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1. Introduction

Markov chains are useful tools in modeling many practical systems such as queuing systems
[2,16], manufacturing systems [1] and inventory systems [4,7,11,14]. Applications of Markov
chains in modeling categorical data sequences can also be found in [3,6,13]. Categorical data
sequences (or time series) occur frequently in many real world applications. If one can model
the categorical data sequences accurately, then one can make good predictions and also optimal
planning in a decision process. One would expect that categorical data sequences generated by
similar sources or the same source are correlated to each other. Therefore by exploring these
relationships, one can develop better models for the captured categorical data sequences and
hence better prediction rules. A first-order multivariate Markov chain model has been proposed
and studied by Ching et al. in [3] for multiple categorical data sequences. Ching et al. also proposed
a higher-order Markov chain model for a single categorical data sequence [5].

In this paper, we extend the results in [5] and propose a higher-order multivariate Markov
model for multiple categorical data sequences. Very often, one has to consider a number of
categorical data sequences together at the same time. Applications of multivariate Markov chains
in categorical data sequences can be found in credit risk management [17], sales demands [3] and
genetic regulatory networks [8]. We note that in a conventional nth-order Markov chain model for
s categorical data sequences of m states, there are O(mns) possible states (and therefore the number
of model parameters). The number of parameters (transition probabilities) increases exponentially
with respect to the number of categorical sequences and the order of the Markov chain model.
Such huge number of parameters discourages researchers or practitioners from using such kind
of Markov chain models directly. Here we develop a higher-order multivariate Markov model
which can capture both higher-order dependence intra-transition probabilities and inter-transition
probabilities among the data sequences. The number of parameters in the proposed model is only
O(ns2m2). We show that a stationary vector of probability distributions of the resulting nth order
multivariate Markov chain exists. We also develop a parameter estimation method based on a
linear programming. We then apply the model to solving sales demand prediction problems in a
soft-drink company in Hong Kong.

The rest of the paper is structured as follows. In Section 2, we first give a brief review on some
Markov chain models for categorical data sequences. We then present the higher-order multivariate
Markov model and discuss some of its properties in Section 3. In Section 4, we propose efficient
estimation methods for the model parameters. In Section 5, a practical example in sales demand
prediction is given to demonstrate the effectiveness of the proposed model. Finally, a summary is
given to conclude the paper in Section 6.

2. A review on the Markov chain models

In this section, we first give a brief review on some Markov chain models, including the
first-order Markov chain model, the higher-order Markov chain model [5] and the first-order
multivariate Markov chain model [3]. We will then present the proposed higher-order multivariate
Markov chain model in the next section.

2.1. The first-order Markov chain model

We consider modeling a categorical data sequence xt by a first-order Markov chains having m

states (categories)
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M = {1, 2, . . . , m}.
A first-order discrete-time Markov chain having m states (categories) satisfies the following
relationship:

Prob (xt+1 = it+1|x0 = i0, x1 = i1, . . . , xt = it ) = Prob (xt+1 = it+1|xt = it ),

where xt is the state of a categorical data sequence at time t and ij ∈ M. The conditional proba-
bilities

Prob (xt+1 = it+1|xt = it )

are called the one-step transition probabilities of the Markov chain. These probabilities can be
written as pij = Prob (xt+1 = i|xt = j) for i and j in M. The matrix P (with [P ]ij = pij ) is
called the one-step transition probability matrix. We note that the elements of the matrix P satisfy
the following two properties:

0 � pij � 1 ∀i, j ∈ M and
m∑

i=1

pij = 1, ∀j ∈ M.

For simplicity of discussion, we adopt this convention (each column sum of P is equal to one)
instead of the traditional one (each row sum is equal to one).

In the following, we demonstrate how one can construct a Markov chain model for an observed
categorical data sequence. Suppose we are given the following categorical data sequence (m = 3)
of length 20,

{2, 1, 2, 2, 1, 3, 2, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 1, 2}.
We adopt the following canonical form representation:

x0 = (0, 1, 0)T, x1 = (1, 0, 0)T, x2 = (0, 1, 0)T, . . . , x19 = (0, 1, 0)T

for

x0 = 2, x2 = 1, x3 = 2, . . . , x19 = 2.

To construct (estimate) the transition probability matrix for the above observed Markov chain
(categorical sequence), we consider the following simple procedures. By counting the transition
frequency from State k to State j in the sequence, one can construct the transition frequency
matrix F1 (then the transition probability matrix P1) for the sequence as follows:

F1 =
⎛⎝0 4 3

6 1 1
1 3 0

⎞⎠ and P1 =
⎛⎝ 0 4/8 3/4

6/7 1/8 1/4
1/7 3/8 0

⎞⎠ . (1)

A first-order Markov chain model

Xt+1 = P1Xt

is then constructed for the observed categorical data sequence.
We have the following well-known proposition for a transition matrix P . The proof can be

found in [12, pp. 508–511] and therefore omitted here.

Proposition 1. The matrix P has an eigenvalue equal to one and all the eigenvalues of P must
have modulus less than or equal to one.
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In general one has the following proposition for a non-negative matrix, see for instance [12,
pp. 508–511].

Proposition 2 (Perron–Frobenius theorem). Let A be a non-negative and irreducible square matrix
of order m. Then

(i) A has a positive real eigenvalue, λ, equal to its spectral radius, i.e., λ = maxk |λk(A)|
where λk(A) denotes the kth eigenvalue of A.

(ii) To λ there corresponds an eigenvector z of its entries being real and positive, such that
Az = λz.

(iii) λ is a simple eigenvalue of A.

By using the above two propositions, one can see that there exists a positive vector

z = [z1, z2, . . . , zm]T

such that P z = z if P is irreducible. The vector z in normalized form is called the steady-state
(stationary) probability vector of P . Moreover zi is the stationary probability that the system is
in state i.

2.2. The higher-order Markov chain model

Higher-order (nth-order) Markov chain models have been proposed by Raftery [15] and Ching
et al. [4–6] for modeling categorical data sequences. We note that a categorical data sequence {xt }
of m categories can be represented by a sequence of vectors (probability distribution)

{x0, x1, x2, . . . , }
called the canonical form representation. If the system is in state j ∈ M at time (t + i) then the
state probability distribution vector is given by

xt+i = (0, . . . , 0, 1︸︷︷︸
j th entry

, 0 . . . , 0)T.

In addition, the model by Ching et al. [4–6] assumes that the state probability distribution
at time t = r + 1 depends on the state probability distribution of the sequence at times t =
r, r − 1, . . . , r − n + 1.

The model is given as follows:

xr+1 =
n∑

h=1

λhPhxr−h+1, r = n − 1, n, . . . (2)

with initials x0, x1, . . . , xn−1. Here the weights λh are non-negative real numbers such that
n∑

h=1

λh = 1. (3)

Here xr is the state probability distribution at time r , Ph is the h-step transition matrix and λh

are the non-negative weights. The total number of parameters is of O(nm2). Simple and fast
numerical algorithms based on solving linear programming problems are proposed to solve for
the model parameters Ph and λh. The details can be found in [4–6].
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2.3. The first-order multivariate Markov chain model

Ching et al. [3] proposed a first-order multivariate Markov chain model to model the behavior of
multiple categorical sequences generated by similar sources. Assuming that there are s categorical
sequences and each has m possible states, they assume that the state probability distribution of the
j th sequence at time t = r + 1 depends on the state probabilities of all the sequences (including
itself) at time t = r . In the proposed first-order multivariate Markov chain model, the following
relationship is assumed:

x(j)

r+1 =
s∑

k=1

λjkP
(jk)x(k)

r , for j = 1, 2, . . . , s and r = 0, 1, . . . , (4)

where

λjk � 0, 1 � j, k � s and
s∑

k=1

λjk = 1, for j = 1, 2, . . . , s (5)

and x(j)

0 is the initial probability distribution of the j th sequence. The state probability distribution

of the j th sequence, x(j)

r+1 at the time (r + 1), depends on the weighted average of P (jk)x(k)
r . Here

P (jk) is the one-step transition probability matrix from the states at time t in the kth sequence to
the states in the j th sequence at time t + 1, and x(k)

r is the state probability distribution of the kth
sequences at the time r . In matrix form we write

Xr+1 ≡

⎛⎜⎜⎜⎜⎝
x(1)
r+1

x(2)
r+1
...

x(s)
r+1

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
λ11P

(11) λ12P
(12) · · · λ1sP

(1s)

λ21P
(21) λ22P

(22) · · · λ2sP
(2s)

...
...

...
...

λs1P
(s1) λs2P

(s2) · · · λssP
(ss)

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

x(1)
r

x(2)
r

...

x(s)
r

⎞⎟⎟⎟⎟⎠ .

Again fast numerical algorithms based on linear programming are proposed to solve the model
parameters P (ij) and λij . The details proof and estimation methods can be found in [3].

3. The higher-order multivariate Markov chain model

In this section, we present our higher-order multivariate Markov chain model for modeling
multiple categorical sequences based on the models in Sections 2.2 and 2.3. We assume that
there are s categorical sequences and each has m possible states in M. We then consider an
nth order model. In the proposed model, we assume that the state probability distribution of the
j th sequence at time t = r + 1 depends on the state probability distribution of all the sequences
(including itself) at times t = r, r − 1, . . . , r − n + 1. Using the same notations as in the previous
two subsections, our proposed higher-order (nth-order) multivariate Markov chain model takes
the following form:

x(j)

r+1 =
s∑

k=1

n∑
h=1

λ
(h)
jk P

(jk)
h x(k)

r−h+1, j = 1, 2, . . . , s, r = n − 1, n, . . . (6)

with initials x(k)
0 , x(k)

1 , . . . , x(k)
n−1(k = 1, 2, . . . , s). Here

λ
(h)
jk � 0, 1 � j, k � s, 1 � h � n and

s∑
k=1

n∑
h=1

λ
(h)
jk = 1, j = 1, 2, . . . , s. (7)
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The probability distribution of the j th sequence x(j)

r+1, at time t = r + 1, depends on the weighted

average of P
(jk)
h x(k)

r−h+1. Here P
(jk)
h is the hth-step transition probability matrix which describes

the hth-step transition from the states in the kth sequence at time t = r − h + 1 to the states in the
j th sequence at time t = r + 1 and λ

(h)
jk is the weighting of this term. A numerical demonstration

of a second-order model of two sequences can be found in Section 4.1.
From (6), if we let

X(j)
r = ((x(j)

r )T, (x(j)

r−1)
T, . . . , (x(j)

r−n+1)
T)T for j = 1, 2, . . . , s

be the nm × 1 vectors then one can write down the following relation in matrix form as follows:

Xr+1 ≡

⎛⎜⎜⎜⎜⎝
X(1)

r+1

X(2)
r+1
...

X(s)
r+1

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
B(11) B(12) · · · B(1s)

B(21) B(22) · · · B(2s)

...
...

...
...

B(s1) B(s2) · · · B(ss)

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

X(1)
r

X(2)
r

...

X(s)
r

⎞⎟⎟⎟⎟⎠ ≡ QXr

where

B(ii) =

⎛⎜⎜⎜⎜⎜⎝
λ

(1)
ii P

(ii)
1 λ

(2)
ii P

(ii)
2 · · · λ

(n−1)
ii P

(ii)
n−1 λ

(n)
ii P

(ii)
n

I 0 · · · 0 0
0 I · · · 0 0
...

. . .
. . .

. . . 0
0 · · · 0 I 0

⎞⎟⎟⎟⎟⎟⎠
mn×mn

and if i /= j then

B(ij) =

⎛⎜⎜⎜⎜⎜⎝
λ

(1)
ij P

(ij)

1 λ
(2)
ij P

(ij)

2 · · · λ
(n−1)
ij P

(ij)

n−1 λ
(n)
ij P

(ij)
n

0 0 · · · 0 0
0 0 · · · 0 0
...

. . .
. . .

. . . 0
0 · · · 0 0 0

⎞⎟⎟⎟⎟⎟⎠
mn×mn

and

Q =

⎛⎜⎜⎜⎝
B(11) B(12) · · · B(1s)

B(21) B(22) · · · B(2s)

...
...

...
...

B(s1) B(s2) · · · B(ss)

⎞⎟⎟⎟⎠ .

We note that each column sum of Q is not necessary equal to one but each column sum of
P

(jk)
h is equal to one. We have the following propositions:

Proposition 3. If λ
(h)
jk > 0 for 1 � j, k � s and 1 � h � n, then the matrix Q has an eigenvalue

equal to one and the eigenvalues of Q have modulus less than or equal to one.

Proof. By using (7), the column sum of the following matrix is equal one and we have

� =

⎛⎜⎜⎜⎝
�11 �12 · · · �1s

�21 �22 · · · �2s

...
...

. . .
...

�s1 �s2 · · · �ss

⎞⎟⎟⎟⎠ ,
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where

�ii =

⎛⎜⎜⎜⎜⎜⎝
λ

(n)
i,i 1 · · · 0

λ
(n−1)
i,i 0

. . . 0
...

...
... 1

λ
(1)
i,i 0 0 0

⎞⎟⎟⎟⎟⎟⎠ and �ij =

⎛⎜⎜⎜⎜⎝
λ

(n)
i,j 0 · · · 0

λ
(n−1)
i,j 0 · · · 0
...

...
...

...

λ
(1)
i,j 0 · · · 0

⎞⎟⎟⎟⎟⎠ if i /= j.

Since � is nonnegative and irreducible, by Proposition 2 (Perron–Frobenius theorem) there exists
a positive vector

y =
[
y

(n)
1 , y

(n−1)
1 , . . ., y

(1)
1 , y

(n)
2 , y

(n−1)
2 , . . ., y

(1)
2 , . . . , y(n)

s , y(n−1)
s , . . ., y(1)

s

]T

such that �y = y or yT�T = yT. We note that

1mP
(ij)
h = 1m, 1 � i, j � s, 1 � h � n,

where 1m is the 1 × m vector of all ones, i.e.,

1m = [1, 1, . . ., 1].
Then it is easy to show that

[y(n)
1 1m, . . ., y

(1)
1 1m, y

(n)
2 1m, . . ., y

(1)
2 1m, . . . , y(n)

s 1m, . . ., y(1)
s 1m]Q

= [y(n)
1 1m, . . ., y

(1)
1 1m, y

(n)
2 1m, . . ., y

(1)
2 1m, . . . , y(n)

s 1m, . . ., y(1)
s 1m].

and hence one is an eigenvalue of Q.
Next we show that the modulus of all the eigenvalues of Q are less than or equal to one. Let

vT = y ⊗ 1m be the positive vector such that vTQ = vT and let Dv = Diag(v), then the matrix
Q̂ = DvQD−1

v is similar to Q and such that 1Q̂ = 1. Since Q̂ is non-negative, the latter equation
implies that ‖Q̂‖1 = 1, and hence

ρ(Q) = ρ(Q̂) � ‖Q̂‖1 = 1. �

We remark that if all P
(i,j)
h are irreducible then Q is also irreducible and for the Perron–

Frobenius theorem there exists a unique positive vector X such that QX = X. Moreover, from the
equation QX = X and from the structure of Q one can easily find that X, partitioned according
to the structure of Q, has the following structure:

X = ((X(1))T, (X(2))T, . . . , (X(s))T)T,

where

X(j) = ((x(j))T, (x(j))T, . . . , (x(j))T)T.

We can easily prove that X can be normalized such that 1x(j) = 1 for any j . This holds since the
latter property is invariant under the action of Q, i.e., if

X0 = ((X(1)
0 )T, . . . , (X(s)

0 )T)T

with

X(j)

0 = ((x(j)

0 )T, . . . , (x(j)

0 )T)T

having this property, then this is also true for X1(= QX0) and all the vectors of the sequence
Xr+1 = QXr shares the same property together with the limit of the sequence Xr which coincides



W.-K. Ching et al. / Linear Algebra and its Applications 428 (2008) 492–507 499

with X. We note that X is not a probability distribution vector, but x(j) is a probability distribution
vector. The above proposition suggests one possible way to estimate the model parameters λ

(h)
ij .

The key idea is to find λ
(h)
ij which minimizes ‖QX̂ − X̂‖ under certain vector norm ‖ · ‖.

4. Estimation of model parameters

In this section, we propose numerical methods for the estimations of P
(jk)
h and λ

(h)
jk . We estimate

the transition probability matrix P
(jk)
h by the following method. Given the data sequences, we

count the transition frequency from the states in the kth sequence at time t = r − h + 1 to the
states in the j th sequence at time t = r + 1 for 1 � h � n. Hence one can construct the transition
frequency matrix for the data sequences. After making a normalization, the estimates of the
transition probability matrices P̂

(jk)
h can also be obtained. We remark that one has to estimate

ns2 transition frequency matrices of size m × m for our proposed nth-order multivariate Markov
chain model. More precisely, in the transition frequency matrix F

(jk)
h , we count the transition

frequency f
(jk,h)
ij ik

from the state ik in the sequence {x(k)} at time t = r − h + 1 to the state ij in

the sequence {x(j)} at time t = r + 1. Therefore we can construct the transition frequency matrix
for the sequences as follows:

F
(jk)
h =

⎛⎜⎜⎜⎜⎜⎜⎝
f

(jk,h)

11 · · · · · · f
(jk,h)

1m

f
(jk,h)

21 · · · · · · f
(jk,h)

2m

...
...

...
...

f
(jk,h)

m1 · · · · · · f
(jk,h)
mm

⎞⎟⎟⎟⎟⎟⎟⎠ .

From F
(jk)
h , we get the estimates for P

(jk)
h as follows:

P̂
(jk)
h =

⎛⎜⎜⎜⎜⎜⎜⎝
p̂

(jk,h)

11 · · · · · · p̂
(jk,h)

1m

p̂
(jk,h)

21 · · · · · · p̂
(jk,h)

2m

...
...

...
...

p̂
(jk,h)

m1 · · · · · · p̂
(jk,h)
mm

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where

p̂
(jk,h)
ij ik

=

⎧⎪⎪⎨⎪⎪⎩
f

(jk,h)
ij ik∑m

ij =1 f
(jk,h)
ij ik

if
∑m

ij =1 f
(jk,h)
ij ik

/= 0,

0 otherwise.

Besides the estimates of P
(jk)
h , we need to estimate the parameters λ

(h)
jk . As a consequence of

Proposition 3, the nth order multivariate Markov chain has a stationary vector X (a joint stationary
probability distribution). The vector x(j) can be estimated from the sequences by computing the
proportion of the occurrence of each state in each of the sequences. By combining these vectors
{x(j)}sj=1, we construct X. Let us denote it by

X̂ = ((X̂(1))T, (X̂(2))T, . . . , (X̂(s))T)T
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with

X̂(j) = ((̂x(j))T, (x̂(j))T, . . . , (̂x(j))T)T.

As a consequence of Proposition 3,

QX ≡ X.

one would expect that⎛⎜⎜⎜⎝
B̂(11) B̂(12) · · · B̂(1s)

B̂(21) B̂(22) · · · B̂(2s)

...
...

...
...

B̂(s1) B̂(s2) · · · B̂(ss)

⎞⎟⎟⎟⎠ X̂ ≈ X̂. (8)

From (8), one possible way to estimate the parameters λ = {
λ

(h)
jk

}
is given as follows. One

may consider solving the following minimization problem:{
minλij

‖Q̂X̂ − X̂‖
subject to

∑s
k=1

∑n
h=1 λ

(h)
jk = 1, and λ

(h)
jk � 0, ∀h, k.

(9)

Here ‖.‖ is certain vector norm. If ‖.‖ is chosen to be the ‖.‖∞ norm then the above optimization
problem becomes (see [5])⎧⎨⎩minλij

maxi

∣∣∣[∑s
k=1

∑n
h=1 λ

(h)
jk P̂

(jk)
h x̂(k) − x̂(j)

]
i

∣∣∣
subject to

∑s
k=1

∑n
h=1 λ

(h)
jk = 1, and λ

(h)
jk � 0, ∀h, k,

(10)

where [·]i denote the ith entry of the vector. Problem (10) can be formulated as s linear program-
ming problems as follows, see for instance [9, pp. 222–223]. For each j :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minλ wj

subject to⎛⎜⎜⎜⎝
wj

wj

...

wj

⎞⎟⎟⎟⎠ � x̂(j) − Cj

⎛⎜⎜⎜⎝
λ̃j1

λ̃j2
...

λ̃js

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
wj

wj

...

wj

⎞⎟⎟⎟⎠ � −x̂(j) + Cj

⎛⎜⎜⎜⎝
λ̃j1

λ̃j2
...

λ̃js

⎞⎟⎟⎟⎠ ,

wj � 0,∑s
k=1

∑n
h=1 λ

(h)
jk = 1, λ

(h)
jk � 0, ∀h, j, k,

(11)

where

Cj = [P̂ (j1)

1 x̂(1)|· · ·|P̂ (j1)
n x̂(1)|P̂ (j2)

1 x̂(2)|· · ·|P̂ (j2)
n x̂(2)|· · ·· · ·|P̂ (js)

1 x̂(s)|· · ·|P̂ (js)
n x̂(s)],

and

λ̃jh = (λ
(1)
jh , . . . , λ

(n)
jh )T.

We remark that other norms such as ‖ · ‖2 and ‖ · ‖1 can also be considered. The former will
result in a quadratic programming problem while ‖ · ‖1 will still result in a linear programming
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problem, (see [9, pp. 221–226]). It is known that in approximating data by a linear function [9, p.
220], ‖ · ‖1 always gives the most robust answer, ‖ · ‖∞ avoids gross discrepancies with the data
and if the errors are known to be normally distributed then ‖ · ‖2 is the best choice. The complexity
of solving a linear programming problem or a quadratic programming problem is O(n3L) where
n is the number of variables and L is the number of binary bits needed to record all the data of
the problem [10].

In the following, we give an example to demonstrate the construction of a second-order mul-
tivariate Markov model from two categorical data sequences of four states.

4.1. An example

Consider the following two categorical data sequences:

S1 = {2, 1, 3, 3, 4, 3, 2, 1, 3, 3, 2, 1} and S2 = {2, 4, 4, 4, 4, 2, 3, 3, 1, 4, 3, 3}.
In this example, we aim at building a second-order multivariate Markov chain model. By counting
the first lag transition frequencies

S1 : 2 → 1 → 3 → 3 → 4 → 3 → 2 → 1 → 3 → 3 → 2 → 1

and

S2 : 2 → 4 → 4 → 4 → 4 → 2 → 3 → 3 → 1 → 4 → 3 → 3

we have

F
(11)
1 =

⎛⎜⎜⎝
0 3 0 0
0 0 2 0
2 0 2 1
0 0 1 0

⎞⎟⎟⎠ and F
(22)
1 =

⎛⎜⎜⎝
0 0 1 0
0 0 0 1
0 1 2 1
1 1 0 3

⎞⎟⎟⎠ .

Similarly, by counting the second lags transition frequencies, we have

F
(11)
2 =

⎛⎜⎜⎝
0 0 2 0
0 0 1 1
2 2 1 0
0 0 1 0

⎞⎟⎟⎠ and F
(22)
2 =

⎛⎜⎜⎝
0 0 1 0
0 0 0 1
1 1 0 2
0 1 1 2

⎞⎟⎟⎠ .

Moreover by counting the inter-first lags transition frequencies

S1 : 2 1 3 3 4 3 2 1 3 3 2 1
↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘ ↘

S2 : 2 4 4 4 4 2 3 3 1 4 3 3

and

S1 : 2 1 3 3 4 3 2 1 3 3 2 1
↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗

S2 : 2 4 4 4 4 2 3 3 1 4 3 3

we have

F
(21)
1 =

⎛⎜⎜⎝
1 0 0 0
0 0 0 1
0 2 2 0
1 1 3 0

⎞⎟⎟⎠ , F
(12)
1 =

⎛⎜⎜⎝
0 1 2 0
0 1 0 1
1 0 1 3
0 0 0 1

⎞⎟⎟⎠ .
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Similarly by counting the inter-second lags transition frequencies, we have

F
(21)
2 =

⎛⎜⎜⎝
0 1 0 0
0 0 1 0
0 0 3 1
2 1 0 0

⎞⎟⎟⎠ , F
(12)
2 =

⎛⎜⎜⎝
0 1 0 1
1 0 0 1
0 1 2 2
0 0 0 1

⎞⎟⎟⎠ .

After normalization we have the transition probability matrices:

P̂
(11)
1 =

⎛⎜⎜⎜⎝
0 1 0 0
0 0 2

5 0

1 0 2
5 1

0 0 1
5 0

⎞⎟⎟⎟⎠ , P̂
(22)
1 =

⎛⎜⎜⎜⎜⎝
0 0 1

3 0

0 0 0 1
5

0 1
2

2
3

1
5

1 1
2 0 3

5

⎞⎟⎟⎟⎟⎠ ,

P̂
(11)
2 =

⎛⎜⎜⎜⎜⎝
0 0 2

5 0

0 0 1
5 1

1 1 1
5 0

0 0 1
5 0

⎞⎟⎟⎟⎟⎠ , P̂
(22)
2 =

⎛⎜⎜⎜⎜⎝
0 0 1

2 0

0 0 0 1
5

1 1
2 0 2

5

0 1
2

1
2

2
5

⎞⎟⎟⎟⎟⎠ ,

P̂
(21)
1 =

⎛⎜⎜⎜⎜⎝
1
2 0 0 0

0 0 0 1

0 2
3

2
5 0

1
2

1
3

3
5 0

⎞⎟⎟⎟⎟⎠ , P̂
(12)
1 =

⎛⎜⎜⎜⎜⎝
0 1

2
2
3 0

0 1
2 0 1

5

1 0 1
3

3
5

0 0 0 1
5

⎞⎟⎟⎟⎟⎠ ,

P̂
(21)
2 =

⎛⎜⎜⎜⎝
0 1

2 0 0
0 0 1

4 0

0 0 3
4 1

1 1
2 0 0

⎞⎟⎟⎟⎠ , P̂
(12)
2 =

⎛⎜⎜⎜⎝
0 1

2 0 1
5

1 0 0 1
5

0 1
2 1 2

5

0 0 0 1
5

⎞⎟⎟⎟⎠ .

Moreover we also have

x̂(1) =
(

1

4
,

1

4
,

5

12
,

1

12

)T

and x̂(2) =
(

1

12
,

1

6
,

1

3
,

5

12

)T

.

By solving the corresponding linear programming problems, the second-order multivariate Mar-
kov chain model of the two categorical data sequences S1 and S2 is given by⎧⎨⎩x(1)

r+1 = 0.0790P̂
(11)
1 x(1)

r + 0.1483P̂
(11)
2 x(1)

r−1 + 0.6955P̂
(12)
1 x(2)

r + 0.1483P̂
(12)
2 x(2)

r−1,

x(2)
r+1 = 0.1873P̂

(21)
1 x(1)

r + 0.1873P̂
(21)
2 x(1)

r−1 + 0.0423P̂
(22)
1 x(2)

r + 0.5831P̂
(22)
2 x(2)

r−1.

5. An application to sales demand predictions

In this section, we demonstrate the effectiveness of the proposed higher-order multivariate
Markov chain model and we apply it to the sales demand sequences [3]. A soft-drink company
in Hong Kong is facing an in-house problem of production planning and inventory control. A
pressing issue is the storage space of its central warehouse, which often finds itself in the state of
overflow or near capacity. The company is thus in urgent needs to study the interplay between the
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storage space requirement and the overall growing sales demand. The product can be classified into
six possible states (1, 2, 3, 4, 5, 6) according to their sales volumes, see Appendix. All products
are labeled as 1 = no sales volume, 2 = very slow-moving (very low sales volume), 3 = slow-
moving, 4 = standard, 5 = fast-moving or 6 = very fast-moving (very high sales volume). Such
labels are useful from both marketing and production planning points of view.

The company would also like to predict sales demand for an important customer in order to
minimize its inventory build-up. More importantly, the company can understand the sales pattern
of this customer and then develop a marketing strategy to deal with this customer. In Appendix, we
show this customer’s sales demand of five important products of the company for a year. We expect
sales demand sequences generated by the same customer to be correlated to each other. Therefore
by exploring these relationships, one can obtain a better higher-order multivariate Markov model
for such demand sequences, hence obtain better prediction rules.

In this illustration, we choose the order arbitrarily to be eight, i.e., n = 8. We first estimate all
the transition probability matrices P

(ij)
h by using the method proposed in Section 4 and we also

have the estimates of the stationary probability distributions of the five products:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x̂(1) = (0.0818, 0.4052, 0.0483, 0.0335, 0.0037, 0.4275)T,

x̂(2) = (0.3680, 0.1970, 0.0335, 0.0000, 0.0037, 0.3978)T,

x̂(3) = (0.1450, 0.2045, 0.0186, 0.0000, 0.0037, 0.6283)T,

x̂(4) = (0.0000, 0.3569, 0.1338, 0.1896, 0.0632, 0.2565)T,

x̂(5) = (0.0000, 0.3569, 0.1227, 0.2268, 0.0520, 0.2416)T.

By solving the corresponding minimization problems in (11), we obtain the following higher-order
multivariate Markov chain model:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(1)
r+1 = P

(12)
1 x(2)

r ,

x(2)
r+1 = 0.6364P

(22)
1 x(2)

r + 0.3636P
(22)
3 x(2)

r ,

x(3)
r+1 = P

(35)
1 x(5)

r ,

x(4)
r+1 = 0.2994P

(42)
8 x(2)

r + 0.4324P
(45)
1 x(5)

r + 0.2681P
(45)
2 x(5)

r ,

x(5)
r+1 = 0.2718P

(52)
8 x(2)

r + 0.6738P
(54)
1 x(4)

r + 0.0544P
(55)
2 x(5)

r ,

where

P
(12)
1 =

⎛⎜⎜⎜⎜⎜⎜⎝
0.0606 0.1509 0.0000 0.1667 0.0000 0.0775
0.4444 0.4717 0.4444 0.1667 1.0000 0.3302
0.0101 0.1321 0.2222 0.1667 0.0000 0.0283
0.0101 0.0755 0.2222 0.1667 0.0000 0.0189
0.0101 0.0000 0.0000 0.1667 0.0000 0.0000
0.4646 0.1698 0.1111 0.1667 0.0000 0.5472

⎞⎟⎟⎟⎟⎟⎟⎠ ,

P
(22)
1 =

⎛⎜⎜⎜⎜⎜⎜⎝
0.4040 0.2075 0.0000 0.1667 1.0000 0.4340
0.1111 0.4717 0.3333 0.1667 0.0000 0.1321
0.0202 0.0566 0.3333 0.1667 0.0000 0.0094
0.0000 0.0000 0.0000 0.1667 0.0000 0.0000
0.0000 0.0000 0.1111 0.1667 0.0000 0.0000
0.4646 0.2642 0.2222 0.1667 0.0000 0.4245

⎞⎟⎟⎟⎟⎟⎟⎠ ,
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P
(22)
3 =

⎛⎜⎜⎜⎜⎜⎜⎝

0.4444 0.2075 0.2222 0.1667 0.0000 0.3883
0.1818 0.2830 0.2222 0.1667 0.0000 0.1748
0.0303 0.0755 0.0000 0.1667 0.0000 0.0194
0.0000 0.0000 0.0000 0.1667 0.0000 0.0000
0.0101 0.0000 0.0000 0.1667 0.0000 0.0000
0.3333 0.4340 0.5556 0.1667 1.0000 0.4175

⎞⎟⎟⎟⎟⎟⎟⎠ ,

P
(35)
1 =

⎛⎜⎜⎜⎜⎜⎜⎝

0.1667 0.0947 0.1515 0.1639 0.0714 0.2154
0.1667 0.1895 0.2727 0.2295 0.1429 0.1846
0.1667 0.0421 0.0000 0.0000 0.0000 0.0154
0.1667 0.0000 0.0000 0.0000 0.0000 0.0000
0.1667 0.0105 0.0000 0.0000 0.0000 0.0000
0.1667 0.6632 0.5758 0.6066 0.7857 0.5846

⎞⎟⎟⎟⎟⎟⎟⎠ ,

P
(22)
3 =

⎛⎜⎜⎜⎜⎜⎜⎝

0.4444 0.2075 0.2222 0.1667 0.0000 0.3883
0.1818 0.2830 0.2222 0.1667 0.0000 0.1748
0.0303 0.0755 0.0000 0.1667 0.0000 0.0194
0.0000 0.0000 0.0000 0.1667 0.0000 0.0000
0.0101 0.0000 0.0000 0.1667 0.0000 0.0000
0.3333 0.4340 0.5556 0.1667 1.0000 0.4175

⎞⎟⎟⎟⎟⎟⎟⎠ ,

P
(35)
1 =

⎛⎜⎜⎜⎜⎜⎜⎝

0.1667 0.0947 0.1515 0.1639 0.0714 0.2154
0.1667 0.1895 0.2727 0.2295 0.1429 0.1846
0.1667 0.0421 0.0000 0.0000 0.0000 0.0154
0.1667 0.0000 0.0000 0.0000 0.0000 0.0000
0.1667 0.0105 0.0000 0.0000 0.0000 0.0000
0.1667 0.6632 0.5758 0.6066 0.7857 0.5846

⎞⎟⎟⎟⎟⎟⎟⎠ ,

P
(42)
8 =

⎛⎜⎜⎜⎜⎜⎜⎝

0.0000 0.0000 0.0000 0.1667 0.0000 0.0000
0.3434 0.1887 0.6667 0.1667 0.0000 0.4242
0.1010 0.1698 0.0000 0.1667 1.0000 0.1414
0.2020 0.2264 0.1111 0.1667 0.0000 0.1717
0.0808 0.0943 0.1111 0.1667 0.0000 0.0303
0.2727 0.3208 0.1111 0.1667 0.0000 0.2323

⎞⎟⎟⎟⎟⎟⎟⎠ ,

P
(45)
1 =

⎛⎜⎜⎜⎜⎜⎜⎝

0.1667 0.0000 0.0000 0.0000 0.0000 0.0000
0.1667 0.4737 0.2121 0.0328 0.0000 0.6462
0.1667 0.1053 0.2121 0.1967 0.0714 0.0923
0.1667 0.0000 0.2424 0.5410 0.5714 0.0308
0.1667 0.0105 0.0303 0.1803 0.2857 0.0000
0.1667 0.4105 0.3030 0.0492 0.0714 0.2308

⎞⎟⎟⎟⎟⎟⎟⎠ ,

P
(45)
2 =

⎛⎜⎜⎜⎜⎜⎜⎝

0.1667 0.0000 0.0000 0.0000 0.0000 0.0000
0.1667 0.5532 0.3636 0.0656 0.0000 0.4154
0.1667 0.1383 0.0909 0.2131 0.2857 0.0462
0.1667 0.0532 0.2424 0.4098 0.6429 0.0615
0.1667 0.0213 0.0606 0.1639 0.0714 0.0308
0.1667 0.2340 0.2424 0.1475 0.0000 0.4462

⎞⎟⎟⎟⎟⎟⎟⎠ ,
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P
(52)
8 =

⎛⎜⎜⎜⎜⎜⎜⎝
0.0000 0.0000 0.0000 0.1667 0.0000 0.0000
0.3535 0.2075 0.6667 0.1667 1.0000 0.3939
0.1010 0.1509 0.0000 0.1667 0.0000 0.1313
0.2222 0.3019 0.2222 0.1667 0.0000 0.2020
0.0909 0.0377 0.0000 0.1667 0.0000 0.0303
0.2323 0.3019 0.1111 0.1667 0.0000 0.2424

⎞⎟⎟⎟⎟⎟⎟⎠ ,

P
(54)
1 =

⎛⎜⎜⎜⎜⎜⎜⎝
0.1667 0.0000 0.0000 0.0000 0.0000 0.0000
0.1667 0.4842 0.1667 0.0196 0.0588 0.6087
0.1667 0.1053 0.1667 0.1569 0.0588 0.1159
0.1667 0.0000 0.4444 0.6275 0.6471 0.0290
0.1667 0.0105 0.0278 0.1569 0.2353 0.0000
0.1667 0.4000 0.1944 0.0392 0.0000 0.2464

⎞⎟⎟⎟⎟⎟⎟⎠ ,

P
(55)
2 =

⎛⎜⎜⎜⎜⎜⎜⎝
0.1667 0.0000 0.0000 0.0000 0.0000 0.0000
0.1667 0.5213 0.4242 0.0492 0.0714 0.4308
0.1667 0.1277 0.0303 0.1967 0.2143 0.0769
0.1667 0.0532 0.3333 0.5410 0.5000 0.0769
0.1667 0.0213 0.0303 0.1148 0.2143 0.0154
0.1667 0.2766 0.1818 0.0984 0.0000 0.4000

⎞⎟⎟⎟⎟⎟⎟⎠ .

According to the constructed 8th order multivariate Markov model, Products A and B are
closely related. In particular, the sales demand of Product A depends strongly on Product B.
The main reason is that the chemical nature of Products A and B is the same, but they have
different packaging for marketing purposes. Moreover, Products B, C, D and E are closely related.
Similarly, products C and E have the same product flavor, but different packaging. In this model,
it is interesting to note that both Product D and E quite depend on Product B at order of 8, this
relationship is hardly to be obtained in conventional Markov model owing to huge amount of
parameters. The results show that higher-order multivariate Markov model is quite significant to
analyze the relationship of sales demand.

Next we use the higher-order multivariate Markov model to predict the next state of the kth
sequence x̃

(k)
t at time t which can be taken as the state with the maximum probability, i.e.,

x̃
(k)
t = j, if [x̃(k)

t ]i � [x̃(k)
t ]j , ∀1 � i � m. (12)

To evaluate the performance and effectiveness of our higher-order multivariate Markov chain
model, a prediction result is measured by the prediction accuracy r defined as

r = 1

T − n
×

T∑
t=n+1

δt × 100%,

where T is the length of the data sequence and

δt =
{

1, if x̃
(k)
t = x

(k)
t ,

0, otherwise.

For comparison, we also give the results for the 8th order Markov chain model and multivariate
Markov model [3] of individual sales demand sequence. The results are reported in Table 1.
There is significant improvement in prediction accuracy in Product D. We can also see that the
proposed model is always better than or not worse than the other two models. The results show
the effectiveness of the 8th-order multivariate Markov model.
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Table 1
Prediction accuracy in the sales demand data

Product A (%) Product B (%) Product C (%) Product D (%) Product E (%)

8th-order Markov 46.36 47.89 62.07 51.72 49.04
chain model

First-order multivariate 49.43 44.83 62.07 51.34 54.41
Markov chain model

8th-order multivariate 49.43 47.89 62.07 54.41 54.41
Markov chain model

6. Summary

In this paper, we propose a higher-order multivariate Markov chain model for modeling multiple
categorical data sequences. The number of parameters in the model grows linearly with respect to
the order of the model. We also develop an efficient estimation method for the model parameters
based on solving linear programming problems. The estimation method involves only counting
of transition frequencies and solving several linear programming problems. We remark that the
linear programming problems can be solved in parallel to save computational time.
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Appendix. Sales demand sequences of the five products (Taken from [3])

Product A: 6 6 6 6 2 6 2 6 2 2 6 2 6 6 2 6 2 4 4 4 5 6 6 1 2 2 6 6 6 2 6 2 6 6 2 6 2 2 6 2 1 2 2 6 6 6 2
1 2 6 2 6 6 2 2 6 2 2 2 6 2 6 2 2 2 2 2 6 2 2 6 6 6 6 1 2 2 6 2 2 2 2 6 2 2 2 2 3 3 2 3 2 6 6 6 6 2 6 2 6 6 2
6 2 6 6 2 6 6 2 2 3 4 3 3 1 3 1 2 1 6 1 6 6 1 6 6 2 6 2 6 2 2 2 6 6 1 6 2 6 1 2 1 6 2 6 2 2 2 2 6 6 1 6 6 2 2
6 2 2 2 3 4 4 4 6 4 6 1 6 6 1 6 6 6 6 1 6 2 2 2 6 6 6 6 2 6 6 2 2 6 2 6 2 2 2 6 2 2 2 6 6 6 6 3 2 2 6 2 2 2 2 2
2 6 2 6 2 2 2 6 2 2 6 6 2 6 6 6 2 2 2 3 3 3 4 1 6 6 1 6 6 1 6 1 6 6 6 6 1 6 6 6 2 1 2 2 2 2 2 2 3 6 6 6 6 6 2 6

Product B: 1 6 6 1 6 1 1 1 1 1 1 6 6 6 1 2 1 6 6 1 1 1 6 6 2 1 6 6 1 1 1 6 1 2 1 6 2 2 2 2 2 6 1 6 6 1 2
1 6 6 6 1 1 1 6 6 1 1 1 1 6 1 1 2 1 6 1 6 1 1 6 2 6 2 6 6 6 3 6 6 1 6 6 2 2 2 3 2 2 6 6 6 1 1 6 2 6 6 2 6 2 6
6 1 3 6 6 1 1 1 2 2 3 2 2 6 2 2 2 1 6 1 6 1 1 6 2 1 1 1 2 2 1 6 1 1 1 1 2 6 1 1 1 1 6 1 6 1 2 1 6 1 6 6 1 6 1
2 2 2 2 3 3 2 2 2 6 6 6 6 2 1 1 6 1 1 1 6 1 6 1 6 1 6 1 1 6 6 2 1 1 6 6 1 1 2 6 2 6 6 6 1 2 6 1 6 1 1 1 1 6 1 6
1 1 6 6 1 6 6 1 6 1 6 6 1 1 6 6 2 2 2 2 2 2 2 2 2 6 6 6 6 1 6 6 6 1 6 6 1 6 6 1 1 6 1 3 3 3 5 1 6 6 6 6 6 6 6 6

Product C: 6 6 6 6 6 6 6 2 6 6 6 6 6 6 6 2 6 6 6 6 2 6 6 6 2 2 6 6 6 6 6 6 6 1 6 2 6 6 6 6 6 6 6 6 2 6 6
1 2 6 1 6 6 1 6 2 6 6 6 6 6 6 6 2 6 6 6 2 6 6 1 6 6 6 6 6 6 6 3 3 6 3 2 1 2 2 1 6 6 1 6 1 6 6 6 6 6 6 1 6 6 6
1 6 6 6 6 6 6 6 6 6 6 6 2 6 6 6 6 6 6 6 6 2 2 6 6 2 6 1 2 6 6 6 2 6 6 2 6 6 2 6 1 6 2 6 2 1 2 6 6 2 2 6 2 6 2
2 6 2 6 6 6 2 2 2 6 6 2 6 6 2 2 6 1 2 1 2 6 6 2 2 6 6 1 2 2 1 6 2 6 2 2 1 1 5 6 3 6 1 6 6 1 2 2 6 1 6 2 6 6 1 6
2 6 2 6 6 6 1 6 1 6 6 2 2 2 1 2 3 6 1 6 1 6 1 6 1 6 6 6 1 1 6 6 6 6 6 1 6 6 6 1 6 1 1 6 6 6 6 6 6 6 6 1 6 6 1 6

Product D: 6 2 2 2 2 3 3 4 4 4 5 4 3 3 6 2 6 6 6 3 4 4 3 3 3 3 3 2 6 6 3 4 4 4 4 3 4 2 6 2 2 6 2 2 6 6 3
4 5 4 4 6 3 6 6 6 2 6 2 6 6 2 2 6 4 4 5 4 3 4 3 4 4 6 2 6 6 2 2 6 2 6 6 2 6 6 2 6 6 2 6 2 6 3 5 5 5 4 4 4 3 6
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2 6 6 2 6 2 6 2 2 6 2 6 6 2 6 4 4 4 4 4 4 6 3 6 6 2 6 2 6 2 6 2 6 6 2 2 2 2 2 2 2 2 2 3 3 3 5 5 4 5 3 3 3 6 2
6 6 2 2 6 2 2 2 2 6 2 3 2 2 3 6 3 2 2 3 4 4 4 4 5 5 4 4 6 6 2 6 2 6 2 2 2 2 2 2 2 5 5 4 4 5 5 2 6 2 6 6 2 6 2 6
2 2 3 3 4 4 5 4 4 4 3 4 3 6 2 6 2 2 2 2 2 2 2 2 2 2 2 3 4 4 4 4 5 4 4 4 3 2 2 2 6 2 2 2 6 2 6 2 6 2 2 2 2 2 3 2

Product E: 6 2 2 2 2 3 3 4 4 4 5 4 3 3 6 2 6 6 2 3 4 4 3 4 4 3 3 2 2 6 3 4 4 4 4 3 4 2 3 2 2 6 3 3 6 6 3
4 5 4 5 3 3 2 6 6 2 6 2 6 6 2 2 6 4 4 4 4 4 4 5 4 4 6 2 6 6 2 2 6 2 6 6 2 6 6 2 6 6 2 6 2 6 3 4 4 4 4 4 4 4 6
2 6 6 2 6 2 6 6 6 6 2 6 2 2 6 4 4 4 4 4 4 6 3 3 6 2 2 2 6 2 6 2 2 2 2 2 2 2 2 2 2 2 2 3 6 4 5 5 5 5 2 4 6 6 2
6 6 2 2 6 2 2 2 2 6 2 3 2 2 3 6 3 2 2 3 4 4 4 4 5 5 4 3 3 6 2 6 2 2 2 6 3 2 2 2 2 5 5 4 4 4 4 3 6 2 6 6 2 6 2 6
2 2 3 3 4 4 5 4 4 4 4 4 3 6 2 6 2 2 2 6 2 2 2 2 2 2 2 3 4 4 4 4 5 4 4 4 3 2 2 2 6 6 6 2 6 2 6 2 6 2 2 2 2 2 2 2

1 = no sales volume, 2 = very slow-moving, 3 = slow-moving, 4 = standard, 5 = fast-
moving and 6 = very fast-moving.
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