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On the representation of fractional Brownian motion as an integral
with respect to(dt)a
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Abstract

Maruyama introduced the notation db(t) = w(t)(dt)1/2 wherew(t) is a zero-mean Gaussian white noise, in
order to represent the Brownian motionb(t). Here, we examine in which way this notation can be extended to
Brownian motion offractional ordera (different from 1/2) defined as the Riemann–Liouville derivative of the
Gaussian white noise. The rationale is mainly based upon the Taylor’s series of fractional order, and two cases
have to be considered: processes with short-range dependence, that is to say with 0� a ≤ 1/2, and processes with
long-range dependence, with 1/2 � a ≤ 1.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Let w(t) denote a Gaussian white noise with the constant varianceσ 2 and let b(t) denote its
companion Brownian motion. Since the covariance function ofw(t) is the derivative of the covariance
function ofb(t), one is used to consideringw(t) as being the derivative ofb(t) and to writing

db(t) = w(t)dt, (1)
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or, in a like manner, the equality

b(t) =
∫ t

0
w(τ )dτ, (2)

which yields the variance

Var{b(t)} = σ 2t. (3)

This expression (3) can be obtained from (2) but it cannot be thought of as a direct consequence of
(1) as a result ofthe equality

Var{b(t)} =
∫ t

0
Var{db}dτ.

In order to circumvent this pitfall, Maruyama introduced a contrivance, and he used the notation (very
successful in engineering mathematics)

db(t) = w(t)(dt)1/2, (4)

which providesE{(db)2} = σ 2dt, and therefore (3). There is no inconsistency between (1) and (4): in
the formerw(t) is a generalized function, clearly a sequence of Dirac delta generalized functions, whilst
in (4) w(t) is thought of as a function.

Our purpose in the present short work is to examine in which way we can use the same model to
represent Brownian motion of fractional order different from 1/2. We shall show that such a modeling
is still meaningful, but then care must be exercised. Briefly, it remains an excellent tool for a formal
manipulation of fractional Brownian motions.

The work is organized as follows. In the next section, we shall give a short background on fractional
Brownian motion and then, by using a formal calculus, we shall obtain a Taylor’s series of fractional
order. We shall use this result to define integrals with respect to(dt)α, whereby we shall be in a position
to clarify the meaning of the generalized use of Maruyama’s notation.

2. Fractional Brownian motion and the fractional derivative

2.1. Brownian motion of order different from (1/2)

The basic properties of the fractional Brownian motion defined as a fractional derivative of Gaussian
white noise can be summarized as follows (see the Refs. [8,9] for the physical derivation of this
process):

Definition 2.1. Let (Ω, F, P) denote a probability space anda, 0 � a ≤ 1, be referred to as the
Hurst parameter. The stochastic process{b(t, a), t ≥ 0} defined on this probability space is a fractional
Brownianmotion( f Bm)a of ordera if (see for instance [1])

(i) Pr{b(0, 0) = 0} = 1;
(ii) for eacht ∈ R+, β(t, a) is anF -measurable random variable such thatE{b(t, a)} = 0;
(iii) for t, τ ∈ R+,

E{b(t, a)b(τ, a)} = σ 2

2
(t2a + τ2a − |t − τ |2a), (5)

whereσ is the variance parameter.
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It follows from (5) and from Kolmogorov’s continuity criterion that, fora � 1/2, the sample paths of
b(t, a) are continuous with probability one, but nowhere differentiable.�

Further remarks and comments

(i) Unlike the semblance, the equality (5) can be simply derived from the self-similarity equation

b(ρt, a) =
law

ρab(t, a), ρ � 0. (6)

This yields

b(t, a) = tab(1, a). (7)

(ii) The ( f Bm)a can be constructed from the classical Brownian motionb(t) := b(t, 1/2) by alinear
transformation of the form (the symbol:=means that the left side is defined by the right one)

b(t, a) :=
∫ t

0
Ka(t, τ )db(τ ),

whereKa(t, τ ) is a kernel dependent on the Hurst parametera. It has been suggested that one could
select the hypergeometric function, but the most useful kernel is the one which yields

b(t, a) = 1

Γ (a + (1/2))

∫ t

0
(t − τ )a−(1/2)w(τ )dτ, (8)

as proposed by Mandelbrot and van Ness [7] and which directly relates the( f Bm)a to fractional
derivatives defined as follows.

2.2. Fractional derivative

Definition 2.2. Let f : R → R, x → f (x) denote a continuous function. Its fractional derivative of
orderα is defined by the following expression [3–6]:

f (α)(x) := 1

Γ (−α)

∫ x

0
(x − ξ)−α−1 f (ξ)dξ, α � 0. (9)

Forpositiveα, one sets

f (α)(x) := [ f (α−n)](n), n − 1 � α � n. � (10)

With this notation, Eq. (8) yields

b(t, a) = D
−

(
a+ 1

2

)
b(t), (11)

whereD denotes the derivative operator.

Definition 2.3. Consider the function ofDefinition 2.2; and leth � 0 denote a constant discretization
span. Define the forward operatorFW (h):

FW (h). f (x) := f (x + h); (12)

then the fractional difference of orderα, 0 � α � 1, of f (x) is definedby the expression

�α. f (x) := (FW − 1)α. f (x)

=
∞∑

k=0

(−1)k(kα) f [x + (α − k)h]. � (13)
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Lemma 2.1. The following equality holds:

f (α)(x) = lim
h↓0

�α f (x)

hα
. � (14)

The proof can be obtained by using the Laplace transform andZ -transform and then makingh tend
to zero. See for instance [2].

3. Taylor expansion of fractional order

The Taylor expansion of fractional order is as follows:

Proposition 3.1. Assume that the function f : R→ R, x → f (x) has a fractional derivative of order
kα, 0 � α � 1, for any positive integer k; then the following equality holds:

f (x + h) =
∞∑

k=0

hαk

Γ (1+ αk)
f (αk)(x), 0 � α � 1. (15)

Here f (αk) is the derivative of order αk of f (x). When, instead, one has m � α � m+1, m ∈ N−{0, 1},
then

f (m)(x + h) =
∞∑

k=0

hk(α−m)

Γ [1+ k(α − m)]D
k(α−m) f (m)(x), m � α ≤ m + 1. � (16)

A formal proof, based on operational calculus, goes as follows.

Proof. Starting from the definition of the operatorFW (h), Eq. (12), it is easy to show that the latter has
a derivative of orderα, and satisfies the operational equation

dα FW (h)

dhα
= Dα

x FW (h), (17)

whereDx holds for the derivative w.r.t.x . This equality is based on the fact that

f (α)
x (x + h) = f (α)

h (x + h).

In the Eq. (17), Dα
x can be thought of as a constant, and thus solving it forFW (h) yields (see the

Appendix)

FW (h) = Eα(hα Dα
x ). (18)

whereEα(x) denotes the Mittag–Leffler function defined as

Eα(x) :=
∞∑

k=0

xk

Γ (1+ αk)
. � (19)

In order to obtain (16), we merely consider the Taylor expansion of orderα − m of the derivative
f (m)(x). �

As a direct application, one has the following:
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Lemma 3.1. Assume that f (x), in Proposition 3.1, is αth-differentiable; then the following equalities
hold:

f (α)(x) = lim
h↓0

�α f (x)

hα
= Γ (1+ α) lim

h↓0
� f (x)

hα
, 0 � α ≤ 1, (20)

and

f (α)(x) = Γ [1+ (α −m)] lim
h↓0

� f (m)(x)

hα−m , m � α ≤ m + 1. � (21)

A useful relation

Eq. (20) provides the useful relation

dα f = Γ (1+ α)d f, 0 � α ≤ 1, (22)

between dα f and df .
Assume now that 1� α ≤ 2. Then Eq. (21) yields (onsetting m = 1)

dα f = Γ (α)hd f ′, (23)

where f ′ denotes the derivative off .
On substituting the equalityf ′ = d f/h into (23) we obtain the second equivalence

dα f = Γ (α)d2 f, 1 � α ≤ 2. (24)

4. Integration with respect to (dt)α

4.1. Fractional order lower than the unit

Our purpose, in this section, is to define the solution of the equation

dx = f (t)(dt)α, (25)

and, tothis end, we shall refer to the following:

Definition 4.1. Let f (t) denote a continuousR→ R function; then its integral w.r.t.(dt)α, 0 � α ≤ 1,
will be defined by the equality∫ t

0
f (τ )(dτ )α = α

∫ t

0
(t − τ )α−1 f (τ )dτ, 0 � α ≤ 1. � (26)

Derivation. This definition can be supported as follows.
(i) Let usconsider the fractional differential equation

x (α)(t) = f (t), 0 � α ≤ 1. (27)

In a straightforward manner,its solution is obtained as

x(t) = D−α f (t),

and, by using the fractional derivative (9), one has

x(t) = 1

Γ (α)

∫ t

0
(t − τ )α−1 f (τ )dτ. (28)
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(ii) This being the case, another way to obtainx(t) is as follows. We rewrite (25) in thedifferential
form (see Eq. (13))

dαx = f (t)(dt)α (29)

or again, according to (22),

Γ (1+ α)dx = f (t)(dt)α. (30)

Formally, integrating (28) yields

x(t) = 1

Γ (1+ α)

∫ t

0
f (τ )(dτ )α. (31)

(iii) In order to ascribe a significance to the right hand side term of (31) we shall equate itto (28) to
obtain the equality

1

Γ (1+ α)

∫ t

0
f (τ )(dτ )α = 1

Γ (α)

∫ t

0
(t − τ )α−1 f (τ )dτ

and therefore (26). �

Some examples

On making f (τ ) = 1 in (30), one obtains∫ t

0
(dτ )α = tα, 0 � α ≤ 1. (32)

Assume now thatf (t) is the Dirac delta generalized functionδ(t); thenone has∫ t

0
δ(τ )(dτ )α = αtα−1, 0 � α ≤ 1. (33)

Application to fractional Brownian motion

If we apply formally the relation (25) above with the substitutionf (t)← w(t), we have an alternative
definition for b(t, a), whichreads

b(t, a) =
(

a + 1

2

)−1

Γ−1
(

a + 1

2

) ∫ t

0
w(τ )(dτ )a+(1/2). (34)

This provides (5) whena = 1/2.

4.2. Fractional order larger than the unit

Assume now that 1� α ≤ 2 in Eq. (26), which we rewrite for convenience in the form (on setting
α = 2γ )

dx = f (t)(dt)2γ , 1/2 � γ ≤ 1, (35)

and assume further (provisionally) thatf (t) ≥ 0.
On making the change of variable

dy = (dx)1/2, (36)
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Eq. (35) yields

dy = f 1/2(t)(dt)γ , (37)

and therefore, by using the result ofSection 4.2,

y =
∫ t

0
f 1/2(τ )(dτ )γ , (38)

in the sense of theDefinition 4.1.
(ii) This being the case, integrating (36) provides (see Eq. (32))

y =
∫ x

0
(dξ)1/2 = x1/2, (39)

and therefore

x =
(∫ t

0
f 1/2(τ )(dτ )γ

)2

. (40)

(iii) We can now readily drop the assumption thatf (t) ≥ 0, and we are thus led to the following:

Definition 4.2. Let f (t) denote a continuousR→ R function; then its integral with respect to(dt)2γ ,
1/2 � γ ≤ 1, will be defined by the equality

∫ t

0
f (τ )(dτ )2γ =

(∫ t

0
f 1/2(τ )(dτ )γ

)2

, 1/2 � γ ≤ 1, (41)

= γ 2
(∫ t

0
(t − τ )γ−1 f 1/2(τ )dτ

)2

. � (42)

Wecan now fully define the Maruyama notation of fractional order as follows.

5. Maruyama notation of fractional order

Definition 5.1. Let b(t, a) denote a fractional Brownian motion of ordera, as defined by
Riemann–Liouville fractional derivative. Then, generalizing the notation db(t) = w(t)(dt)1/2, we shall
write

dβ(t, a) = w(t)(dt)a, 0 � a ≤ 1, (43)

wherew(t) is a Gaussian white noise withzero mean and the varianceσ 2. �

Here we useβ(t, a) instead ofb(t, a) to emphasize the difference between these two processes.
Mainly the increments ofβ(t, a) are mutually independent, whilst those ofb(t, a) are not.

According to (26), β(t, a) is then defined bythe expression

β(t, a) =
∫ t

0
w(τ )(dτ )a

= a
∫ t

0
(t − τ )a−1w(τ )dτ. (44)

The varianceσ 2
β(t, a) is
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σ 2
β (t, a) =

∫ t

0
Var{dβ2(t, a)}

= σ 2
∫ t

0
(dt)2a, (45)

and therefore (see the Eqs. (32) and (42))

σ 2
β (t.a) = σ 2t2a, 0 � a ≤ 1. (46)

6. Conclusions

By using a definition of integrals w.r.t(dt)α which is fully consistent with the definition of the
Riemann–Liouville derivative, we have shown that the so-called Maruyama notation db = w(t)(dt)1/2,
which is so useful in physics and engineering mathematics, can be meaningfully extended in the form
dβ(t, a) = w(t)(dt)a , in order to deal with Brownian motions of fractional order different from
(1/2). But care must be exercised:β(t, a) has an independent increment whilstb(t, a), defined via
the Riemann–Liouville derivative, has increments which are not mutually independent.

But apart from exercising this caution, which prevents us from working on the correlation function and
related problems for instance, thismodeling could serve at a point of departure for developing a useful
formal calculus on fractional Brownian motion, as illustrated, for instance, by the following example.

Illustrative application example

Our purpose is to calculate the state moments

mk(t) := E{xk(t)}, k = 1, 2, (47)

of the dynamical system driven by the stochastic differential equation of fractional order

dx = x(cdt + σw(t)(dt)a), pr{x(0) = x0} = 1, (48)

with c, σ = constant, Var{w(t)} = 1, 2a � 1. Taking the mathematical expectation of (48) before and
after squaring, one obtains the equations

dm1 = cm1dt, (49)

dm2 = σ 2m2(dt)2a . (50)

Using (22), we rewrite (50) in theform

d2am2 = Γ (1+ 2a)σ 2m2(dt)2a, (51)

therefore obtaining

m1(t) = x0ect , (52)

m2(t) = x2
0 E2a{Γ (1+ 2a)σ 2t2a}. (53)

As a typical application, for instance, in the optimal control of some systems driven by fractional
stochastic differential equations, it will be possible to drop the approach via dynamic programming, and
to use a variational Lagrangian approach which involves these moments as new state variables.
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Appendix. Solution of a linear fractional differential equation

Let us consider the fractional differential equation

Dα
t x(t) = −λx(t), (54)

with the initial condition

x(0) = x0. (55)

Its solution can be obtained as follows.
(i) Using the definition of the fractional derivative, Eqs. (8) and (9), Eq. (54) can be explicitly rewritten

as

1

Γ (1− α)

d

dt

(∫ t

0

x(τ )

(t − τ )α
dτ

)
= −λx(t), (56)

or ∫ t

0
(t − τ )−αx(τ )dτ = −λΓ (1− α)

∫ t

0
x(τ )dτ,

or

t1−α

∫ 1

0
(1− u)−αx(tu)du = −λΓ (1− α)t

∫ 1

0
x(tu)du. (57)

(ii) The presence oftα in Eq. (57) on theone hand, and the solution exp{−λt} of the equation
dp/dt = −λp on the other hand, suggests looking for a solution in the form

x(0, t) =
∞∑

k=0

xk(t
α)k . (58)

Substituting (58) into (57), one obtains

xk+1 = −λ
Γ (αk + 1)

Γ (αk + α + 1)
xk . (59)

(iii) Eq. (60) yields

xk = (−λ)k

Γ (αk + 1)
x0, (60)

and therefore

x(t) = x0

∞∑
k=0

(−λtα)k

Γ (kα + 1)
, (61)

= x0Eα(−λtα), (62)

whereEα(z) is the Mittag–Lefler function

Eα(z) :=
∞∑

k=0

zn

Γ (kα + 1)
. (63)
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