of B̃(D1, N2, N1,D2) is at
most µ. The equality will be a consequence of the following Theorem 29. �

Theorem 29 (Inversion of Bézout matrices). SupposeD1,D
T
2 row reduced and N1,

N2 such that the matrix fractionsD−1
1 N1 andN2D

−1
2 are coprime, proper and define

the same rational matrix function. Then the Bézout matrix Bm,m(D1, N2, N1,D2)

with m = detD1 = detD2 is square nonsingular and its inverse is a Hankel matrix.
More specifically,

Bm,m(D1, N2, N1,D2)
−1 = Hm,m(D

−1
2 N̂2 = N̂1D

−1
1 ),

where N̂1 is the unique solution of

N̂1N2 +Q1D2 = I (18)

(for unknown matrix polynomials N̂1, Q1) s.t.

N̂1D
−1
1 (19)

is strictly proper and N̂2 is the unique solution of

N1N̂2 +D1Q2 = I (20)

(for unknown N̂2, Q2) s.t. D−1
2 N̂2 is strictly proper.

Proof. We prove first existence and unicity of N̂1.
SinceN2,D2 are right coprime andN1 andD1 are left coprime, there exist matrix

polynomialsA,B,E and F s.t.

U =
[
N2 A

D2 B

]

is unimodular and U−1 is equal to

U−1 =
[
E F

D1 −N1

]
.

Hence, all solutions of

XN2 + YD2 = I

can be written as

X = E + VD1, Y = F − VN1
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where V can be any matrix polynomial. Writing E = QD1 + R s.t. RD−1
1 is strictly

proper, we obtain the unique solution of (18) by putting V equal to −Q.
Similarly existence and uniqueness of N̂2 can be proved.
We now apply Remark 27 to the product

P = Bm,m(D1, N2, N1,D2)Hm,m(D
−1
2 N̂2 = N̂1D

−1
1 ) .

We conclude that P represents multiplication by

N1N̂2 = I −D1Q2

on the space R(D1), followed by taking the remainder under left division by D1.
This proves that P = Im (m = deg detD1) and the proof of Theorem 29 is
completed. �

Theorem 30. SupposeDT
2 , D1 row reduced and N̂1, N̂2 such that the matrix frac-

tions D−1
2 N̂2 and N̂1D

−1
1 are coprime, strictly proper and define the same rational

matrix function �. Then the finite Hankel matrix corresponding to � and the choice
of denominators D1,D2 is square nonsingular and its inverse is the Bézout matrix
Bm,m(D1, N2, N1,D2) with m = detD1 = detD2 and where

N̂2N1 +D2Q1 = I , (21)

N2N̂1 +Q2D1 = I (22)

such that both D−1
1 N1 and N2D

−1
2 are strictly proper.

Proof. Existence and unicity of N1, N2 can be proved in the same way as in The-
orem 29. If (22) holds then

N2D
−1
2 D2N̂1 +Q2D1 = I ,

D−1
1 N1N̂2D1 +Q2D1 = I ,

N1N̂2 +D1Q2 = I .
Then it remains to use Theorem 26 to prove that

B(D1, N2, N1,D2)H(D
−1
2 N̂2 = N̂1D

−1
1 ) = I

(in the same way as in Theorem 29). �

9. Products of Hankel and Bézout matrices

In this section, we show that under certain conditions the alternating product of
Hankel and Bézout matrices leads to a finite Hankel or Bézout matrix.
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Theorem 31 (Alternating products of Hankel and Bézout matrices). Let
D0,D1, . . . ,D2l+2, N1, N2, . . . , N2l+2, N̂0, N̂1, . . . , N̂2l+1 be matrix polynomials
such that all following assumptions hold:
(a)DT

0 , D1, D
T
2 , D3, . . . ,D2l+1, D

T
2l+2 are square and row reduced. Denote

deg detDk = mk, k = 0, 1, . . . , 2l + 2.
(b) Ni, N̂i are not necessarily square. Their dimensions are determined by the re-

quirement that the conditions (c) have sense.
(c) The functions D−1

2i−1N2i−1, N2iD
−1
2i are proper and equal to each other, i =

1, . . . , l + 1 and D−1
2i N̂2i , N̂2i+1D

−1
2i+1 are strictly proper and equal to each

other, i = 0, . . . , l.
Denote

B2i−1 = Bm2i−1,m2i (D2i−1, N2i , N2i−1,D2i ),

H2i = Hm2i ,m2i+1(D
−1
2i N̂2i = N̂2i+1D

−1
2i+1).

Then:
(i) The product

P = B1H2B3H4 . . . B2l−1H2l

satisfies the intertwining relation

C(D1)P = PC(D2l+1) .

The matrix P represents the operator of subsequent multiplication by N̂2i andN2i−1,

i = l, l − 1, . . . , 2, 1 and then division by D1, i.e.,

P =
∑
k

Ck(D1)C∞(D1)
[
diag ((N)k)

](I(D2l+1)) ,

where∑
(N)kz

k = N(z) = N1(z)N̂2(z)N3(z)N̂4(z) . . . N2l−1(z)N̂2l (z) .

(ii) The product

P = H0B1H2B3 . . . H2l−1B2l−1H2l

is the finite Hankel matrix of the form

P = Hm0,m2l+1(D
−1
0 NL = NRD−1

2l+1),

where

NL = N̂0N1N̂2N3 · · ·N2l−1N̂2l ,

NR = N̂1N2N̂3N4 · · ·N2l N̂2l+1.

(iii) The product

P = B1H2B3H4 . . . B2l−1H2lB2l+1
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is the finite Bézout matrix of the form Bm1,m2l+2(D1, NR,NL,D2l+2), where

NL=N1N̂2N3N̂4 · · ·N2l−1N̂2lN2l+1

NR=N2N̂3N4N̂5 · · ·N2l N̂2l+1N2l+2 .

Proof. First we prove (i) by induction on l.
The first induction step: Consider the assertion (i) for two factors, i.e., for l = 1.

Then, it is equivalent to Theorem 26.
The second induction step: Suppose that the assertion (i) holds for 2l factors. We

want to prove that (i) holds for 2l + 2 factors.
First, we want to prove that

Pl+1 = PlPl→l+1

represents the operator of subsequent multiplication by N̂2i and N2i−1, for i =
l + 1, l, . . . , 1 and then division by D1. Because Pl→l+1 = B2l+1H2l+2 satisfies the
conditions of Theorem 26, we know that Pl→l+1 represents the operator of multiplic-
ation byN2l+1N̂2l+2 and then division byD2l+1. Similar to the proof of Theorem 26,
it is clear that the division by D2l+1 of Pl→l+1 can be postponed after the sub-
sequent multiplications by N̂2i and N2i−1 for i = l, l − 1, . . . , 1 corresponding to
the operator Pl because

N1N̂2N3 · · ·N2l−1N̂2lD2l+1 = D1N2N̂3 · · ·N2l N̂2l+1.

Hence, the first part is proven.
To prove the intertwining relation, we again use Theorem 26, to obtain

C(D1)Pl+1 =C(D1)PlPl→l+1

=PlC(D2l+1)Pl→l+1

=PlPl→l+1C(D2l+3)

=Pl+1C(D2l+3).

This proves part (i) of the theorem.
Now we prove part (ii). Using (i), the product

P = H0B1 · · ·B2l−1H2l

equals to

Hm0,m1(D
−1
0 N̂0 =N̂1D

−1
1 )

∑
k

Ck(D1)C∞(D1)
[
diag ((N)k)

](I(D2l+1))

=Hm0,m0(D
−1
0 )

∑
k

Ck(D0)C∞(D0)
[
diag ((N̂0)k)

](I(D1))

×
∑
k

Ck(D1)C∞(D1)
[
diag ((N)k)

](I(D2l+1)) .

The same reasoning as in the proof of Theorem 26 can be applied to show that
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P = Hm0,m0(D
−1
0 )

∑
k

Ck(D0)C∞(D0)
[
diag ((NL)k)

](I(D2l+1))

and, using the corresponding generalized Barnett formula,

P = Hm0,m2l+1(D
−1
0 NL = NRD−1

2l+1)

where

NL = N̂0N1N̂2N3 . . . N̂2lN2l+1 .

If we use the same arguments for the matrix P T, we prove the analogous expression
for NR .

The proof of (iii) is similar and we omit it. �
Some particular cases of the general formulas given in Theorem 31 are of special

interest. Similar formulas for the scalar case are well known and can be found, e.g.,
in [18].

Lemma 32. Let D1, D
T
2 be row reduced, with deg detD1 = l, deg detD2 = m,

and let N1, N2 be s.t. N1D2 = D1N2. Then

Hl,l(D
−1
1 )Bl,m(D1, N2, N1,D2)Hm,m(D

−1
2 )

= Hl,m(D−1
1 N1 = N2D

−1
2 ).

(23)

If, moreover, m = l and D−1
1 N1, N2D

−1
2 are coprime, then the matrices on both

sides of (23) are square nonsingular and the equality can be rewritten as:
1. Bl,l(D1)

−1Bl,l(D1, N2, N1,D2)Bl,l(D2)
−1 = Bl,l(D2, N̂1, N̂2,D1)

−1,

where N̂1, N̂2 are such that

N2N̂1 +D2Q1 = I,
N̂2N1 +Q2D1 = I.

2. Hl,l(D
−1
1 )Hl,l(D

−1
1 N̂1 = N̂2D

−1
2 )−1Hl,l(D

−1
2 ) = Hl,l(D

−1
1 N1 = N2D

−1
2 ).

Let DT
1 , D2 be row reduced, deg detD1 = l, deg detD2 = m, then

Bl,l(D1)Hl,m(D
−1
1 N1 = N2D

−1
2 )Bm,m(D2) = Bl,m(D1, N2, N1,D2). (24)

If, moreover, m = l, then the matrices on both sides of (24) are nonsingular and the
equality can be rewritten as:
1. Bl,l(D1)Bl,l(D1, N̂2, N̂1,D2)

−1Bl,l(D2) = Bl,l(D1, N2, N1,D2),

2. Hl,l(D
−1
1 )−1Hl,l(D

−1
1 N1 =N2D

−1
2 )Hl,l(D

−1
2 )−1 =Hl,l(D−1

1 N̂1 =N̂2D
−1
2 )−1 .
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