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Chloroplasts are the primary energy suppliers for plants, and much of the total leaf nitrogen is distributed to these
organelles. During growth and reproduction, chloroplasts in turn represent a major source of nitrogen to be re-
covered from senescing leaves and used in newly-forming and storage organs. Chloroplast proteins also can be
an alternative substrate for respiration under suboptimal conditions. Autophagy is a process of bulk degradation
and nutrient sequestration that is conserved in all eukaryotes. Autophagy can selectively target chloroplasts as
whole organelles and or as Rubisco-containing bodies that are enclosed by the envelope and specifically contain

ii{::r:g; the stromal portion of the chloroplast. Although information is still limited, recent work indicates that chloroplast
Chloroplast recycling via autophagy plays important roles not only in developmental processes but also in organelle quality
Leaf senescence control and adaptation to changing environments. This article is part of a Special Issue entitled: Dynamic and
Nutrient recycling ultrastructure of bioenergetic membranes and their components.

Rubisco © 2013 Elsevier B.V. All rights reserved.

1. Introduction

Chloroplasts are the characteristic organelles of plants and photoauto-
trophs. In addition to performing photosynthesis, chloroplasts are central
to plant metabolism. For example, assimilation of nutrients and biosyn-
thesis of various metabolites such as amino acids, fatty acids, pigments
and hormones, occur in chloroplasts. During the vegetative growth
stage, the majority of plant nitrogen and other nutrients are distributed
to leaves [1,2]. Further, approximately 80% of the total leaf nitrogen is
found within chloroplasts, mainly as photosynthetic proteins, in Cs plants
[3]. Around 70% of chloroplast nitrogen is present in the stroma and the
remaining portion is in the thylakoid membrane. The chloroplast
carbon-fixing enzyme Rubisco (ribulose-1,5-bisphosphate carboxylase/
oxygenase) is exceptionally abundant, accounting for 10 to 30% of the
leaf nitrogen [4,5]. In addition, around 7% of leaf nitrogen is found in
the light-harvesting chlorophyll a/b protein of photosystem II (LHCII) in
the thylakoid membrane [5].

Because plants are sessile, efficient use and recycling of assimilated
nutrients are particularly important for their survival and fitness under
ever-changing environments. Senescence represents the final develop-
mental stage and a form of programmed cell death in each organ of plants.
Leaf senescence can be viewed as primarily a process through which
cellular macromolecules are actively degraded and their components
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are remobilized. During leaf senescence, Rubisco and other chloroplast
proteins are gradually degraded as a major source of nitrogen for
recycling, and this degradation correlates with a decline in photosynthetic
activity [6-8]. Additionally, these proteins can be degraded under star-
vation conditions caused by darkness, with their carbon skeletons
serving as substrates for respiration [6,9]. As the levels of the inner
components decline, chloroplasts gradually shrink and transform into
gerontoplasts, in which thylakoid membranes are disintegrated and
plastoglobules accumulate, and the cellular population of chloroplasts
concomitantly declines.

The vacuole in leaf mesophyll cells occupies as much as 80% to over
90% of the total cell volume and is rich in a wide range of lytic hydrolases
[10]. In fact, most or all of the proteolytic activity against Rubisco has
been found in the vacuolar fraction [11], and several vacuolar cysteine
proteases are induced in a senescence-associated manner [12]. Studies
in the early 1980s led to the proposal that sequential degradation of
chloroplasts within the vacuole serves as the major pathway for chloro-
plast protein degradation in senescing leaves [11,13]. Under electron
microscopy, chloroplasts appear to be either within the vacuole or with-
in invaginations of the tonoplast in mesophyll protoplasts isolated from
wheat (Triticum aestivum) leaves undergoing darkness-induced senes-
cence [13]. Based on those findings, the authors proposed that chloro-
plasts were taken up in the vacuole by ‘a phagocytic-type mechanism’.
The process of delivery of cytoplasmic components such as proteins
and organelles to the vacuole for degradation is now widely recognized
as autophagy.

The decline in Rubisco protein levels is much faster than that of chlo-
roplast population size during senescence [8,14,15]. Similarly, the de-
creases in major chloroplast proteins do not proceed in parallel; Rubisco
decreases faster than does LHCII, for example [16,17]. These two proteins
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are synthesized mainly during leaf expansion and turn over less after that
[18,19]. These results indicate that alternative pathways or mechanisms
other than autophagy of entire chloroplasts must function in Rubisco
degradation. Accordingly, much effort in the study of Rubisco degrada-
tion has been focused on chloroplast proteases rather than autophagy
[20-23].1tis now evident that a number of proteases inside chloroplasts
play crucial and diverse roles in chloroplast development and mainte-
nance. Recent genome-wide studies have revealed the existence of pro-
teases of prokaryotic origin in chloroplasts. Of these, ATP-dependent
proteases such as Clp, FtsH, and Lon are considered to be the major en-
zymes involved in the gradual degradation of proteins into oligopeptides
and amino acids [24]. Some of these proteases could play important roles
in the senescence-associated bulk degradation of chloroplast proteins,
but whether this is the case remains controversial [25,26].

2. Autophagy
2.1. Lessons from yeast

Autophagy is an evolutionarily conserved system for bulk degra-
dation of intracellular components in eukaryotes. The mechanism of
autophagy has been particularly well studied in yeast species, in
which cytosol, sometimes including entire organelles, is engulfed
in membrane-bound vesicles [27]. These vesicles are delivered to
lytic compartments, namely vacuoles or lysosomes, where the vesicles
and their contents are degraded by a variety of resident hydrolases.
Two morphologically distinct forms of autophagy, called microautophagy
and macroautophagy, have been observed in wide range of organisms
including higher plants [28]. During microautophagy, cytoplasmic com-
ponents are directly engulfed by an invaginated vacuolar membrane. In
macroautophagy, which is the major pathway and hereafter is referred
to simply as autophagy, the cytosol is sequestered into a double-
membraned vesicle called an autophagosome. The outer membrane of
the autophagosome then fuses to the vacuolar membrane, thereby
delivering the inner membrane-delimited structure, the autophagic
body, into the vacuolar lumen.

Autophagy can be selective or non-selective in terms of substrate
targeting [29]. During starvation-induced autophagy, cytoplasmic com-
ponents are generally considered to be non-selectively engulfed by
autophagosomes, although some cytoplasmic proteins are known to
be preferentially targeted [30,31]. By contrast, peroxisomes and mito-
chondria are selectively targeted for autophagy during pexophagy and
mitophagy, respectively. In addition, budding yeast (Saccharomyces
cerevisiae) exhibits a type of autophagy, referred to as the Cvt (cyto-
plasm-to-vacuole targeting) pathway, that mediates the biosynthetic
transport of abundant vacuolar proteins such as aminopeptidase I
(Ape I). Genetic studies in yeast have identified more than 30
AuTophaGy-related genes (ATGs) that participate in autophagic processes.
Among these ATGs, 15 (ATG1-10, 12-14, 16, and 18) are commonly re-
quired for all of the above-described autophagic pathways and are re-
ferred to as ‘core’ ATGs [27,29]. The core ATG products together with
vacuolar protein sorting 34 (Vps34) and Vps15 constitute the funda-
mental ‘core machinery’ responsible for the biogenesis of autophagy-
related membranes. The core ATG products can functionally be classified
into subgroups: the Atg1 kinase complex (Atgl, Atg13), the autophagy-
specific phosphatidylinositol 3-kinase (PI3K) complex (Atg6, Atg14), the
Atg9 complex (Atg2, Atg9, Atg18), and two ubiquitin (Ub)-like conjuga-
tion systems, the Atg12 conjugation system (Atg5, Atg7, Atg10, Atgl2,
Atg16) and the Atg8 lipidation system (Atg3, Atg4, Atg7, Atg8). The de-
tailed functions of the core ATG products have been summarized well
in recent reviews [27,32,33]. Most core ATG products are also essential
to microautophagy [34-36].

In addition to these core components, other Atg proteins are specif-
ically required for different subtypes of autophagy. In the Cvt pathway,
precursor Apel is packed into a Cvt complex along with the cargo recep-
tor Atg19, and the adapter protein Atg11 mediates the delivery of the

Cvt complex to the pre-autophagosomal structure (PAS), where the
Cvt vesicle is formed [29,37,38]. Atg11 is also important for pexophagy
and mitophagy [37,39]. During starvation-induced autophagy, Atg17,
Atg29, and Atg31 are essential as regulators to form the Atgl kinase
complex, which is required for the induction of autophagosome forma-
tion. Here, the target of rapamycin (TOR) kinase is known to be an up-
stream negative regulator of the Atg 1 complex [40,41]. Under nutrient-
rich conditions, the TOR complex 1 (TORC1) hyperphosphorylates
Atg13, promoting the dissociation of the Atgl kinase complex. Under
starvation conditions, TORC1 is inactivated, Atg13 is rapidly dephos-
phorylated, the Atgl complex is formed, and autophagy is induced.

2.2. Autophagy in plants

Plant autophagy has long been studied by morphological observa-
tion using microscopy [33]. More recently, initial genome-wide studies
opened the door to molecular analysis of plant autophagy by identifying
a number of genes homologous to yeast ATGs and some of their knock-
out mutants in Arabidopsis (Arabidopsis thaliana) [42,43]. Although
Arabidopsis does not have homologs of the subtype-specific ATGs [44],
the Arabidopsis genome contains homologs of almost all core ATGs
identified in yeast [33,45]. The only exception is ATG14, which is also
missing in rice (Ozyza sativa) and Chlamydomonas (Chlamydomonas
reinhardtii) [45]. Several Arabidopsis ATG homologs are present in mul-
tiple copies, and some of those are functionally redundant [46,47]. The
roles of Arabidopsis ATGs have been studied using T-DNA insertional
knock-out mutants and RNA interference knockdown mutants. In addi-
tion, a live-cell system for monitoring autophagy in plants was
established using a green fluorescent protein (GFP)-ATGS fusion protein
as a marker for autophagosomes [46,48,49]. These molecular ap-
proaches have confirmed that the core machinery for autophagy func-
tions in plants as it does in yeast and also revealed the importance of
plant autophagy in responses to nutrient starvation, abiotic stresses,
and pathogen infection [42,43,46-48,50-56]. It has also been shown
that TOR kinase serves as a negative regulator in Arabidopsis as in
yeast [57].

The response to nutrient starvation was an initial focus of autophagy
studies in plants, as it represents a central function of autophagy in
yeast. Autophagy is induced when cultured plant cells are deprived of
exogenously supplied sucrose [58-60]. Under those conditions, core
ATGs related to Ub-like conjugation systems are transiently up-
regulated [61]. The role of autophagy in nutrient recycling has also
been studied using autophagy-deficient (atg) mutant plants. In princi-
ple, the Arabidopsis atg mutants can complete their life cycles [42,43].
However, atg mutants cannot survive for long periods under nitrogen-
and/or carbon-starvation conditions. They also show accelerated leaf
senescence and cell death, concomitant with reductions in chlorophyll
and photosynthetic proteins, even under favorable nutrient and growth
conditions. As a result of such premature senescence, seed production
appears to decrease in atg mutants. Based on the phenotypes of the atg
mutants, it was concluded at the time that although autophagy is impor-
tant in nutrient recycling during starvation and senescence in plants,
chloroplasts, despite being the most abundant degradation substrates
in leaves, were not main targets for autophagy [28,62].

3. Piecemeal degradation of chloroplasts via Rubisco-containing
bodies and senescence associated vacuoles

The specific release of Rubisco from chloroplasts and its subsequent
degradation in other compartments has been proposed as an explana-
tion for the earlier decline in Rubisco compared to the chloroplast pop-
ulation [8]. In the case of Chlamydomonas, some Rubisco is localized to
the vacuole and a protrusion of the outer membrane of the envelope
enclosing the stroma is sometimes observed, possibly accounting for
exclusion of Rubisco from chloroplasts [63]. Senescing chloroplasts
accumulate plastoglobules, which are thylakoid-associated monolayer
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particles containing lipids and proteins [64]. Plastoglobules can protrude
through the chloroplast envelope and emerge into the cytoplasm in
senescing soybean (Glycine max) leaves [65]. Those reports support
the existence of pathways that transport chloroplast components to
the cytoplasm or to the vacuole for degradation before the destruction
of entire chloroplasts.

As previously summarized [66], it is currently clear that at least two
distinct transport pathways are responsible for the extra-chloroplastic
degradation of stromal proteins: ATG-dependent autophagy via Rubisco-
containing bodies (RCBs) for degradation in the central vacuole and an
ATG-independent alternative pathway involving senescence-associated
vacuoles (SAVs) (Fig. 1).

3.1. Rubisco-containing bodies

RCBs were originally identified in naturally senescing leaves of
wheat (T. aestivum) [17]. Detailed immunoelectron-microscopic obser-
vations revealed that Rubisco is sometimes localized in small spherical
bodies (RCBs) that are located mostly in the cytoplasm and occasionally
in the vacuole. RCBs contain another stromal protein, Gln synthetase,
and have an electron-staining density similar to that of chloroplast stro-
ma. RCBs do not contain thylakoid structures or the major membrane
proteins such as LHCII, the oo and R-subunits of coupling factor 1 of
ATPase, or cytochrome f. The double membranes of RCBs seem to derive
from the chloroplast envelope, and RCBs are further surrounded by
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other membrane structures such as isolation membranes (phagophores)
in the cytoplasm. RCBs are frequently found in the early phase of leaf se-
nescence when the amount of Rubisco starts to decrease but chlorophyll
still remains constant.

Piecemeal degradation of chloroplasts via RCBs seems to be common
among plants, and it is important for protein recycling in both develop-
ment and abiotic stress responses. RCBs are also observed in young
leaves of tobacco (Nicotiana tabacum), where they have been referred
to as Rubisco-vesicular bodies (RVBs) [67], and in leaves of rice (Oryza
sativa) under salt stress conditions [68]. The RCBs found in rice leaves
under salt stress have two distinct structural features compared to pre-
viously described RCBs. The rice RCBs have inner membrane structures,
the formation of which could be related to the vesicles derived from
invagination of the chloroplast inner envelope. In addition, rice RCBs
sometimes contain the crystalline inclusions that are formed in chloro-
plasts under osmotic stress and disappear during recovery. It is possible
that RCBs are responsible for the degradation of these crystalline inclu-
sions. Potential processes involved in RCB formation during salt stress
have been illustrated in detail [68].

The relationship between RCBs and autophagy has been revealed
with the aid of reverse genetics and live-cell imaging techniques in
Arabidopsis. RCBs can be visualized using stroma-targeted GFP
(or RFP) or a small subunit of Rubisco (RBCS)-GFP (or RFP) fusion
that interacts with endogenous large subunit of Rubisco (RbcL) and
RBCS molecules to form Rubisco-GFP (or RFP) in the plant [69]. When
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Fig. 1. Pathways for vacuolar degradation of chloroplasts and their proteins. In addition to non-selective autophagy of cytoplasmic components and organelles, chloroplasts can be selec-
tively degraded via a number of different pathways. In the RCB pathway, a chloroplast protrusion may be sequestered by an isolation membrane. The resultant Rubisco-containing body
(RCB), an autophagosome specifically containing stromal proteins enclosed by the chloroplast envelope, is transported into the central vacuole by ATG4- and ATG5-dependent autophagy.
The RCB is then degraded by vacuolar proteases. The remaining chloroplast, shrunken by the production of RCBs, is then transported into the central vacuole via an ATG4-dependent, pos-
sibly microautophagy-like, process (chlorophagy). Alternatively, stromal proteins may be transported to a senescence-associated vacuole (SAV) by an as yet unknown direct mechanism
(Case 1) or by sequestration of a part of the chloroplast or stromule (Case 2). The formation of SAVs is ATG7-independent.
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Arabidopsis leaves expressing those fluorescent markers are incubated
with concanamycin A to suppress vacuolar lytic activity, spherical bodies
exhibiting GFP or RFP fluorescence without chlorophyll fluorescence,
namely RCBs, are observed in the vacuolar lumen [69]. In addition, RCB
accumulation is disrupted in the autophagy-defective mutants, atg5
and atg4a4b [69,70]. In wild-type cells, stroma-targeted RFP and the
GFP-ATG8a fusion, a marker for the autophagosome and autophagic
bodies, are observed together in autophagic bodies in the vacuole
[69,71]. These results support the conclusion that RCBs are a type of
autophagic body specifically containing Rubisco and possibly other
stroma-localized proteins (Fig. 1; [69]).

3.2. Possible mechanisms for RCB formation

How RCBs form has yet not been elucidated. Whole organelles such as
mitochondria and peroxisomes can be entirely engulfed by the vacuole
during microautophagy or entirely sequestered into autophagosomes
which then fuse with the vacuole. By contrast, the endoplasmic reticulum
(ER) is subject to the piecemeal type of organelle autophagy. The ER is
dynamic and comprises a large three-dimensional network of continuous
tubules and sheets bound by a single membrane. The ER is composed of
rough ER (rER), smooth ER (sER) and the nuclear envelope [72]. Rough
ER containing the DsRed marker fused to the HDEL ER retention signal
is partially engulfed by autophagosomes under starvation conditions in
yeast [73]. Autophagosomes cannot engulf the ER in the presence of
Latrunculin A, which disrupts actin structures and blocks the dynamics
of the ER network. It has been suggested that the dynamics of the ER net-
work lead to transient formation of ER fragments in the cytoplasm and
that these fragments can then be engulfed by autophagosomes [73].
Recently, this partial engulfment of the rough ER has also been demon-
strated to occur in Arabidopsis during ER stress [74].

The nuclear envelope including a portion of the nucleus is engulfed
by the vacuole in yeast, a phenomenon that was originally referred to
as ‘piecemeal microautophagy’ of the nucleus (PMN) [75]. In yeast,
Velcro-like patches forming nucleus-vacuole junctions are generated
through specific interactions between Vac8p on the vacuole membrane
and Nvj1p in the nuclear envelope [76]. PMN at nucleus-vacuole junc-
tions results in the pinching-off and release into the vacuole of

Rubisco-RFP

Chlorophyll

nonessential portions of the nucleus [75]. PMN occurs in rapidly divid-
ing cells but is induced to higher levels by carbon and nitrogen starva-
tion. In response to nutrient depletion, Nvj1p increasingly binds and
sequesters two proteins with roles in lipid metabolism, Osh1p and
Tsc13p [77]. In addition to these specific components, PMN requires
the set of core Atgs [35].

Stroma-filled tubules (stromules) may have a functional role in
piecemeal autophagy of chloroplasts. Stromules are thin extensions of
the stroma surrounded by a double envelope membrane and emanate
from plastid bodies. They are highly dynamic, branching and elongating
across the plant cell [78], and occasionally fragmenting and releasing
small vesicles [79]. The autophagosome marker GFP-ATGS is sometimes
observed on the chloroplast surface [47] and in a chloroplast protrusion
[69,80] which might be an incipient stromule. Stromules are abun-
dant on chlorophyll-free plastids such as those in roots, petals, and
suspension-cultured cells and are rarely seen on mesophyll chloroplasts
[81,82]. However, stromules can be frequently found in mesophyll chlo-
roplasts in atgb mutants after dark-induced starvation [69] or natural
senescence (Fig. 2). It is possible that chloroplast protrusions and
stromules cannot be sequestered by isolation membranes in atg5 cells,
consequently leading to an increase in stromule length and frequency.

Stromules closely associate with the ER, the nucleus, and mitochon-
dria [83,84]. A recent live-cell imaging study using fluorescent proteins
clearly showed coincidental behavior of stromules and the ER [84].
These results suggest that either the neighboring ER tubules shape
stromules directly or the behavior of both ER and stromules is simulta-
neously dictated by a shared cytoskeleton-based mechanism. As the ER
harbors the largest reservoir of cellular membranes, it is highly likely
that it is recycled by autophagy during senescence as during starvation
conditions and under ER stress [46,74]. The presence of complex
stromules in autophagy-deficient cells may reflect the accumulation of
surplus membranes of both chloroplasts and the ER and their close
interactions.

3.3. Senescence-associated vacuoles

A novel type of small lytic vacuole referred to as the senescence-
associated vacuole (SAV) has been identified in the cytoplasm of

Merged

Fig. 2. Visualization of Rubisco-RFP fluorescence in living mesophyll cells of naturally-senescent wild-type (WT) and atg5 Arabidopsis. Plants were grown for 50 days in soil culture under
long day conditions. A senescent rosette leaf excised from the plant was observed immediately by laser scanning confocal microscopy. RFP fluorescence appears pseudo-colored green and
chlorophyll autofluorescence is magenta. In merged images, overlapping signals appear white. In addition to chloroplasts, the RFP fluorescence is observed in the vacuolar lumen
(asterisks) in wild-type, but not in the atgsb mutant. Instead, many stromules and chloroplast protrusions (arrows) are observed in the atg5 mutant. Bars = 25 pm.
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senescent leaves of soybean (Glycine max), Arabidopsis, and tobacco as
an alternative extra-chloroplastic pathway for chloroplast protein
degradation [85,86]. SAVs are found only in senescing photosynthet-
ic tissues and contain a senescence-specific cysteine-protease,
SAG12 (senescence-associated gene 12) [85]. Similar to RCBs, SAVs
contain stromal proteins such as Rubisco and GIn synthetase, and
stromal-targeted GFP, but do not contain thylakoid proteins such as
LHCIL SAVs also contain chlorophyll a, whereas RCBs do not. To date,
there is no evidence that SAVs use any autophagic machinery. Important-
ly, it was stated that SAVs still formed in the autophagy-defective atg?
mutant, although the data were not shown in the original article [85].
This indicates that the contents of RCBs and SAVs are similar, but that
the mechanisms of their formation are clearly distinct. A recent study
showed that SAV accumulation is concomitant with induction of autoph-
agy in the Arabidopsis des1 mutant, which lacks L-Cys desulfhydrase 1 for
the degradation of cysteine [87]. Further studies are required to clarify the
relationship between ATG-dependent autophagy and SAVs in detail.

The morphology of SAVs is markedly different from that of RCBs
(compare Fig. 3 in ref. [85] with Fig. 5 in ref. [17]). As described above,
RCBs are surrounded by a double membrane and their interior has similar
electron density to the stroma of chloroplasts. By contrast, SAVs have a
single membrane. The electron density of the inner space of SAVs is
similar to that of the central vacuole and is much lower than that of the
chloroplast stroma. In addition, SAVs often contain dense aggregates in
their lumen that may consist of partially degraded cellular materials.

How stromal proteins are targeted to SAVs is currently uncertain. As
presented in a previous review [88], stromal proteins might cross the
chloroplast envelope and then be directly transferred to SAVs through
an as yet unknown mechanism (Case 1 in Fig. 1). Alternatively, it is
possible that, as in the piecemeal microautophagy of the nucleus in
yeast, the SAV itself sequesters a part of the chloroplast or stromule,
forming a RCB-like particle (Case 2 in Fig. 1). SAVs are more acidic
than the central vacuole and contain very strong proteolytic activities.
Thus, even in the latter case (Case 2), sequestered particles of chloro-
plasts would be rapidly degraded inside SAVs, similar to the case of
RCBs in the central vacuole, which can be visualized only in the presence
of concanamycin A.

4. Chlorophagy — autophagy of whole chloroplasts

In the late stage of senescence, the number of chloroplasts decreases.
Electron-microscopic studies have suggested the existence of whole-
chloroplast autophagy, termed chlorophagy, in dark-induced senescing
leaves [13,89]. In Arabidopsis, when a leaf of a plant is individually
darkened, senescence is rapidly induced and both the number and
the size of chloroplasts significantly decrease within few days [90,91].
In individually-darkened leaves (IDLs) of the atg4s mutant, visible se-
nescence (i.e. chlorosis) is promoted as in wild-type, but the decrease
in chloroplast number and, in part, the decrease in chloroplast size are
impaired [70]. In addition to RCBs, small chloroplasts retaining chloro-
phyll fluorescence are observed within the vacuole after 3 days of the
IDL treatment in wild type but not in the atg4 mutant. As RCB formation
consumes a portion of both the stroma and the chloroplast envelope, it is
likely responsible for the reduction in chloroplast size. The resulting
shrunken chloroplasts, possibly like gerontoplasts, are transported into
the vacuole by autophagy (Fig. 1; [70]).

Mutations impairing chloroplast functions can cause the degrada-
tion of whole chloroplasts, possibly by chlorophagy, in a senescence-
and starvation-independent manner. Partially-degraded chloroplasts
are observed in the vacuole in cotyledon cells of the Arabidopsis ppi40
(plastid protein import Tic40) mutant, which lacks a homologue of the
40 kDa protein of the pea translocon at the inner envelope membrane
of chloroplasts (Tic complex) [92]. As vacuolar transfer of chloroplasts
is observed under non-starved conditions, the authors proposed that
plants can remove abnormal plastids by autophagy under nutrient-
sufficient conditions for quality control of organelles. The Arabidopsis

mex1 (maltose excess 1) mutant, which lacks the maltose transporter
in the chloroplast envelope, accumulates high levels of maltose and
starch in chloroplasts and shows reduced numbers of chloroplasts and
a chlorotic phenotype at the non-senescing stage [93,94]. Chloro-
plast components such as thylakoid membranes, starch granules,
and plastoglobules are observed within the vacuole of the mex1 mutant
[94]. These findings led the authors to hypothesize that the accumula-
tion of maltose in the mex1 mutant causes chloroplast dysfunction,
which may be signaled via a form of retrograde signaling and trigger
chloroplast degradation. Whether vacuolar degradation of impaired
chloroplasts is ATG dependent has not been elucidated yet.

5. Selectivity of chloroplast-targeted autophagy

Recent studies have shown that there are several types of selective
autophagy in plants [32,33,95]. The first reported case was that of protein
aggregates of overexpressed cytochrome b5-RFP fusion, which are de-
graded by autophagy preferentially over other marker proteins of the
ER, mitochondria, and chloroplasts in tobacco suspension-cultured BY-2
cells [96]. Although the molecular mechanisms underpinning the process
are currently unknown, there is evidence that chloroplast-targeted au-
tophagy has the potential to be selective.

5.1. RCB versus non-selective autophagy

RCBs are defined as specific autophagic bodies that contain the
stromal portion of chloroplasts but do not target thylakoid membranes
and their constituents such as chlorophylls and membrane-integrated
proteins. Stromules do not contain plastid nucleoids or ribosomes [97],
suggesting that RCBs also have no such structures. The mechanism of se-
lectivity of RCBs for stromal proteins is unclear. The ratio of Rubisco to
plastid stromal-targeted GFP in RCBs seems to be indistinguishable
from that in the stroma itself (see Fig. 3 in ref. [69]).

The induction of the RCB pathway is controlled differently than that
of non-selective (non-RCB-type) autophagy (Fig. 1; [71]). Non-selective
autophagy is up-regulated under both nitrogen- and carbon-limited
conditions in plants. However, RCB autophagy is specifically linked to
leaf carbon status rather than nitrogen status in Arabidopsis [71]. In ex-
cised leaves, RCB production is strongly suppressed by metabolic sugars,
either externally supplied or internally produced via photosynthesis in
the light, but it is not suppressed by externally-supplied inorganic nitro-
gen. Unlike RCBs, the production of non-RCB-type autophagic bodies is
not suppressed in the light but is suppressed by exogenous inorganic
nitrogen [71]. In plants, when the inorganic nitrogen supply is cut off,
leaf carbohydrates are accumulated and RCB production is suppressed
[71].

5.2. RCB versus whole organelle autophagy

It is particularly interesting that plants use two distinct autophagy
pathways for chloroplasts, the RCB pathway and chlorophagy (Fig. 1).
This combination of pathways may be important to facilitate complete
degradation of large organelles. Autophagic bodies in plant cells are
around 1.5 um in diameter, as are RCBs. Mature chloroplasts in leaf
mesophyll cells are 5-10 pm across, which might exceed the size capacity
of starvation-induced autophagosomes. For instance, chloroplasts found
within the vacuole of individually darkened leaves are 2-4 pm [70].

The colorless plastids of non-photosynthetic tissues such as roots and
dark-grown hypocotyls can be visualized by plastid stromal-targeted
GFP [82,98]. Plastids found in dark-grown hypocotyls of Arabidopsis
seedlings are 2-4 pum, and thus are smaller than mature chloroplasts
but similar in diameter to vacuole-transferred chloroplasts. However,
RCB-type piecemeal autophagy of plastids seems to occur preferentially
in this tissue under sucrose-starved conditions, indicating that RCB-
based autophagy must exist in response to factors other than merely
size limitation of autophagy (Fig. 3; Supplemental video 1).
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Merged DIC

Plastid-GFP
WT

atgbs

Fig. 3. Evidence for RCB-type piecemeal autophagy of plastids in dark-grown hypocotyls of Arabidopsis. Transgenic seeds for lines expressing plastid stroma-targeted GFP in wild-type
(WT) and atg5 backgrounds were grown for 5 days in darkness on agar plates containing half-strength Murashige and Skoog medium (MS) and 2% sucrose and the resulting seedlings
were further incubated in liquid MS without sucrose in the presence of 1 uM concanamycin A for 1 day. Hypocotyls of seedlings were observed by laser scanning confocal microscopy.
GFP fluorescence is pseudo-colored green and differential interference contrast (DIC) images of the cells and the merged images are also shown. In WT, the arrows indicate plastids
that are in the plane of focus and arrowheads indicate RCB-type autophagic bodies in the vacuole. RCB-type autophagic bodies are not found in the atg5 mutants. Bars = 10 um.

5.3. Autophagic adaptors required for selective autophagy

In selective autophagy, autophagic adapters (cargo receptors) are re-
sponsible for recognition of specific substrates [99,100]. These adapters
include Atg19 in the Cvt pathway [101], p62 and neighbor of BRCA1
gene 1 (NBR1) in degradation of ubiquitinated protein aggregates [102],
and Atg32 and its mammalian homolog, Nix, in mitophagy [103-105].
The autophagic adapters interact directly with the autophagosomal
marker protein Atg8 (LC3 in mammals) through a consensus sequence
termed the Atg8-family interacting motif (AIM) (LC3-interacting region
in mammals; LIR), and this interaction is important for the recruitment
of specific substrates to autophagosomes.

Plants also have AIM/LIR-retaining autophagic adapters. Recent
studies have identified plant homologues of NBR1 in Arabidopsis and
tobacco [106,107]. NBR1-mediated autophagy also targets ubiquitinated
protein aggregates in Arabidopsis [108]. Other plant AIM proteins
have been identified, including a tryptophan-rich sensory protein
(TSPO)-related membrane protein [109] and Arabidopsis Atg8-
interacting proteins (referred to as ATI1 and ATI2) [110]. It is of interest
to determine whether plant-specific autophagic adapter functions are
related to the RCB pathway and chlorophagy.

6. Roles of chloroplast-targeted autophagy
6.1. Nitrogen remobilization during leaf senescence

The amounts of major photosynthetic proteins decrease during
senescence in atg mutants as well as in wild-type [70,111,112]. The
autophagic contribution to overall Rubisco degradation has been recently
estimated using vacuolar processing assays of Rubisco-GFP fusion
proteins to be at least ~40% during dark-promoted senescence [113].
Similar processing assays using Rubisco-RFP, which is resistant to vacu-
olar proteases under illumination, indicate that autophagy also makes a
substantial contribution to degradation during natural leaf senescence
[113].

A recent physiological study on whole plants showed the impor-
tance of autophagy in vegetative growth, seed production, and nitrogen
remobilization in Arabidopsis [114]. Nitrogen remobilization efficiency
(NRE) is lower in Arabidopsis atg mutants, which show premature

(early) leaf senescence due to activation of salicylic acid signaling [53]
that also may affect NRE. Double mutants of atg5 NahG or atg5 sid2, in
which salicylic acid signaling is dampened [53], show normal leaf senes-
cence and partially recovered vegetative and seed biomass [114]. How-
ever, the NRE defect is not recovered in those double mutants. From
this, the authors concluded that the autophagy machinery is in itself
the main factor affecting nitrogen remobilization in atg mutants.

6.2. Energy metabolism in a diurnal cycle

Many plants store a portion of their photoassimilate as starch granules
in chloroplasts during the day and remobilize it to support metabolism
and growth at night [115]. In Arabidopsis, this leaf starch is degraded
into mainly maltose and glucose within chloroplasts and then those
sugars are exported to the cytoplasm across the chloroplast envelope.
Starch breakdown is facilitated by glucan phosphorylation mediated by
the sequential actions of glucan, water dikinase (STARCH EXCESS 1)
[116] and phosphoglucan, water dikinase [117]. This disrupts the semi-
crystalline packing of glucans at the granule surface, helping hydrolyzing
enzymes such as 3-amylases and debranching enzymes to gain access
[115].

Starch granules also accumulate for storage of carbohydrates in
seeds and are degraded and used for seedling growth during germina-
tion. In cotyledon cells of Vigna mungo seedlings, protein storage vacuoles
are converted into lytic vacuoles that contain a-amylase, which can di-
rectly degrade starch [118]. These lytic vacuoles take up starch granules
through autophagy in a manner that is morphologically similar to yeast
micropexophagy [118].

A recent study showed autophagy can contribute to leaf transitory
starch degradation. Massive starch accumulation is observed in ATG6-
silenced Nicotiana benthamiana and in Arabidopsis atg mutants [80]. In
particular, the Arabidopsis atgb mutant accumulates more than 8
times as much starch as wild-type in soil culture under long-day condi-
tions [80]. Microscopic observations suggest that small starch granule-
like structures, around 0.5 um in diameter, are sequestered by
autophagosomes and delivered to the vacuole by RCB-type piecemeal au-
tophagy [80]. A co-silencing assay of intra-plastidic pathways for starch
degradation (STARCH EXCESS 1) and autophagy (ATG6) suggested
that the pathways independently contribute to leaf starch degradation
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[80]. However, around the same time, two other studies showed that leaf
starch turnover is normal in the Arabidopsis atg5 mutants [111,119]. The
underlying reasons for these reported contradiction differences in re-
garding starch accumulation in atgs mutants are currently unknown,
and further detailed studies are needed to evaluate how much autophagy
contributes to leaf starch degradation.

Alternatively, autophagy can contribute to energy supply at night,
possibly by supplying alternative respiration substrates such as amino
acids [119]. RCB autophagy is active when sugar availability in leaves
is limited [71]. During a diurnal cycle, RCBs are highly accumulated in
leaves excised at the end of the night with low starch content, but are
less abundant in leaves at the end of the day with high starch content.
Starchless mutants, such as phosphoglucomutase (pgm) [120] and ADP-
Glc pyrophosphorylasel (adg1) [121], produce a large number of RCBs
during incubation in darkness. These results suggest a role for RCB/
autophagy in energy production via degradation of chloroplastic pro-
teins when photosynthetic carbon assimilation is restricted.

Arabidopsis atg mutants show reduced growth particularly under
short-day growth conditions [119]. The growth retardation of atg mu-
tants is relieved under continuous light or by feeding of exogenous
sucrose under short-day conditions. Starchless mutants also show
short-day dependent growth retardation [120,121]. The phenotypes of
atg and starchless double mutants are additive and more severe than
those in single mutants; their growth almost ceases and their leaves
show early cell death under short days [71]. Transcript analysis of
dark-inducible genes indicates that the sugar starvation symptoms ob-
served in starchless mutants become more severe in starchless atg double
mutants, supporting the involvement of autophagy in maintaining the
plant's energy supply [71].

In plants, respiration is primarily dependent on sugar oxidation.
However, plants use alternative respiratory substrates such as proteins,
lipids, and chlorophylls when sugar availability is limited. Recent studies
have shown that the mitochondrial electron-transfer flavoprotein (ETF)/
ETF:ubiquinone oxidoreductase (ETFQO) complex is induced by darkness
and that it functions to transfer electrons to the ubiquinone pools in order
to support respiration in Arabidopsis [122,123]. Isovaleryl-CoA dehydro-
genase (IVDH) and 2-hydroxyglutarate dehydrogenase (D2HGDH) have
been identified as enzymes for amino acid catabolism and electron
donors to the ETF/ETFQO complex [124]. Those systems are important
for catabolism of branched-chain amino acids, aromatic amino acids,
and lysine [122-124]. The contents of free amino acids increase in
starchless mutant leaves. However, the increases in branched chain
amino acids and aromatic amino acids are partially compromised in
starchless atg double mutants, suggesting that autophagy supplies
amino acids for the ETF/ETFQO complex under carbon-limited condi-
tions [119]. Further studies are required to examine the link between
autophagy and amino acid catabolism for respiration in detail.

6.3. Adaptations to changing environments

As previously discussed [69,119], RCB-type autophagy of chloro-
plasts/plastids could allow a starving plant to recycle materials from
proteins without destroying whole organelles. If environmental condi-
tions subsequently improve, then chloroplasts/plastids that have under-
gone only loss of some protein content could be rejuvenated and
resume normal function. Furthermore, when only a portion of the or-
ganelle content is removed by autophagy, some basal functions of the
organelle could be maintained under starvation conditions.

In Arabidopsis roots, amyloplasts in columella cells are rapidly de-
graded during the hydrotropic response, possibly by both piecemeal
and whole-organelle autophagy [125]. Seedling roots display not
only gravitropism but also hydrotropism, and the two tropisms in-
terfere with one another [126]. Degradation of amyloplasts involved
in gravisensing enhances the hydrotropic response by reducing the
gravitropic response [126]. After root tips reach the water-filled region
during the hydrotropic response, columella cells regain starch-filled

amyloplasts within several hours [125]. Therefore, in this case, piece-
meal autophagy contributes to prompt environmental responses of
plants.

6.4. Quality control of chloroplasts and stromal proteins

Reactive oxygen species (ROS) are highly reactive and can cause
damage to various biomolecules, leading to cell death. Chloroplasts are
one of the major sites of ROS production in plants. In illuminated chloro-
plasts, in which absorbed light energy is converted into chemical energy,
production of reactive oxygen species is unavoidable and is enhanced
under light and oxidative stress conditions [127]. Autophagy can re-
move proteins damaged by ROS during oxidative stress conditions in
Arabidopsis [54]. In carotenoid-deficient Chlamydomonas mutants, it
has recently been revealed that the absence of photoprotection leads
to increased levels of ROS in the chloroplast and a pronounced increase
in autophagic activity [128].

Stromal proteins such as Rubisco and GIn synthetase are susceptible
to damage by ROS under oxidative conditions in chloroplasts and are
directly fragmented or partially degraded by chloroplast proteases
[129-133]. As previously described [32,111,114], it is possible that
such damaged proteins associate with the chloroplast envelope [134]
and are preferentially incorporated into RCBs. Fragments of the large
subunit of Rubisco (RbcL) and Gln synthase are specifically observed
in senescing leaves of several Arabidopsis atg mutants [111]. The occur-
rence of starvation-independent disposal of abnormal plastids and chlo-
roplasts in ppi40 and mex1 mutants also suggests that autophagy could
play a role in quality control at the whole organelle level under oxida-
tive stress conditions. Accumulation of damaged proteins and chloro-
plasts may impair photosynthesis, which might partly explain the fact
that autophagy mutants show lower carbon: nitrogen ratios than wild
type [111].

7. Conclusions and outlooks

It is now evident that autophagy plays a central role in nutrient
recycling in plants as it does in other eukaryotes. Chloroplasts are pri-
mary energy suppliers via photosynthesis, and also represent the most
abundant source of nutrients and energy during senescence and under
suboptimal conditions. They are transported to the central vacuole for
degradation by autophagy in two distinct forms, RCBs and whole organ-
elles. Moreover, there is an ATG-independent novel route by which
chloroplast proteins are transferred to SAVs. This diversity of chloroplast
degradation pathways may be important for both coordination of effi-
cient recycling and maintaining the function of the organelle for plant
survival in ever-changing environments. To date there are no reports
comparing RCBs with SAVs in the same experimental system. This
is needed in order to understand how these various pathways con-
tribute to chloroplast degradation in plants. In parallel, a required
task for the future is the identification of molecules such as cargo
receptors that are involved in conferring selectivity to chloroplast-
targeted autophagy.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.bbabio.2013.11.009.
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