Bose-Burton type theorems for finite Grassmannians

Eva Ferrara Dentice ${ }^{\mathrm{a}}$, Corrado Zanella ${ }^{\mathrm{b}, *}$
${ }^{\text {a }}$ Dipartimento di Matematica, Seconda Università degli studi di Napoli, Via Vivaldi, 43, I-81100 Caserta, Italy
${ }^{\mathrm{b}}$ Dipartimento di Tecnica e Gestione dei Sistemi Industriali, Università di Padova, Stradella S. Nicola, 3, I-36100 Vicenza, Italy

Received 27 June 2006; accepted 6 December 2007
Available online 22 January 2008
Dedicated to the memory of Alessandro Bichara

Abstract

In this paper both blocking sets with respect to the s-subspaces and covers with t-subspaces in a finite Grassmannian are investigated, especially focusing on geometric descriptions of blocking sets and covers of minimum size. When such a description exists, it is called a Bose-Burton type theorem. The canonical example of a blocking set with respect to the s-subspaces is the intersection of s linear complexes. In some cases such an intersection is a blocking set of minimum size, that can occasionally be characterized by a Bose-Burton type theorem. In particular, this happens for the 1-blocking sets of the Grassmannian of planes of PG(5,q).

(C) 2007 Elsevier B.V. All rights reserved.

Keywords: Grassmannian; Blocking set; Cover; Linear complex

1. Introduction

A semilinear space is a point-line geometry $\Sigma=(\mathcal{P}, \mathcal{L})$, consisting of a non-empty set \mathcal{P}, whose elements are called points, and a collection \mathcal{L} of subsets of \mathcal{P}, called lines, such that the following axioms hold: (i) any two distinct points lie on at most one line, (ii) every line contains at least two points, and (iii) every point lies on at least one line. Two points x and y are collinear, if there exists a line containing x and y. In particular every point x is collinear to itself. A subspace of $\Sigma=(\mathcal{P}, \mathcal{L})$ is a subset W of \mathcal{P} such that for every two distinct collinear points of W the line joining them is contained in W. Since the intersection of subspaces is a subspace, it is possible to define the closure $[X]_{\Sigma}$ of a subset X of \mathcal{P} as the intersection of all subspaces containing X. A singular subspace of Σ is a subspace W such that any two points of W are collinear, and a prime of Σ is a proper subspace K such that $L \cap K \neq \emptyset$ for every line $L \in \mathcal{L}$.

Two subspaces S and T of a semilinear space will be called incident if and only if $S \subseteq T$ or $T \subseteq S$. Finally, a full embedding of a semilinear space $\Sigma=(\mathcal{P}, \mathcal{L})$ into a semilinear space $\Sigma^{\prime}=\left(\mathcal{P}^{\prime}, \mathcal{L}^{\prime}\right)$ is an injective mapping $e: \mathcal{P} \longrightarrow \mathcal{P}^{\prime}$ such that $\left[\mathcal{P}^{e}\right]_{\Sigma^{\prime}}=\Sigma^{\prime}$, and for every line $L \in \mathcal{L}, L^{e} \in \mathcal{L}^{\prime}$. A full embedding will be also denoted by

[^0]$e: \Sigma \longrightarrow \Sigma^{\prime}$. If Σ^{\prime} is the point-line geometry of a desarguesian projective space, then e is called a full projective embedding. An isomorphism between two semilinear spaces is a bijection f between their point sets, such that both f and f^{-1} are full embeddings.

The h-th Grassmannian of a projective space $\mathrm{PG}(n, q), 0 \leq h \leq n-1$, is the semilinear space $\Gamma_{q}(n, h)=(\mathcal{P}, \mathcal{L})$, whose points are the h-subspaces of $\operatorname{PG}(n, q)$, and whose lines are all pencils of h-subspaces, a pencil being the set of all h-subspaces through an $(h-1)$-subspace and contained in an $(h+1)$-subspace. In order to avoid ambiguities, the elements of \mathcal{P} and \mathcal{L} will be often called G-points and G-lines, respectively. When the field is clear from the context, $\Gamma_{q}(n, h)$ will be replaced by $\Gamma(n, h)$. Note that $\Gamma(n, 0)$ is the projective space $\operatorname{PG}(n, q)$ and $\Gamma(n, n-1)$ is the dual projective space $\mathrm{PG}^{*}(n, q)$. Every singular subspace of $\Gamma(n, h)$ consists of h-dimensional projective subspaces of $\mathrm{PG}(n, q)$ pairwise intersecting in an $(h-1)$-subspace, and it is a projective space of finite dimension over the finite field \mathbb{F}_{q}. If d is the projective dimension of a singular subspace W of $\Gamma(n, h)$, then W will be called a d - G-subspace. In particular, for $0<h<n-1$ the maximal singular subspaces of $\Gamma(n, h)$ are partitioned into two families \mathcal{S} and \mathcal{T}. More precisely, a singular subspace of \mathcal{S} consists of all h-subspaces of $\operatorname{PG}(n, h)$ passing through a fixed ($h-1$)-subspace U, and it will be called a star of center U. The elements of \mathcal{T} are called dual stars, and every one of them consists of all h-subspaces contained in an $(h+1)$-subspace. Every star is an $(n-h)$ - G-subspace and every dual star is an $(h+1)-G$-subspace. A dual star of $\Gamma(n, 1)$ will be also called a ruled plane. The duality map $\delta: \operatorname{PG}(n, q) \longrightarrow \mathrm{PG}^{*}(n, q)$ transforms every h-dimensional subspace X of $\mathrm{PG}(n, q)$ into the ($n-h-1$)-dimensional subspace X^{*} of $\mathrm{PG}^{*}(n, q)$ consisting of all the hyperplanes of $\mathrm{PG}(n, q)$ passing through X. Such δ is an isomorphism between $\Gamma(n, h)$ and $\Gamma(n, n-h-1)$. The Plücker embedding π defines a full projective embedding of $\Gamma(n, h)$ into the projective space $\operatorname{PG}(N, q)$, where

$$
\begin{equation*}
N=\binom{n+1}{h+1}-1 \tag{1}
\end{equation*}
$$

and the image $\Gamma(n, h)^{\pi}=\mathcal{G}_{n, h}$, also denoted by $\mathcal{G}_{n, h, q}$, is an algebraic variety intersection of quadrics of $\mathrm{PG}(N, q)$. In particular, $\mathcal{G}_{3,1}$ is the Klein quadric $Q^{+}(5, q)$ of $\operatorname{PG}(5, q)$, so the Plücker embedding $\pi: \Gamma(3,1) \longrightarrow \operatorname{PG}(5, q)$ is also called the Klein correspondence. The mapping π transforms stars and dual stars of $\Gamma(n, h)$ into $(n-h)$-dimensional and $(h+1)$-dimensional projective subspaces of $\operatorname{PG}(N, q)$, respectively, and, more generally, d-G-subspaces are mapped bijectively into d-dimensional subspaces of $\operatorname{PG}(N, q)$ contained in $\mathcal{G}_{n, h}$.

If $\Sigma=(\mathcal{P}, \mathcal{L})$ is the point-line geometry of either a projective space $\operatorname{PG}(n, q)$, or a Grassmannian $\Gamma(n, h)$, then an (s, t)-blocking set of Σ is a set K of t-dimensional singular subspaces, such that each s-dimensional singular subspace is incident with an element of K. The smallest cardinality of such a set K is denoted either by $A_{q}(n, s, t)=A(n, s, t)$, in the case $\Sigma=\operatorname{PG}(n, q)$, or by $A_{q}(n, h, s, t)=A(n, h, s, t)$, if $\Sigma=\Gamma(n, h)$. In this paper the investigation is restricted to $s t=0$. If $t=0$, then K is a blocking set in the usual sense, or an s-blocking set, whereas a $(0, t)$ blocking set will be also called a t-cover.

Various and interesting geometrical structures can be characterized in terms of blocking sets. From this point of view the starting result is the theorem of Bose and Burton [4], characterizing the ($n-d$)-dimensional subspaces of a finite projective space $\operatorname{PG}(n, q)$ as d-blocking sets of minimum cardinality. Each characterization similar to the preceding one will be called a Bose-Burton type theorem. Many Bose-Burton type theorems are known in the literature, for instance the characterization of the Baer subplanes of a finite projective plane of order q^{2} as blocking sets of minimum size $q^{2}+q+1$, due to Bruen (1970), and several characterizations of blocking sets of minimum size of quadrics [5,8-12]. From the isomorphism between $\Gamma_{q}(3,1)$ and $Q^{+}(5, q)$, Bose-Burton type theorems for the first non-trivial Grassmannian easily follow from the theory of blocking sets and ovoids on a quadric $[6,10]$. The known cases concerning $\Gamma(3,1)$ are summarized as follows:

Result 1. (i) [8] $A(3,1,1,0)=(q+1)\left(q^{2}+1\right)$, and the only point sets that meet the bound are the non-tangent hyperplane sections of $Q^{+}(5, q)$.
(ii) $A(3,1,2,0)=q^{2}+1$, and the point sets that meet the bound are precisely the ovoids of $Q^{+}(5, q)$.
(iii) $[6] ~ A(3,1,0,1)=q^{3}+2 q+1$.
(iv) [6] $A(3,1,0,2)=q^{2}+q$, and the 2-covers attaining the bound are completely characterized.

As regards (iii), in [6] some properties of 1-covers of size $q^{3}+2 q+1$ are described, and examples of 1-covers reaching that bound are given.

In [17], Bose-Burton type theorems for 1-blocking sets of $\Gamma(n, 1), n$ odd, and $\Gamma(4,1)$ are proved. Here the goal is to extend to general (s, t)-blocking sets the results of [17], finding Bose-Burton type theorems for (s, t)-blocking sets of Grassmannians. Unfortunately, the Grassmannians, with the only exception of the Klein quadric, are not polar spaces, therefore a major algebraic tool is missing, and the methods used in [6] seemingly cannot be extended to arbitrary indices n, h. However, it is possible to obtain some general properties for $A(n, h, s, t)$ and to prove some results that could be of interest, and among them some Bose-Burton type theorems.

2. General properties of $A(n, h, s, t)$

In this section, general lower and upper bounds for $A(n, h, s, t)$ will be proved. In the previous section it has been observed that $\Gamma(n, h)$ is isomorphic to $\Gamma(n, n-h-1)$. Hence, the following equality holds.

$$
\begin{equation*}
A(n, h, s, t)=A(n, n-h-1, s, t) . \tag{2}
\end{equation*}
$$

This allows one to restrict the investigation to the case $h \leq(n-1) / 2$. Let $\theta_{i}=\left(q^{i+1}-1\right) /(q-1)$, where $i \in \mathbb{Z}$, $i \geq-1$. If $\gamma_{n, h}$ denotes the number of the G-points of $\Gamma(n, h)$, then

$$
\begin{equation*}
\gamma_{n, h}=\prod_{i=0}^{h} \frac{\theta_{n-i}}{\theta_{i}} . \tag{3}
\end{equation*}
$$

Proposition 2. The following lower bounds hold:

$$
\begin{align*}
& A(n, h, 0, t) \geq \frac{1}{\theta_{t}} \prod_{i=0}^{h} \frac{\theta_{n-i}}{\theta_{i}} \tag{4}\\
& A(n, h, s, 0) \geq \frac{\theta_{n-h-s}}{\theta_{n-h}} \prod_{i=0}^{h} \frac{\theta_{n-i}}{\theta_{i}} \tag{5}
\end{align*}
$$

In (5) the equality holds if, and only if, there is a set of G-points meeting each star in an ($n-h-s$)- G-subspace.
Proof. Inequality (4) is trivial. In order to prove (5), let K be an s-blocking set of $\Gamma(n, h)$. Let M be the number of pairs (X, S), where S is a star, and $X \in K \cap S$. Since each $X \in K$ belongs to exactly θ_{h} stars, it holds $M=|K| \theta_{h}$. From the theorem of Bose and Burton [4], every set of points that intersects every s-subspace of $\operatorname{PG}(d, q)$ has size greater than or equal to θ_{d-s}. By applying this result to a star S, one obtains $|K \cap S| \geq \theta_{n-h-s}$. So, $M \geq \gamma_{n, h-1} \theta_{n-h-s}$, and $|K| \geq \gamma_{n, h-1} \theta_{n-h-s} / \theta_{h}$.

For particular values, in (5) the equality holds (cf. Section 3).
Now assume that K is an s-blocking set in $\Gamma(n, h), E$ a hyperplane of $\operatorname{PG}(n, q), P \notin E$ a point. By intersecting the elements of K through P with E, a set $K_{E, P}$ of $(h-1)$-subspaces in E arises which is an s-blocking set in $\Gamma(n-1, h-1)$. This implies, by a double counting argument,

$$
\begin{equation*}
A(n, h, s, 0) \geq \frac{\theta_{n}}{\theta_{h}} A(n-1, h-1, s, 0) . \tag{6}
\end{equation*}
$$

The following statement is then straightforward:
Proposition 3. If K is an s-blocking set in $\Gamma(n, h)$ of size $\left(\theta_{n} / \theta_{h}\right) A(n-1, h-1, s, 0)$, then the size of each $K_{E, P}$ is equal to $A(n-1, h-1, s, 0)$.
In (6) the equality holds at least in the following cases: (i) n odd, $h=s=1$ (cf. (15)), (ii) $n=5, h=2, s=1$, (20). Finally, $A(4,1,1,0)>\left\lceil\left(\theta_{4} / \theta_{1}\right) A(3,0,1,0)\right\rceil$ (cf. Theorem 9).

Proposition 4. For $1 \leq h<(n-1) / 2$ the following equalities hold:

$$
\begin{align*}
& A(n, h, n-h, 0)=A(n, h-1, h) \tag{7}\\
& A(n, h, 0, n-h)=A(n, h, h-1) \tag{8}
\end{align*}
$$

Proof. Let K be an $(n-h)$-blocking set of $\Gamma(n, h)$. The inequality $h<(n-1) / 2$ implies $n-h>h+1$, hence every $(n-h)$-G-subspace of $\Gamma(n, h)$ is a star with center an $(h-1)$-dimensional subspace of $\mathrm{PG}(n, q)$. It follows that K consists of h-subspaces of $\operatorname{PG}(n, q)$ such that every $(h-1)$-subspace of $\operatorname{PG}(n, q)$ is contained in an element of K. Thus, K is an $(h-1, h)$-blocking set of $\operatorname{PG}(n, q)$. Conversely each $(h-1, h)$-blocking set of $\operatorname{PG}(n, q)$ is also an $(n-h)$-blocking set of $\Gamma(n, h)$. This implies (7). Similarly to the above case, each $(n-h)$-cover of $\Gamma(n, h)$ can be associated with an $(h, h-1)$-blocking set of $\operatorname{PG}(n, q)$. This yields (8).

Proposition 5. For $1 \leq h<(n-1) / 2$, it holds

$$
\begin{equation*}
A(n, h, n-h, 0) \geq A(n, h-1,0, h) \tag{9}
\end{equation*}
$$

Proof. Since $h<(n-1) / 2$, an $(n-h)$-blocking set K of $\Gamma(n, h)$ is an $(h-1, h)$-blocking set of $\operatorname{PG}(n, q)$. Taking for each $X \in K$ the related dual star of $\Gamma(n, h-1)$, an h-cover of $\Gamma(n, h-1)$ results, having the same size of K. This implies (9).

In [2] it was proved that the smallest cardinality of a t-cover of $\mathrm{PG}(n, q)$, with $t \leq n$, is

$$
\begin{equation*}
A(n, 0, t)=\left\lceil\frac{\theta_{n}}{\theta_{t}}\right\rceil . \tag{10}
\end{equation*}
$$

It is known that $\mathrm{PG}(n, q)$ contains a t-spread if, and only if, $t+1$ divides $n+1$, i. e. if, and only if, θ_{t} divides θ_{n}. If this is the case, a t-spread contains exactly θ_{n} / θ_{t} elements. For $h=1, A(n, 1, n-1,0)=A(n, 0,1)=\left\lceil\theta_{n} / \theta_{1}\right\rceil$, and in (9) the equality holds. It is an open question, whether in (9) the inequality can occur. From the above arguments a trivial Bose-Burton type theorem follows:

Theorem 6. $A(n, 1, n-1,0)=\theta_{n} / \theta_{1}$, for every odd n, and the $(n-1)$-blocking set that meet the bound correspond precisely to the line spreads of $\mathrm{PG}(n, q)$.

The set Θ of all stars with center in a hyperplane of $\operatorname{PG}(n, q)$ is a cover of $\Gamma(n, h)$. The following inequality can be obtained by covering each such star with $\left\lceil\theta_{n-h} / \theta_{t}\right\rceil t-G$-subspaces:

$$
\begin{equation*}
A(n, h, 0, t) \leq \gamma_{n-1, h-1}\left\lceil\frac{\theta_{n-h}}{\theta_{t}}\right\rceil . \tag{11}
\end{equation*}
$$

Similarly, the set of the dual stars determined by all $(h+1)$-subspaces through a point of $\operatorname{PG}(n, q)$ is an $(h+1)$-cover of $\Gamma(n, h)$. So,

$$
\begin{equation*}
A(n, h, 0, t) \leq \gamma_{n-1, h}\left\lceil\frac{\theta_{h+1}}{\theta_{t}}\right\rceil . \tag{12}
\end{equation*}
$$

The smallest cardinalities $A(3,1,0, t), t=1,2$, given in Result 1 improve (11) and (12) for the related parameters. Finally, two canonical examples of s-blocking sets will be described. If $h+1<s \leq(n-1) / 2$, then every s-Gsubspace W is contained in a star. Such W is the set of all h-subspaces in PG (n, q) containing an $(h-1)$-subspace and contained in an $(h+s)$-subspace. Therefore, the collection of all h-subspaces having non-empty intersection with a fixed $(n-h-s)$-subspace is an s-blocking set. In $\operatorname{PG}(n, q)$ the set of all h-subspaces skew with a given d-subspace ($d<n-h$) has size

$$
\delta_{n, h, d}=q^{(d+1)(h+1)} \prod_{i=0}^{h} \frac{\theta_{n-(d+1+i)}}{\theta_{i}}
$$

whence

$$
\begin{equation*}
A(n, h, s, 0) \leq \gamma_{n, h}-\delta_{n, h, n-h-s} \quad \text { for } h+1<s \leq(n-1) / 2 . \tag{13}
\end{equation*}
$$

For $1 \leq s \leq n-h$, let $U_{1}, U_{2}, \ldots, U_{s}$ be not necessarily distinct $(n-h-1)$-subspaces of $\operatorname{PG}(n, q)$. The set K of h-subspaces of $\operatorname{PG}(n, q)$ meeting all U_{i} 's is an s-blocking set of $\Gamma(n, h)$. More precisely, K is the intersection of s linear complexes (cf. Section 3). In particular,

$$
\begin{equation*}
A(n, h, 1,0) \leq \gamma_{n, h}-q^{(n-h)(h+1)} . \tag{14}
\end{equation*}
$$

3. Blocking sets of $\Gamma(n, h)$ and linear complexes of $\operatorname{PG}(n, q)$

For every s-blocking set B of $\operatorname{PG}(N, q)$ (cf. (1)) the set $\left(B \cap \mathcal{G}_{n, h}\right)^{\pi^{-1}}$ is an s-blocking set of $\Gamma(n, h)$. In particular, from the theorem of Bose and Burton [4], the 1-blocking sets of minimum cardinality of $\operatorname{PG}(N, q)$ are precisely the hyperplanes. If B is a hyperplane H of $\operatorname{PG}(N, q)$, then $K=\left(H \cap \mathcal{G}_{n, h}\right)^{\pi^{-1}}$ is called a linear complex of h-subspaces of $\operatorname{PG}(n, q)$.

Proposition 7. The intersection of s linear complexes of h-subspaces of $\operatorname{PG}(n, q)$ is an s-blocking set of $\Gamma(n, h)(1 \leq$ $s \leq \max \{n-h, h+1\}$) .

Although a hyperplane of $\operatorname{PG}(N, q)$ is a minimal blocking set, a linear complex does not need to be a minimal 1blocking set of $\Gamma(n, h)$. For example, the set K of all h-subspaces in $\operatorname{PG}(2 h+1, q)$ having non-empty intersection with a fixed h-subspace X is a linear complex, but not a minimal 1-blocking set in $\Gamma(2 h+1, h)$, because $K \backslash\{X\}$ is a 1-blocking set.

Let K be a linear complex of h-subspaces of $\operatorname{PG}(n, q)$. If S is a star of $\Gamma(n, h)$ and U is the center of S, then one of the following holds:
(i) $S \subseteq K$;
(ii) there exists an hyperplane E of $\mathrm{PG}(n, q)$ such that, for every $X \in S$, there holds $X \in K$ if, and only if, $X \subseteq E$.

If (i) holds, then U is called a singular $(h-1)$-subspace of K; otherwise, E is the polar hyperplane of U. If $h=1$, and K does not contain singular points, then K is called a general linear complex of lines. The following properties of linear complexes will be freely used in the paper.

- Every prime of $\Gamma(n, h)$ is a linear complex of h-subspaces of $\operatorname{PG}(n, q)$, and conversely [7,16].
- The singular $(h-1)$-subspaces of a linear complex K form a (possibly non-singular) subspace V of $\Gamma(n, h-1)$; if $h=1$, then $\operatorname{dim} V \equiv n(\bmod 2)$.
- A general linear complex of lines in $\operatorname{PG}(n, q)$ exist if, and only if, n is odd. It contains $\theta_{n} \theta_{n-2} / \theta_{1}$ lines of $\operatorname{PG}(n, q)$.
- If $h=1$, then every linear complex with exactly one singular point contains precisely $\theta_{n-1}^{2} / \theta_{1}$ lines of $\operatorname{PG}(n, q)$ [17].

Proposition 8. Let K be a linear complex of h-subspaces in $\operatorname{PG}(n, F)$. If $1 \leq h \leq n-1$ and $n+h \equiv 1$ (mod 2), then each $(h-2)$-subspace in $\mathrm{PG}(n, F)$ is contained in a singular $(h-1)$-subspace.

Proof. The assertion is true if $n=3$ or $h=1$. Now use induction on n, assuming $n>3$ and $h>1$. Let Y be an $(h-2)$-subspace in $\operatorname{PG}(n, F)$. If P is any point of Y, and E is a hyperplane not through P, then $K_{E, P}$ is a linear complex of h^{\prime}-subspaces in an n^{\prime}-dimensional projective space, where $h^{\prime}=h-1, n^{\prime}=n-1,1 \leq h^{\prime} \leq n^{\prime}-1$ and $n^{\prime}+h^{\prime} \equiv 1(\bmod 2)$. Therefore, there is a singular $\left(h^{\prime}-1\right)$-subspace of $K_{E, P}$, and a singular $(h-1)$-subspace of K containing Y.

The existence of total subspaces, which are the dual objects of singular subspaces, in the classical Grassmannians has been investigated in $[1,13]$.

In [17] it is proved that

$$
\begin{equation*}
A(n, 1,1,0)=\frac{\theta_{n} \theta_{n-2}}{\theta_{1}} \quad \text { for odd } n \tag{15}
\end{equation*}
$$

and the blocking sets of minimum size are precisely the general linear complexes. For $n=3$ this is Result 1 (i). For even n, there exists a linear complex of lines with exactly one singular point. So,

$$
\begin{equation*}
\frac{\theta_{n} \theta_{n-2}}{\theta_{1}}<A(n, 1,1,0) \leq \frac{\theta_{n-1}^{2}}{\theta_{1}} \quad \text { for even } n \tag{16}
\end{equation*}
$$

Theorem 9 ([17]). (i) $A(4,1,1,0)=\theta_{3}^{2} / \theta_{1}$.(ii) The 1-blocking sets of minimum size in $\Gamma(4,1)$ are precisely the linear complexes having exactly one singular point.

Proposition 10. Let K be a 1 -blocking set of $\Gamma(n, h)$. Then

$$
\begin{equation*}
|K| \geq \frac{\theta_{n-h-1}}{\theta_{n-h}} \prod_{i=0}^{h} \frac{\theta_{n-i}}{\theta_{i}} \tag{17}
\end{equation*}
$$

The equality holds if, and only if, K is a linear complex of h-subspaces of $\operatorname{PG}(n, q)$ without singular $(h-1)$ subspaces.

Proof. The inequality (17) is just a particular case of (5). By Proposition 2 the equality holds if, and only if, for every star $S \in \mathcal{S}, K \cap S$ is a hyperplane of S. For every G-line L of $\Gamma(n, h)$, let S_{L} be the unique star containing L. It follows that $L \cap K=L \cap\left(K \cap S_{L}\right)$ is either equal to L or is a point. Therefore, K is a prime of $\Gamma(n, h)$ i.e. a linear complex of h-subspaces of $\mathrm{PG}(n, q)$. Finally, since for every star $S, K \cap S$ is a hyperplane of S, there are no singular ($h-1$)-subspaces.

Next, it will be proved that for $h=1, s=2$ and some values of n, the bound (5) is sharp.

Theorem 11. The equality

$$
\begin{equation*}
A(n, 1,2,0)=\frac{\theta_{n} \theta_{n-3}}{\theta_{1}} \tag{18}
\end{equation*}
$$

holds in at least the following cases:
(i) $n=3$;
(ii) q odd and $n \equiv 3(\bmod 4)$.

Proof. By (5), $A(n, 1,2,0) \geq \theta_{n} \theta_{n-3} / \theta_{1}$.
(i) Consider a line spread of $\operatorname{PG}(3, q)$.
(ii) Assume $n>3$.

By Proposition 2, it is enough to find two hyperplanes H_{1} and H_{2} of $\mathrm{PG}(N, q)$, satisfying the following property:
$H_{1} \cap H_{2}$ intersects every $(n-1)$-subspace contained in $\mathcal{G}_{n, 1}$, which is associated with a star, in an $(n-3)$-subspace.

Each hyperplane H_{i} is associated with a null polarity and an $(n+1) \times(n+1)$ skew-symmetric matrix, say A_{i}. If A_{i} is singular, then H_{i} contains one of the above ($n-1$)-subspaces. So, take into account only non-singular matrices with odd n. Let $P(\mathbf{y})$ denote the point of $\mathrm{PG}(n, q)$ of coordinates $\mathbf{y} \in \mathbb{F}_{q}^{n+1}$. The skew-symmetric matrix A_{i} induces a map ω_{i}, mapping $P(\mathbf{y})$ into the hyperplane $P^{\omega_{i}}$ of equation $\mathbf{y}^{T} A_{i} \mathbf{x}=0$. A line of $\operatorname{PG}(n, q)$ passing through $P(\mathbf{y})$ is represented by a G-point of $H_{1} \cap H_{2}$ if, and only if, it is contained in $P^{\omega_{1}} \cap P^{\omega_{2}}$, that is if and only if its points satisfy the equations

$$
\mathbf{y}^{T} A_{1} \mathbf{x}=\mathbf{y}^{T} A_{2} \mathbf{x}=0
$$

Therefore, H_{1} and H_{2} satisfy (19) if, and only if, for every $\mathbf{y} \in \mathbb{F}_{q}^{n+1} \backslash\{0\}, \mathbf{y}^{T} A_{1} \mathbf{x}=0$ and $\mathbf{y}^{T} A_{2} \mathbf{x}=0$ represent two distinct hyperplanes. This is equivalent to the non-existence of eigenvalues of $A_{2}^{-1} A_{1}$ rational over \mathbb{F}_{q}.

Now assume that q is odd and $n \equiv 3(\bmod 4)$. Let $m=(n+1) / 4$. Denote by I_{m} the identity matrix of order m, by σ a non-square element of \mathbb{F}_{q}, and by J_{m} the following matrix

$$
J_{m}=\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & 1 \\
0 & 0 & \ldots & 1 & 0 \\
\vdots & & & & \\
0 & 1 & \ldots & 0 & 0 \\
1 & 0 & \ldots & 0 & 0
\end{array}\right) \in \operatorname{GL}\left(m, \mathbb{F}_{q}\right)
$$

If

$$
A_{1}=\left(\begin{array}{cccc}
O & O & -I_{m} & O \\
O & O & O & I_{m} \\
I_{m} & O & O & O \\
O & -I_{m} & O & O
\end{array}\right), \quad A_{2}=\left(\begin{array}{cccc}
O & -J_{m} & O & O \\
J_{m} & O & O & O \\
O & O & O & \sigma J_{m} \\
O & O & -\sigma J_{m} & O
\end{array}\right)
$$

then $A_{2}^{-1} A_{1}$ has no eigenvalue in \mathbb{F}_{q}, and the proof is complete.
It is an open question, whether (18) holds for $n \equiv 1(\bmod 4)$ and/or q even.

4. A Bose-Burton type theorem in $\Gamma(5,2)$

The linear complexes of planes in the five-dimensional projective space over \mathbb{C} were described in [15,3]. In this section, the properties of a special linear complex of planes in $\operatorname{PG}(5, q)$ are dealt with. In order to define such a complex, embed $\operatorname{PG}(5, q)$ in $\operatorname{PG}\left(5, q^{2}\right)$. The real points are the points of $\operatorname{PG}(5, q)$, whereas the points of $\operatorname{PG}\left(5, q^{2}\right) \backslash \operatorname{PG}(5, q)$ are imaginary. More generally, a subspace of $\operatorname{PG}\left(5, q^{2}\right)$ is real if it is the solution set of some simultaneous linear equations with coefficients in \mathbb{F}_{q}. A real subspace U contains imaginary points as well, and if the point $P=\mathbb{F}_{q^{2}}\left(x_{0}, x_{1}, \ldots, x_{5}\right)$ belongs to U, so does its conjugate point $\bar{P}=\mathbb{F}_{q^{2}}\left(x_{0}^{q}, x_{1}^{q}, \ldots, x_{5}^{q}\right)$. An imaginary subspace V is a subspace satisfying the condition $V \cap \bar{V}=\emptyset$. So, there are subspaces that are neither real, nor imaginary. Take an imaginary plane ε. The set \mathcal{F} of all real lines which meet ε is a spread of $\operatorname{PG}(5, q)$. In the following proposition, $\pi: \Gamma(5,2) \rightarrow \mathrm{PG}(19, q)$ denotes the Plücker embedding.

Proposition 12. Let J be the set of all real planes having non-empty intersection with ε. Then (i) each $\rho \in J$ contains exactly one line of \mathcal{F}, and (ii) there exists a 17 -subspace, say G, of the real space $\operatorname{PG}(19, q)$ such that $J=\left(\mathcal{G}_{5,2, q} \cap G\right)^{\pi^{-1}}$.

Proof. (i) If $\rho \in J$, then there exists a point $P \in \varepsilon \cap \rho$. This implies $\bar{P} \in \rho$, and the line $P \bar{P}$ belongs to \mathcal{F}. (ii) The set of all planes in $\operatorname{PG}\left(5, q^{2}\right)$ meeting ε is a linear complex K_{ε}, and $K_{\varepsilon}=\left(\mathcal{G}_{5,2, q^{2}} \cap H\right)^{\pi^{-1}}$, where H is a hyperplane in $\operatorname{PG}\left(19, q^{2}\right)$. Similarly, let \bar{H} be the hyperplane associated with $\bar{\varepsilon}$. Define $G=H \cap \bar{H}$, which is a real 17 -subspace of $\operatorname{PG}\left(19, q^{2}\right)$. A real plane ρ meets ε if and only if it meets $\bar{\varepsilon}$. This implies that $\rho \in J$ if, and only if, ρ^{π} is a real point in G.

Now let $H_{0}=G \vee\{X\}$, where $X \in \mathcal{G}_{5,2, q} \backslash G$, and $K_{0}=\left(\mathcal{G}_{5,2, q} \cap H_{0}\right)^{\pi^{-1}}$.
Proposition 13. The singular lines of K_{0} are exactly the lines of \mathcal{F}.
Proof. If $\ell \in \mathcal{F}$, then each real plane through ℓ, say ρ, meets ε, whence $\rho \in J \subseteq K_{0}$. If ℓ^{\prime} is a real line not in \mathcal{F}, then each plane of J through ℓ^{\prime} is contained in the three-dimensional projective space $\left(\ell^{\prime} \vee \varepsilon\right) \cap\left(\ell^{\prime} \vee \bar{\varepsilon}\right)$. This implies that, if W denotes the set of all planes of J through ℓ^{\prime}, and S is the star with center ℓ^{\prime}, then W^{π} is a line contained in S^{π}. Since $W^{\pi} \subseteq G$ and $\operatorname{dim} H_{0}=\operatorname{dim} G+1$, the subspace S^{π} is not contained in H_{0}.

Now it is possible to find the size of K_{0}. This can be done by a double counting of the pairs (ℓ, ϵ) where ℓ is a line of $\operatorname{PG}(5, q)$, and $\ell \subseteq \epsilon \in K_{0}$:

$$
\begin{equation*}
\left|K_{0}\right|=\theta_{3}\left(q^{3}+1\right)\left(q^{2}+1\right) . \tag{20}
\end{equation*}
$$

The linear complex K_{0} can be characterized by the following Bose-Burton type theorem.
Theorem 14. The minimum size of a $(1,0)$-blocking set in $\Gamma(5,2)$ is

$$
\begin{equation*}
A(5,2,1,0)=\theta_{3}\left(q^{3}+1\right)\left(q^{2}+1\right) \tag{21}
\end{equation*}
$$

In $\Gamma(5,2)$ there exists exactly one 1-blocking set of size $A(5,2,1,0)$ up to collineations.

Proof. Theorem 9, (6) and (20) imply (21). Now assume that K_{1} is a 1 -blocking set of size $A(5,2,1,0)$. By Proposition 3 and Theorem 9, each $\left(K_{1}\right)_{E, P}$ is a linear complex of lines with exactly one singular point. Since each $\left(K_{1}\right)_{E, P}$ is a prime, so is K_{1}. Therefore, K_{1} is a linear complex. On the other hand, the singular lines of K_{1} form a spread of $\operatorname{PG}(5, q)$, say \mathcal{F}_{1}. Assume that there are precisely m solids in $\operatorname{PG}(5, q)$ containing at least two lines of \mathcal{F}_{1}. By a double counting, $m \geq\left|\mathcal{F}_{1}\right|$, with equality if, and only if, \mathcal{F}_{1} is a normal spread, i.e. the lines of \mathcal{F}_{1} in each solid D containing two lines of \mathcal{F}_{1} are a spread of D. The computation of the size of K_{1} by means of $m \geq \theta_{5} / \theta_{1}$, once again by a double counting of the incident pairs given by an element of K_{1} and a dual star, gives

$$
\left|K_{1}\right| \geq \frac{\theta_{5}}{\theta_{1} \theta_{2}}\left(\theta_{4} \theta_{2}+q^{3}\right)=A(5,2,1,0)
$$

and the equality holds if, and only if, $m=\left|\mathcal{F}_{1}\right|$. So, \mathcal{F}_{1} is a normal spread. There exists a collineation χ of $\operatorname{PG}(5, q)$ such that $\mathcal{F}_{1}^{\chi}=\mathcal{F}$ [14], with \mathcal{F} as above. Both linear complexes K_{0} and K_{1}^{χ} contain the set J of planes. Let $\delta \in K_{1}^{\chi} \backslash J$ and $\delta^{\prime} \in K_{0}$ be such that three lines of \mathcal{F} not belonging to a common solid meet both δ and δ^{\prime}. There exists a projectivity of $\operatorname{PG}(5, q)$, say χ^{\prime}, stabilizing ε as a set, and such that $\delta^{\chi^{\prime}}=\delta^{\prime}$. Since both K_{0}^{π} and $K_{1}^{\chi \chi^{\prime} \pi}$ contain G and have a common point outside G, it holds $K_{0}^{\pi}=K_{1}^{\chi \chi^{\prime} \pi}$, whence $K_{0}=K_{1}^{\chi \chi^{\prime}}$.

References

[1] M. Baldassarri, I sistemi algebrici di spazi e l'insieme dei loro spazi totali, Rend. Sem. Mat. Univ. Padova 21 (1952) $171-197$.
[2] A. Beutelspacher, On t-covers in finite projective spaces, J. Geom. 12 (1979) 10-16.
[3] E. Bompiani, Complessi lineari di piani nello spazio a cinque dimensioni, Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat. 14 (1953) 719-723.
[4] R.C. Bose, R.C. Burton, A characterization of flat spaces in a finite geometry and the uniqueness of the Hamming and the MacDonald codes, J. Combin. Theory 1 (1966) 96-104.
[5] J. De Beule, K. Metsch, Small point sets that meet all generators of $Q(2 n, p), p>3$ prime, J. Combin. Theory Ser. A 106 (2004) $327-333$.
[6] J. Eisfeld, L. Storme, P. Sziklai, Minimal covers of the Klein quadric, J. Combin. Theory Ser. A 95 (2001) $145-157$.
[7] H. Havlicek, Zur Theorie linearer Abbildungen. I, II, J. Geom. 16 (1981) 152-167; 168-180.
[8] K. Metsch, Bose-Burton type theorems for finite projective, affine and polar spaces, in: Surveys in Combinatorics, 1999 (Canterbury), in: London Math. Soc. Lecture Note Ser., vol. 267, Cambridge Univ. Press, Cambridge, 1999, pp. 137-166.
[9] K. Metsch, A Bose-Burton theorem for elliptic polar spaces, Des. Codes Cryptogr. 17 (1999) 219-224.
[10] K. Metsch, On blocking sets of quadrics, J. Geom. 67 (2000) 188-207.
[11] K. Metsch, Blocking sets in projective spaces and polar spaces, J. Geom. 76 (2003) 216-232.
[12] K. Metsch, A Bose-Burton type theorem for quadrics, J. Combin. Des. 11 (2003) 317-338.
[13] U. Morin, Sul sistema degli S_{k} totali di un complesso lineare di S_{n}, Rend. Sem. Mat. Univ. Padova 5 (1934) 1-26.
[14] B. Segre, Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane, Ann. Mat. Pura Appl. 64 (1964) 1-76.
[15] C. Segre, Sui complessi lineari di piani nello spazio a cinque dimensioni, Ann. Mat. 27 (3) (1918) 75-123.
[16] E. Shult, Geometric hyperplanes of embeddable Grassmannians, J. Algebra 145 (1992) 55-82.
[17] C. Zanella, Blocking sets in line Grassmannians, Discrete Math. 306 (2006) 1805-1811.

[^0]: * Corresponding author.

 E-mail addresses: eva.ferraradentice@unina2.it (E. Ferrara Dentice), corrado.zanella@unipd.it (C. Zanella).
 URL: http://www.math.unipd.it/~zanella (C. Zanella).

