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Abstract 

Liquefaction has recently been shown to occur in constitutive models at a critical value for the hardening modulus.  Thus, the 
nearness of a soil element to liquefying at a given instant can be determined by finding the difference between its hardening 
modulus and its critical hardening modulus.  The constitutive functions of the pore medium were described as follows: the 
evolution of the constitutive effective stress with imposed solid matrix deformation; the intrinsic mass densities with intrinsic 
pressure on all three phase; and the relative flow vector with intrinsic pressure for the water and air phase. The revelation has 
been applied herein to map the progression of static liquefaction in large scale boundary value problems under monotonic loading 
conditions. Simulations are presented to demonstrate how the proposed criterion can be applied to real-world situations.  In 
addition, the influences of the loading rate and the mesh size on the liquefaction prediction are examined.  The methodology 
proposed herein provides a powerful means of assessing liquefaction risk based on solid mechanical theory rather than 
empiricism. Results of the mesh size effect showed that the axial strains with the onset of the deformation band were different, if 
the mesh sizes were not the same even in the same sample. 
© 2014 The Authors. Published by Elsevier Ltd. 
Selection and peer-review under responsibility of Chinese Society of Particuology, Institute of Process Engineering, Chinese 
Academy of Sciences (CAS). 
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Nomenclature 

σ  Cauchy stress 
K   Bulk modulus 
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F  Yield function 
cp        Plastic image stress 

h           Scalar-valued function 

1. Introduction 

Liquefaction is a common failure phenomenon in pore geomaterials, which is also the sign of material destruction 
as the reducing of loading capacity. It exists not only in single phase sand, but also widely in saturated pore medium 
sand of multiphase state. In saturated geo-materials, such as the pore medium sand or soil, the interplay between the 
contraction-dilation of pores and development of pore fluid pressures is expected to influence not only the strength 
of the solid matrix but also its ability to block or transport such fluids [1]. Even recently, those could not even be 
observed in the laboratory. Rapid loading of saturated granular soils can cause excess pore pressures to develop 
faster than the water can drain away.  As the pore pressures build, the shear strength of the soil decreases until it 
behaves like a dense liquid.  This liquefaction phenomenon can occur under either static or dynamic loading 
conditions, causing serious damage to buildings and infrastructure from events such as landslides or bearing capacity 
failures [2]. 

Several recent studies aided by new experimental methods have traced the whole process of liquefaction in sand 
under different experimental conditions, to name only a few, direct shear; plane strain; triaxial compression; true 
triaxial test, and provided valuable insight into the phenomenon of shear band formation. These new methods 
include laser technology by Tatsuoka et al [2]; bedding X-ray photography by Desrues et al [3]; stereo photography 
to measure strain field, thickness and dig angle of shear band by Kongkitkul et al [4]. The researches above indicate 
that, the formation of shear bands is a process from invisible to visible. Firstly, several parallel small shear bands 
form, and then become conjugate, finally transform into one obvious band [5, 6]. 

The authors have reported the constitutive equations and finite element implementation of the deformation band 
in sand [7]. In this simulation, it is shown that the mesh size and loading rate will influence the results. Wang [8] 
studied the localized deformation of plane strain rock specimen with different width and the same altitude, as well as 
the variation laws of the pressure stress-loading steps curve, which is varied with width. Hudson [9] studied the rock 
specimen with different diameter but the same altitude, or with similar shape but different size. XU et al [10] 
analyzed the loading rate effect in shear band localization of normally consolidate clay with a partial dewatering 
state, and discussed the internal relationship between the shear band localization and the dilatancy property, 
boundary condition and loading rate. This paper will discuss the above criteria in more detail and summarize the 
important characteristics of the constitutive model employed, as well as several simulations to show how the criteria 
may be used to map liquefaction susceptible regions throughout loading sequences in boundary value problems.  

2. Overview of the constitutive model 

Utilizing the critical state plasticity model by Borja and Andrade, the constitutive functions of the pore medium 
were described as follows: 

Based on the continuous mechanics theory, we firstly explain the meaning of computational signs: the text in 
bold denotes vector or tensor; a b represents the inner product of the two vectors a, b; :c d denotes the inner 
product of the two second-order tensors c,d ; m n designates the outer product of the two vectors m, n;  stands 
for the time material derivative of . 

2.1. Yield Function 

The Cauchy stress σ  can be expressed by the following formula [11]:

 

 
1 1 1 2 2 2 3 3 3
ˆ ˆ ˆ ˆ ˆ ˆσ e e e e e e                                                                                                                     (1) 

Where, 1,2,3i i  denotes principle stress; ˆ 1,2,3i ie  denotes unit principle stress and we assume 

that
1 2 3

. 
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In addition, by hypothesizing that ε  designates the strain rate tensor; σ  denotes the effective stress discussed 
above; / , , ,p K s w a  , we can derive e pε ε ε , where ,e pε ε denote the elastic and plastic 

components of ε&, respectively. Similarly, we can derive , ,e p . 

2.2. Constitutive Relation 

Based on the material properties of pore medium, the constitutive relation norms should reflect the following 
contents: (a) the evolution equation between the effective stress σ  and the deformation of solid-phase matrix. (b) 
The relationship between the saturation rS  and the suction s. (c) the evolution equation of the associated flow rule 
and the intrinsic pressure under the condition of liquid phase and gaseous phase [12, 13]. The constitutive relation 
formulas of the three aspects above can be elaborated as: 

(1 The Constitutive Model of the Solid-phase Matrix. 

The yield function of elasto-plastic mechanical behavior should be: ( , , ) 0cF F s pσ . Scalar cp  denotes the 
plastic image stress in “zero-suction” region; the Kirchhoff stress expression form [14] is used to express the 
effective stress and its derivative expression σ  can be written as:  

: ( )eσ c ε g , G
g

σ
                                                                                                                          (2) 

where, 
2

e
e e

ψ
c

ε ε
ψ is the porosity tensor, ε  is the strain rate tensor, G  denotes plastic potential function, 

 denotes non-negative multiplier which satisfies the Kuhn-Tuker condition. Considering the hardening rule:                    
( , )c cp h pσ                                                                                                                                           (3) 

where, h  is a scalar-valued function. Note that for geotechnical material, its hardening rule can be basically 

written as the equation above; and for Cam-clay model, cp  varies under the influence of & due to the plastic strain: 

             ( ) ( )p p
v tr tr g                                 

The consistency condition of yield equation F  can be taken as: 
 0s*σfF : H                                                                                                                          (4) 

where, f
σ
F

= ,
s
F

= , ( ), c
c

FH h p
p

σ                                                                                                    (5) 

In the equations above, H denotes plastic modulus, and its sign depends on the sign of image stress velocity. 

When image stress velocity < 0cp  , plastic modulus > 0H , the yield surface is expanding and the material is 

hardening; When > 0cp  , < 0H , the yield surface is shrinking, the material is softening, and = 0H , when = 0cp  , 
is perfect plasticity. 

Therefore, non-negative plastic multiplier  can be written as: 
1 ( : : )sef c ε : : Hef c g                                                                                               (6) 

Since 0 , according to the reference[14], 0 and it can be concluded that: 

: : 0sef c ε                                                                                                                                      (7) 
Whether the material is plastic yield or plastic unloading cannot be determined, if we merely consider the scalar 

sign of : :ef c ε . The sign of variable s should be also considered. 
When formula 6 is substituted into (2), the derivative expression of the stress constitutive equation becomes: 
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1: ( : )ep e sσ c ε c g                                                                                                                          (8) 

Where, 
epc  designates the elasto-plastic constitutive tensor, which can be written as: 

1 : :ep e e ec c c g f c                                                                                                                           (9) 

Please note that when 0s , in other words, s is a constant, formula 8 is the classic elasto-plastic constitutive 
relation. 

(2) Intrinsic Mass Density-Relation Function of Intrinsic Pressure 
The intrinsic mass density is related to the relation function of intrinsic pressure p  in three phase states, and 

their product is the bulk modulus in a certain state. The solid phase bulk modulus sK  and liquid phase bulk 

modulus wK  can be obtained from the material properties, while the gaseous phase aK  is generally bound up with 
temperature [15]. 

With regard to the isothermal deformation, according to the Boyle-Mariotte's law, the pressure of a certain 
quality of gas is inversely proportion to the bulk, when the temperature is constant, as: 

a
a a a

a

C
M

p V p =constant                                                                                                                     (10) 

The derivative of the equation is: 

 0C                                                                                                                                                           (11) 
Combine (14) and (15) and expand the derivative equation, by noticing ( )a a a ap p , the constitutive function 

of the intrinsic mass density and intrinsic pressure in gaseous-phase state can be given as: 

( ) 0a a
a a a a

a

p
M K p

M
                                                                                                                      (12) 

(3) Flow Rule-Relation Equation of Intrinsic Stress  
What we need to study here is: the constitutive relation between the associated flow vector ν ν and the 

intrinsic stress ( , )p w a of the evolution equation under the condition of liquid and gaseous phase; to correlate 

the flow vector ν ν ν% and internal force h  by using the following constitutive equation: 

h ν                                                                                                                                             (13) 

Where,  is the symmetric positive-type second-order tensor, which can be written as: 

             2 1( ) ( )k
                                                                                                                                    (14) 

Where, k is a tensor to describe the intrinsic permeability, and denotes the viscosity of . 
The following equation from the law of conservation of momentum of liquid and gaseous phase can be written as: 

 ( ) ( )grad ph ν g                                                                                                            (15) 
When formula (13) and (15) are combined, the evolution equation of flow vector and intrinsic stress can be taken 

as: 
 ( ) ( )grad pν ν g                                                                                                     (16) 
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2.3. Formulation of the liquefaction criteria 

Borja presents a general liquefaction criterion via the formulation of a liquefaction matrix L based on 
thermodynamic principles, isotropic elastoplasticity and bifurcation theory (the theory that instabilities develop 
when multiple feasible solutions exist due to a loss of equilibrium) [15].  If the bulk modulus of the soil K  is 
assumed to be insignificant compared to the bulk modulus of the solid constituent sK , then the following series of 
homogeneous equations can be derived: 

111 12 13

221 22 23

331 32 33

[[ ]] 01
[[ ]] 01
[[ ]] 01
[[ ]] 01 1 1 0

ep ep ep

ep ep ep

ep ep ep

c c c
c c c
c c c

p

                                                                                                     (17) 

where ep
ijc are the small strain constitutive modulus in principal directions, [[ ]]j  are the jumps in strain rates due 

to potentially duplicate solutions, [[ ]]p  is the jump in the rate of change of the pore fluid pressure and L  is the 
liquefaction matrix.  The onset of liquefaction then occurs simply when 

det 0L                                                                                                                                                           (18) 

3. Numerical simulation 

3.1. Computational model 

The plane strain test simulation is performed on 5 × 10 cm samples with 10 × 20 Q9P4 isoparametric element 
meshes, as shown in Fig.1, which consists of two-dimensional quadrilaterals with nine displacement nodes and four 
pore pressure nodes. This kind of finite element has been shown to satisfy the Babuska-Brezzi stability condition [16] 
and hence avoid stability problems associated with consolidation of porous media. 
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Fig.1. 200 Q9P4 meshes and boundary condition                           Fig.2. Load scale-time function 

The boundary conditions for this simulation are as follows. The top and bottom faces of the sample are supported 
on rollers with the bottom left corner fixed with a pin for stability. The bottom face is constrained from displacing in 
the vertical direction, whereas the top face is given a vertical displacement responsible for compacting the sample in 
the axial direction, and the load-time function is shown in Fig. 2. At the same time, the lateral faces are confined 
with an initial pressure of 100 kPa to simulate the confining pressure in a plane strain device. As for the boundary 
conditions associated with the flow equations, all faces of the sample are no-flow boundaries, provoking a globally 
undrained condition. This condition is equivalent to having an impermeable membrane surrounding the specimen, 
which is typically used in undrained compression tests in the laboratory. A pictorial representation of the boundary 
condition is shown in Fig.1. 
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3.2. Computational parameters 

The material in this simulation is Erksak sand [17], and its parameters are summarized in Table 1. 

Table 1. Summary of material parameters 

Parameter Value Description 
 0.03 Hyperelastic compressibility 

0p  100 kPa Hyperelastic reference pressure 
 1.20 Critical state parameter 
 0.04 Plastic compressibility 

N  0.4 Plastic yield surface 
N  0.2 Plastic potential parameter 
h  280 Plastic hardening coefficient 

3.3. Computational results and analysis 

                      

Fig.3. Deviatoric strain in contour with superimposed flow vector at (a) 2.6% axial strain and (b) 4.5% axial strain. 

 

 

Fig.4. Stress-strain curve for 200 meshes sand sample 

The dilation behavior of the sand specimen can be clearly observed in Fig.3(a), (b), where the contour for the 
deviatoric strains are plotted against the deformed finite element mesh at axial strain of 2.6% and 4.5%, respectively, 
and Fig.4 is the Stress-strain curve for sand sample. 

In these figures, the plastic deformation emerges in the initial loading state, and the specimen is compressed 
axially and moved laterally toward the right face, which is similar to the phenomenon observed in the laboratory. As 
the increment of the loading time, the deviation strains at the bottom of the specimen increase obviously, which 
leads to prominent deformation bands. In addition, several bands with fairly large deviation strains form in localized 
deformation, whereas there are only two shear bands at the bottom of the specimen at 4.5% axial strain. 

It can be concluded from Fig.3 (a), (b) that, the element where the sample localized for the first time is shown in 
Fig.1 and referred to as element A. The curve of determinant functions-axial strains at mesh A is shown in Fig.5. 
Additionally, localization occurs around 2.6% nominal axial strains when the determinant of A  goes negative for 
the first time ( det 0 A ). Fig. 3(b) is the deviatoric strain contour at the time of the onset of localization.  
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Fig.5. Curve of determinant functions-axial strains at mesh A 

The coupling of pore medium and fluid in saturated sand has a great impact on the formation of deformation. In 
Fig.3 (a), (b), the small arrows represent the fluid field, and we can observe that the fluid field is not obvious on the 
onset of the localized deformation. The pore pressure increases distinctly and spreads widely as the localized 
deformation forms at the bottom. Besides, Fig. 6 describes the pore pressure at 2.0% axial strain, and it can be 
observed that the obviously increasing pore pressure occurs in the domain, where the shear bands is going to be 
formed, and is pointing to the direction of the outward normal. 

 

                                  

Fig.6. Pore pressure at 2.0% axial strain          Fig.7. 50 finite element computational meshes (unit: m) 

4. Mesh size effect analysis 

The program we employ here also depends on the mesh size sickeningly during the simulation, particularly in the 
formation of localized deformation bands. This kind of sickening dependence is slight, however, and in order to 
prove that, the effect of mesh size to the soil localized deformation bands will be discussed here. 

4.1. Computational Model 

For comparing conveniently, a computational model with the same mesh size, boundary conditions and material 
parameters is presented as the model proposed in section 3.1, while the only difference is that the model here 
contains 50 Q9P4 element meshes, as shown in Fig.7. 

4.2. Mesh size effect analysis 

Fig.8 (a) and (b) show the deviatoric strain in contour with superimposed flow vector at 3.2% axial strain and 
4.5% axial strain(ten times the deviatoric strain shown in figure), respectively, while the stress-strain curve for 50 
meshes sand sample is shown in Fig.9. 
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Fig.8. Deviatoric strain in contour with superimposed flow vector at (a) 3.2% axial strain and (b) 4.5% axial strain. 

 

 

Fig.9. Stress-strain curve for 50 meshes sand sample 

Based on the localized condition, the localization formed at 3.2% axial strain and, the formation position and 
direction of the deformation band are the same as 200 element meshes. The number of elements is comparatively 
small in 50-mesh sample, hence there are not many shear bands forming in the formation process, but as for the 200-
mesh sample, two obvious localized shear bands form at the bottom eventually. Another influence of small number 
of elements is that the formation of flow field is not clear, while the mechanical properties of hydrostatic field are in 
good agreement with those of 200-mesh sample. The mechanical properties can be described as: the flow field 
expands as the shear bands form and the pore pressure flows with the direction toward the outer side of the normal 
of the shear bands. 

According to the comparison of the 50-mesh sample and the 200-mesh sample, it can be observed that: the more 
the elements are, the smaller the axial strain on the onset of localization is. The mesh sensitivity analysis indicates 
that the width of the deformation bands is related to the mesh size in the simulation, to be precise, the width is 
inversely proportional to the mesh size. The shape, development direction and flow direction of the deformation 
bands, however, are in good agreement. 

 

 

Fig.10. Stress-strain curves for 50,200 and 800 meshes sand sample 

Utilizing the same analysis method, 800 Q9P4 mesh elements are simulated and the comparison of the three 
models is shown in Fig.10. It is found that the shape, development direction and flow direction of the deformation 
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bands fit well in the simulation, but if the mesh size is different, even in the same operate condition, the axial strain 
shows obvious difference still. That is, the axial strain decreases slightly, as the mesh size reduces.  

Note that in the simulation of 800 mesh elements, due to the small mesh size, a clearly split end of the plastic 
deformation occurs with a sharply descent of the axial strain, when the localized deformation bands form. In a word, 
reasonable mesh size should be chosen instead of merely subdividing meshes. 

5. Conclusions 

Recently developed liquefaction criteria have been employed to map the progression of liquefaction in boundary 
value problems. The constitutive functions of the pore medium are described. The formation and development of the 
liquefaction of the saturated sand, which is in the undrained plane, are simulated to study the formation of the shear 
band and the flow characteristics of the pore stress. These successful simulations serve as a proof-of-concept that 
will allow for more advanced study of the onset liquefaction than previously possible.  In the near future, predictive 
numerical models using the liquefaction criteria employed here may provide a practical option for evaluating site-
specific liquefaction susceptibility based on solid mechanical theory rather than empiricism. 
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