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Abstract

Maruyama introduced the notatiot@) = w(t)(dt)1/2 wherew(t) is a zero-mean Gaussian white noise, in
order to represent the Brownian motibit). Here, we examine in which way this notation can be extended to
Brownian motion offractional ordera (different from 1/2) defined as the Riemann—Liouville derivative of the
Gaussian white noise. The rationale is mainly based upon the Taylor’s series of fractional order, and two cases
have to be considered: processes with short-range dependence, that is to say \&ith Q/2, and processes with
long-range dependence, witji2l< a < 1.
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1. Introduction

Let w(t) denote a Gaussian white noise with the constant variarfcand letb(t) denote its
companion Brownian motion. Since the covariance functiow@j is the derivative bthe covaiance
function ofb(t), one is used to consideringt) as being the derivative dif(t) and to writing

db(t) = w(t)dt, @))
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or, in a like manner, the equality

t
b(t) = / w(t)dr, 2)
0
which yields the variance
Var{b(t)} = o’t. 3)

This expression3) can be obtained fronR§ but it cannot be thought of as a direct consequence of
(1) as a result othe equality

t
Var{b(t)} = / Var{db}dr.
0

In order to circumvent this pitfall, Maruyama introduced a contrivance, and he used the notation (very
successful in engineering mathematics)

db(t) = wit)(dt)Y?, (4)

which providesE{(db)2} = o2dt, and theefore ). There is nonconsistency betweed)(and @): in
the formemw(t) is a gemralized function, clearly a sequence of Dirac delta generalized functions, whilst
in (4) w(t) is thought of as a function.

Our purpose in the present short work is to examine in which way we can use the same model to
represent Brownian motion ofdctional order different from /2. We shall show that such a modeling
is still meaningful, but then care ust be exercise®Briefly, it remains an excellent tool for a formal
manipulation of fractional Brownian motions.

The work is organized as follows. In the next section, we shall give a short background on fractional
Brownian motion and then, by using a formal calculus, we shall obtain a Taylor's series of fractional
order. We shall use ihiresult to define integrals with respect(tli)®, wherdy we shall be in a position
to clarify the meaning of the generalized use of Maruyama’s notation.

2. Fractional Brownian motion and the fractional derivative
2.1. Brownian motion of order different from (1/2)

The basic properties of the fractional Brownian motion defined as a fractional derivative of Gaussian
white noise can be summarized as follows (see the R8f8] {or the physical derivation of this
process):

Definition 2.1. Let ({2, F, P) denote a probability space amd0 < a < 1, be rderred to as the
Hurst parameter. The stochastic procgss, a), t > 0} defined on this probability space is a fractional
Brownianmotion ( f Bm), of ordera if (see for instancell])

@) Pr{b(0,0) =0} = 1;
(i) for eacht € R4, B(t, a) is anF-measurable random variable such tBgb(t, a)} = 0;
(iii) for t, v € Ry,
2
E(b(t. a)b(r, @)} = (2 + % — |t — /), (5)

whereo is the variane paameter.
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It follows from (5) and from Kolmogorov’s continuity criterion that, fa > 1/2, the sample paths of
b(t, @) are continuous with probability one, but nowhere differentiable.]

Further remarks and comments
(i) Unlike the semblance, the equality)(can be simply derived from the self-similarity equation

b(pt, ) = peb(t,a), pr>0. (6)
aw
This yields
b(t, a) = t2b(1, a). (7)

(ii) The (f Bm), can be constructed from the classical Brownian molign := b(t, 1/2) by alinear
transformation oftie form (the symbok= means that the left side is defined by the right one)

t
b(t, a) ::/ Ka(t, 7)db(1),
0

whereKy(t, 7) is a kernel @pendent on the Hurst parameterlt has been suggested that one could
select the hypergeometric function, but the most useful kernel is the one which yields

b(t,a) = )2 2w (7)dr, (8)

1 t
S — (t —
I'(a+ (1/2)) /0
as proposed by Mandelbrot and van Negsdnd which drectly relates the(f Bm), to fradional
derivatives defined as follows.

2.2. Fractional derivative

Definition 2.2. Let f : )R — R, x — f(X) denote a continuous function. Its fractional derivative of
ordera is defined by the follwing expressiond—4l:

1 X
F@x) = f x—&HEdE, a0 9)
I'(=a) Jo
For positivex, one sets
f@Ox)=[f@M™ n_l1ga<n O (10)
With this notation, Eq.§) yields
1
bt = b (o), (11)

whereD denotes the derivative operator.

Definition 2.3. Consider the function obefinition 2.2 and leth > 0 denote a constant discretization
span. Define the forward operatéiV(h):

FW(h).f(x) = f(x+h); (12)
then the fractional difference of order 0 < o <1 1, of f (x) is definedby the expression
A% T(X) = (FW —-1* f(X)

= Y (“D*K) fIx+ (@ —khl. O (13)
k=0
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Lemma 2.1. The following equality holds:

A% f(X)
ha

f@x) =i . 0O 14
(X) AT& (14)

The proof can be obtained by using the Laplace transformzatrdnsform and then makingtend
to zero. See for instanc@]f

3. Taylor expansion of fractional order
The Taylor expansion of fractional order is as follows:

Proposition 3.1. Assume that the function f : & — R, x — f(x) hasa fractional derivative of order
ke, 0 < o < 1, for any positive integer k; then the following equality holds:
o0 hak (k)
f h) = - , 0 1. 15
(x + h) k;)r(uak) x), 0<dad (15)

Here f X isthederivative of order ok of f(x). When, instead, onehasm <1 « <« m+1, m € N—{0, 1},

then
o hk(afm)

fM(x 4 h) =
X+ =2 T e —m]

A formal proof, based on operational calculus, goes as follows.
Proof. Starting from the definition of the operatBW(h), Eq. (L2), it is easy to show that the latter has
a deriative of orderr, and satifies the operational equation
d*FW(h)
dh«
whereDy holds for the derivative w.r.. This equality is based on the fact that

= DYFW(h), 17)

£ +h) = £ x+h).
In the Eq. (7), Dy can be thought of as a constant, and thus solving i@/ (h) yields (see the
Appendiy
FW(h) = E,(h*D%). (18)

whereE, (x) denotes the Mittag—Leffler function defined as

o k

X
Eq(X) := g Taval’ O (19)

In order to obtain 16), we merely consider the Taylor expansion of order m of the derivative
fMix). O
As a direct application, one has the following:
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Lemma 3.1. Assume that f (x), in Proposition 3.1, is ath-differentiable; then the following equalities
hold:

A () - AF(0)
@ (x) = - 2%
100 = lim =Id+alim—c— 0da=1 (20)
and
AfM(x)

WW@:ru+m—mmw maa<m+1 0O (21)

b hem
A useful relation
Eq. (20) provides the useful relation
d*f =I'l+w)df, O<a =<1, (22)

between 8 f and df .
Assume now that k1 o < 2. Then Eq.21) yields (onsetingm = 1)

d* f = I'(a)hdf’, (23)

where f’ denotes the derivative df.
On substituting the equality’ = df/h into (23) we obtain the second equivalence

df = Ma)df, lga<2 (24)

4. Integration with respect to (d¢)®
4.1. Fractional order lower than the unit
Our purpose, in this section, is to define the solution of the equation
dx = f(t)(dt)®, (25)
and, tothis end, we shall refer to the following:
Definition 4.1. Let f (t) denote a continuou® — R function; then its integral w.r.tdt)*, 0 < « < 1,
will be defined by the equality

A”@NWW:aﬂh—rflﬂﬂm,Oﬂafl O (26)
Derivation. This definition can be supported as follows.
(i) Let usconsider the fractional differential equation
x@@t) = f(t), O<a<1l (27)
In a straightforward manneits soltion is obtained as
X(t) = D7 f (1),
and, by using the fractional derivativ@)( one has

1 ! a—1
X)) = mfo (t —1o)* - f(r)dr. (28)
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(il) This being he case, another way to obtailt) is as follows. We rewrite45) in the differential
form (see Eqg.13))

d*x = f(t)(dt)® (29)
or again, according t@@),
'L+ a)dx = f(t)(dt)*. (30)

Formally, integratingZ8) yields

1 t o

(iii) In order to a%ribe a significance to the right hand side term2ff)(we shall guate itto (28) to
obtain the equality

! tf d"‘—l tt =1 ()d
Fira 1O = 7 oo

and theréore 26). O
Some examples
On makingf () = 1 in (30), one obtains
t
/ (dr)* =t O<a <Ll (32)
0
Assume now thaf (t) is the Dirac delta gegralized functiors (t); thenone has
t
/ (1)) =at*l, O0<a<Ll (33)
0

Application to fractional Brownian motion

If we apply formally the relation25) above with the substitutiori (t) < w(t), we have anlgernative
definition for b(t, a), whichreads

AN 1\ [t
b(t,a) = (a+ 5) r—t (a+ 5) fo wW(7)(dr)2+ /2, (34)
This provdes ) whena = 1/2.
4.2. Fractional order larger than the unit

Assume now that k1 « < 2 in Eq. £6), which we rewrite for conveence in the fam (on séting
o =2y)

dx = ft)(dH?, 1/2<y <1, (35)

and assume further (provisionally) thigt) > 0.
On making the change of variable

dy = (dx)¥/?, (36)
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Eq. 35) yields
dy = fY2t)(dt)?, (37)
and theréore, by using the result &dedion 4.2,
t
y= / f12(7)(dr)”, (38)
0

in the sense of thBefinition 4.1
(i) This being the case, integrating®) provides (see Eq3@Q))

y= /X(dS)l/Z = x/2, (39)
0
and theefore
t 2
X = (f fl/z(r)(dt)”) . (40)
0

(iii) We can now readily drop the assumption tHat) > 0, and we are thus led to the following:
Definition 4.2. Let f (1) denote a continuou® — ‘R function; then its integral with respect ¢dt)27’,
1/2 <« y < 1, will be defined by the equality

t t 2
/ f(z)(dr)® = <f fl/z(r)(dr)y) . l2<y <1, (41)
0 0

t 2
=2 </ (t — r)Vlfl/z(r)dr> .0 (42)
0

We can now fully define the Maruyama notation of fractional order as follows.

5. Maruyama notation of fractional order

Definition 5.1. Let b(t,a) denote a fractional Brownian motion of ordex, as defined by
Riemann-Liouville fractional derivative. Then, generalizing the notatidatd = w(t)(dt)¥/2, we shall
write

dg(t,a) =w(t)(dt)?, O<acx<l, (43)
wherew(t) is a Gaussian white noise wi#ero mean and the varianed. [
Here we uses(t, a) instead ofb(t, a) to enphasize the difference between these two processes.
Mainly the increments oB(t, a) are mutually independent, whilst thoselgt, a) are not.
According to @6), B(t, a) is then defined byhe epression
t
p(t,a) = / w(r)(dr)®
0
t
= af (t — 1)@ w(r)dr. (44)
0

The variancefg(t, a) is
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t
ot.a) = [ Verdg’c. =)
0

t
0
and theréore (see the Eqs3@) and @2))
of(ta) =0’ O<a=<l (46)

6. Conclusions

By usng a definition of integrals w.r.tdt)* which is fully consistent with the definition of the
Riemann-Liouville derivative, we have shown that the so-called Maruyama notatios ev(t)(dt)/2,
which is so useful in physics and engineering mathematics, can be meaningfully extended in the form
dB(t,a) = w(t)(dt)?, in order to @al with Brownian motions of fractional order different from
(1/2). But care must be exercise@i(t, a) has an independent increment whiigt, a), defined via
the Remann—Liouville derivative, has increments which are not mutually independent.

But apart from exercising this caution, which prevents us from working on the correlation function and
related problems for instance, tmsodeling could serve at a point of departure for developing a useful
formal calculus on fractional Brownian motion, as illustrated, for instance, by the following example.

[llustrative application example

Our purpose is to calculate the state moments

me(t) = E(x ), k=12 (47)
of the dynamical system driven by the stochastic differential equation of fractional order
dx = x(cdt + ow(t)(dt)?), pr{x(0) = xo} = 1, (48)

with ¢, 0 = constant, Vajw(t)} = 1, 2a < 1. Taking the mathematical expectation 48 before and
after squaring, one obtains the equations

dm; = cmydt, (49)
dmy = Ozmz(dt)za. (50)
Using 22), we rewrite 60) in theform
d?my = I'(1 + 2a)02my(dt)?2, (51)
therefore obtaining
my(t) = Xo™, (52)
Ma(t) = Xx3Eza{I'(1+ 28)0 %t} (53)

As a typical application, for instance, in the optimal control of some systems driven by fractional
stochastic differential equations, it will be possible to drop the approach via dynamic programming, and
to use a variatinal Lagrangian approach which involves these moments as new state variables.
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Appendix. Solution of alinear fractional differential equation
Let us consider the fractional differential equation
DEX(t) = —AX(1), (54)
with the initial condition
x(0) = Xg. (55)

Its solution can be obtained as follows.
(i) Using the defiition of the fractional derivative, Eqs8Yand 0), Eq. 64) can be explidly rewritten

as
1 d U x(7) B
ra-wa (U aoaetr) = )

t t
/ t—17) *x(r)dt = A1 — a)/ x(t)dz,
0 0

or

or
1 1
] A-wTX@wdu = —AI'(1— a)t / X (tu)du. (57)
0 0

(i) The presence of* in Eq. (67) on theone hand, and the solution gxpit} of the equation
dp/dt = —Xip on the other hand, suggests looking for a solution in the form

X(0,1) = > x(t)X. (58)
k=0
Substituting $8) into (57), one obtains
B I'(ak + 1)
Xk+1 = — mxk (59)
(iii) Eq. (60) yields
(=K
and theefore
(—Ato)K
X(t) = Xo Z F(k T (61)

whereE, (2) is the Mittag—Lefler function

o0 Zn
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