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Abstract

A polynomial ideal encoding topplings in the abelian sandpile model on a graph is introduced.
A Gr$obner basis of this ideal is interpreted combinatorially in terms of well-connected subgraphs.
This gives rise to algorithms to determine the identity and the operation in the group of recurrent
con2gurations. c© 2002 Elsevier Science B.V. All rights reserved.
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0. Introduction

The abelian sandpile model has been extensively considered since Bak et al. [1]
introduced it in the context of self-organized critical phenomena in statistical
physics.
This model can be described as a game on a graph, each con2guration being a

mapping of the vertices of the graph into the set of nonnegative integers. The value
of the mapping at a vertex may be considered as the number of grains of sand on
a sandpile placed at the vertex. The evolution is given by a toppling rule: “each
vertex containing at least as many grains as it has neighbours distributes one grain
to each of them”. D. Dhar has considered the set of recurrent con2gurations, those
that can be reached from any con2guration by adding grains of sand and performing
topplings.
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Topplings can be represented by linear operators on the space of con2gurations. Dhar
[8], using this linear algebraic setting, showed that the set of toppling operators has the
structure of a 2nite abelian group. He also showed that the order of this group is equal
to the number of spanning trees of the graph. Other approaches to this model can be
found in [2–5, 12]. Creutz [7] showed that this structure of abelian group carries over
to the set of recurrent con2gurations themselves.
In this article, we associate a toppling ideal to a graph, encoding con2gurations

with monomials and topplings with binomials. We show that Gr$obner bases for these
ideals can be interpreted (and computed) combinatorially. Moreover, we give a one-
to-one mapping between recurrent con2gurations and monomials in the quotient of
the polynomial algebra by the toppling ideal. This correspondence yields a combina-
torial algorithm to compute the operation and the identity in the group of recurrent
con2gurations.
In Section 1 we recall notation and useful results on the sandpile model and recurrent

con2gurations. In Section 2 we de2ne toppling polynomials and the toppling ideal
and we give the dictionary for the translation between the linear algebra model for
sandpiles and the model using polynomials. We show in Section 3 that the set of
toppling polynomials constitutes a Gr$obner basis for the ideal they generate, which we
re2ne into a minimal basis. In the last section, we give the bijection between recurrent
con2gurations and irreducible monomials, show how to compute the operation and the
identity of the group of recurrent con2gurations and conclude with a few examples.

1. Abelian sandpile model

In this section the main de2nitions and results on the sandpile model are recalled.
The main tool is linear algebra.

1.1. Description

Let G=(V; E) be a non-oriented and connected multi-graph with V = {1; : : : ; n} its
set of vertices and E a symmetric n×n matrix whose entry ei; j is the number of edges
with endpoints i; j. It is assumed that for any i, ei; i=0 so that the multi-graph has no
loops. Frequently, G is a graph, and hence ei; j is either 0 or 1. The degree of vertex i
in G is di :=

∑n
j=1 ei; j. A multi-graph is rooted if one of its vertices is distinguished,

it is called the sink and is numbered n.
A con6guration u=(u1; : : : ; un)∈Nn of G is a vector of non-negative integers. In

the context of the sandpile model, the vertices of the graph are cells, and the number
ui may be interpreted as the height of a pile of grains of sand lying in cell i.
In the rest of this article, the number of grains in the sink is not taken into account,

thus two con2gurations u and v which diLer only in position n are considered as equal;
we write u= v if ui= vi for all i¡n. This translates the fact that the sink collects all
grains of sand getting out of the system.
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A toppling of the vertex i¡n in con2guration u consists in decreasing the number of
grains in this vertex by its degree while the number of those of each of its neighbours
j increases by ei; j. This is equivalent to the addition to u of the vector �i such that
(�i)i= − di and (�i)j = ei; j. The notation u→ v means that v is obtained from u by
toppling a vertex, so that there exists an i¡n such that v= u + �i. The transitive
closure of the toppling operation → is denoted ∗→: u ∗→ v if v is obtained from u by
a sequence of topplings.
A key observation is that the connectedness of the graph implies that for any con-

2guration u there exists a sequence of topplings which leads to a stable con2guration
û; in such a con2guration the number of grains in each cell is strictly less than its
degree, hence no toppling is possible. This stable con2guration does not depend on
the order in which topplings are performed [9]: if both �i and �j can be added to a
con2guration while leaving all its coordinates non-negative, then adding �i 2rst can
only increase the number of grains in vertex j, so that this vertex can still topple.
After both topplings have taken place, the con2guration has been modi2ed by �i+�j,
which does not depend on the order.

1.2. Recurrent con6gurations

A con2guration is recurrent in an evolving system if it keeps reappearing during the
evolution of the system. In the case of the sandpile model, the system is considered
to evolve by adding a grain of sand in a random cell and then applying toppling rules
until a stable con2guration is reached. This translates into the following central notion.

De�nition 1. A con2guration u is recurrent if it is stable and if there exists a vector
v �=0 with nonnegative coordinates such that u+ v ∗→ u.

In order to characterize recurrent con2gurations Dhar used the vector �=�n=
−(�1+ · · ·+�n−1) corresponding to the toppling of the sink, where �j = ej; n for j �= n,
and �n=−dn. The simplest example of a recurrent con2guration is �=(d1−1; : : : ; dn−1

− 1; 0). Indeed, � + � is not stable and can topple in each vertex connected to ver-
tex n. Performing these topplings brings grains of sand to vertices at distance 2 from
the sink, and so on. The connectedness of the graph then leads to topple all vertices,
which leads to the con2guration

�+ � + �1 + · · ·+ �n−1 = �;

thereby showing that � is recurrent.

Lemma 2. There exists N¿0 and a con6guration � such that N� ∗→ � and �i¿di for
i=1; : : : ; n− 1.

Proof. We prove that for each vertex i there exists an integer ki and a con2guration
ci such that ki�

∗→ ci and (ci)i �=0. Adding the dici’s then gives the result.
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The proof is an induction on the distance between a vertex i and the sink n. The
basis of the induction is provided by � for vertices at distance 1 from the sink. Now, let
i be a vertex of G. Since G is connected, there exists a neighbour j of i which is closer
to the sink than i. By the induction hypothesis on j, djkj�

∗→djcj with (djcj)j¿dj.
Then toppling vertex j leads to a con2guration ci with (ci)i �=0.

Using � leads to the following property of recurrent con2gurations.

Proposition 3. For any con6guration u; there exists a unique recurrent con6guration
ũ such that u− ũ∈�=

⊕n
i=1 Z�i.

Proof. The proof is given in detail in [5]. We reproduce it here for completeness.
Using �, we have that for any con2guration u, [u+ � is recurrent, thanks to

u+ �+ � = u+ (�− �) + �+ �:

Indeed, toppling �+ � leads to �. When this is added to u+ (�− �), the con2guration
topples to [u+ �.
To show uniqueness, consider two recurrent con2gurations u and v such that u−v∈�.

Then we have

u−∑
�i�i = v−∑

�i�i

for some positive integers �i and �i. Adding a multiple of � on both sides if necessary
constructs a con2guration where the topplings �i�i and �i�i can be performed, so that
this con2guration can topple either to u or v. By conQuence they have to be equal.

This proposition leads to another characterization of recurrent con2gurations.

Corollary 4. The set of recurrent con6gurations is isomorphic to the set of equiva-
lence classes de6ned by the symmetric closure ≡ of ∗→.

Combinatorially, this symmetric closure corresponds to allowing topplings and re-
verse topplings (when all the neighbours of a vertex are nonempty, they can give it a
grain of sand each).

Theorem 5 (Creutz [7]). Given two recurrent con6gurations u; v; de6ne ⊕ by u⊕ v=
[u+ v. The set of recurrent con6gurations is a group for ⊕. This group is isomorphic

to Zn=�.

This group is a central object in the study of sandpiles. The rest of this article illus-
trates how properties of this group can be computed combinatorially. A combinatorial
proof of this result is given in [5].
Dhar also obtained the following characterisation of recurrent con2gurations.
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Proposition 6. The con6guration u is recurrent if and only if u + � ∗→ u. Moreover;
in the sequence of topplings leading to u; each vertex topples exactly once.

2. Toppling ideal

In this section, we introduce a polynomial ideal associated with a graph, which
translates the group of recurrent con2gurations to a commutative algebra setting.

2.1. Dictionary

Con2gurations and topplings are easily translated from the linear algebra setting
into polynomial operations by associating to a con2guration u=(u1; u2; : : : ; un)∈Nn a
monomial xu= x

u1
1 x

u2
2 · · · xunn ∈Q[x1; : : : ; xn]. To a toppling �i is associated the binomial

T (xi)= x
di
i −∏

j x
ei; j
j .

The addition of two con2gurations translates into the multiplication of the corre-
sponding monomials and toppling vertex i in u translates into the division of xu by xdii
followed by the multiplication by

∏n
j x

ei; j
j .

Given a vector � in Zn, we write �= �+ − �−, where �+ and �− are in Nn and for
each i, either �i= �+i or �i= − �−i . The central part of our dictionary is the following
equivalence.

Lemma 7 (Mayr and Meyer [11]). Let �; �; : : : be in Zn and ∼ be the symmetric tran-
sitive closure of the relations:

u+ �− = v+ �+; u+ �− = v+ �+; : : :

in Nn. Then u ∼ v if and only if the binomial
∏
xujj − ∏

xvjj belongs to the ideal
generated by the polynomials:

∏
x�

+
i
i −∏

x
�−i
i ;

∏
x�

+
i
i −∏

x
�−i
i ; : : :

in Q[x1; : : : ; xn].

De�nition 8. The toppling ideal IG is generated by xn−1 and the toppling polynomials
T (xi), for i∈{1; : : : ; n}.

The toppling ideal is generated by binomials. Such ideals are called binomial ideals
and were studied in detail by Eisenbud and Sturmfels [10]. The binomials considered
here are called “pure binomials” and the corresponding ideals are akin to toric ideals.
In particular, their reduced Gr$obner bases consist of pure binomials.

Proposition 9. Two con6gurations u and v are equivalent by ≡ if and only if xu −
xv ∈IG or equivalently u− v∈�.

Proof. This is a consequence of Lemma 7 using Corollary 4, which showed that
introducing �n gives the required symmetric transitive closure.
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Note that the number of recurrent con2gurations is equal to the number of equiv-
alence classes for ≡. In terms of polynomial rings, this is also the dimension of the
Q-vector space Q[x1; : : : ; xn]=IG [6, Chap. 5].

2.2. Set topplings

A toppling polynomial can also be associated to a subset X of the set V of vertices
as follows.
For a vertex i of V , de2ne

di(X ) =
∑
j∈X

ei; j ;

the number of edges with endpoints i and a vertex of X .
The set toppling of the set X in con2guration u consists in adding the vector �X to

u, where

(�X )i =

{
−di( RX ) for i ∈ X;
di(X ) for i ∈ RX ;

where RX denotes V\X .
Accordingly, the toppling polynomial of the subset X of V is de2ned by

T (X ) =
∏
i∈X

xdi(
RX )

i − ∏
i∈ RX

xdi(X )i :

The binomial T (xi) de2ned above corresponds to the special case X = {xi}.

3. Gr(obner bases for the toppling ideal

Gr$obner bases are a classical computational tool for dealing with polynomial ideals.
Given an ordering on monomials which is compatible with the product (a so-called
admissible ordering) and a set of generators of an ideal I, one can compute a Gr$obner
basis for I and from there test ideal membership and more generally compute normal
forms in the quotient of the algebra by I. The rest of this article makes use of the
notation and basic results from [6, Chap. 2].
In particular, the graded reverse lexicographic order (grevlex) denoted ¡

tdeg
, is de2ned

as follows. If A=
∏n
i=1x

�i
i and B=

∏n
i=1x

�i
i are two monomials in the variables xi,

i=1; : : : ; n, then A ¡
tdeg

B if

|�| =
n∑
i=1
�i¡|�| =

n∑
i=1
�i

or |�|= |�| and in (�1; : : : ; �n)− (�1; : : : ; �n) the right-most nonzero entry is positive.
From there a toppling order is de2ned as follows: let � be a permutation of {1; : : : ; n}

such that �(n)= n and if the distance from vertex i to the sink is larger than the distance
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from vertex j to the sink, then �(i)¿�(j). The toppling order is the graded reverse
lexicographic order on x�(1); : : : ; x�(n). To simplify notations in the rest of this article,
we assume that the vertices of G have been renumbered so that the graded reverse
lexicographic order on x1; : : : ; xn is a toppling order.
With such an order, the leading monomial of T (X ) for X ⊂{1; : : : ; n − 1} is the

product indexed by elements of X . Indeed, T (X ) is homogeneous and its leading term
is therefore determined by the vertex which is closer to n. Since the graph is connected,
one of the vertices of RX which is connected to X is either n or closer to n than all
the vertices of X .
When a Gr$obner basis is known for IG, a unique reduced form �(P) is associated

to a polynomial P of Q[x1; x2; : : : ; xn], such that P−�(P)∈IG. Hence, in order to test
whether two con2gurations u and v are equivalent, it is suScient to check whether the
reduced forms �(xu) and �(xv) are equal.
It is easy to prove that the Gr$obner basis of a binomial ideal consists of binomials,

and that the reduced form of a binomial is also a binomial.

3.1. A basis of toppling polynomials

Our main result is the following.

Theorem 10. A Gr;obner basis of the ideal IG with respect to a toppling order is
given by

T := {T (X ); X ⊂{1; : : : ; n− 1}}∪ {xn − 1}:

Proof. The proof proceeds in two steps. First the elements of T are proved to generate
IG. Then, for any pair of polynomials p; q in T, the S-polynomial S(p; q) is shown to
reduce to 0 by T. Both these results are obtained using combinatorial interpretations
of these binomials in terms of topplings.
First, since T contains the generators of IG, the ideal generated by T contains IG.

The converse inclusion is given by the following lemma.

Lemma 11. A set toppling can be achieved by a sequence of topplings. Consequently
T⊂IG.

Proof. For X ⊂G, this is equivalent to

�X =
∑
j∈X

�j:

Extracting the ith coordinate of both terms recovers the de2nition of �(X ) given above:

−di( RX ) = −di +
∑
j∈X

ei; j if i ∈ X;
di(X ) =

∑
j∈X

ei; j if i ∈ RX :
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We now turn to the last part of the proof of the theorem, which relies on a conQuence
property.

Lemma 12. Let X and Y be two subsets of G. Given any con6guration u; toppling X
and then Y\X leads to the same con6guration as that obtained by toppling Y and then
X \Y . Moreover; if u¿0; u+�(X )¿0 and u+�(Y )¿0; then u+�(X )+�(Y\X )¿0.

Proof. For the 2rst part of the lemma, it is suScient to prove that

�(X ) + �(Y\X ) = �(Y ) + �(X \Y ):
This is obtained by considering the ith coordinate of these vectors in the four cases
i∈X ∩Y , i∈X ∪Y , i∈X \Y , i∈Y\X . The proof is then concluded by the following
identities:

di( RY ) + di(Y\X ) = di(X ∩ Y ) = di( RX ) + di(X \Y ); i ∈ X ∩ Y;
di(X ) + di(Y\X ) = di(X ∪Y ) = di(Y ) + di(X \Y ); i ∈ X ∪Y ;
di(Y )− di(Y\X ) = di(X ∪Y ) = di( RX )− di(X \Y ); i ∈ X \Y:

The case when i∈Y\X is obtained by symmetry.
Conservation of positivity is also obtained by considering the ith coordinate of the

2nal vector. The only nonobvious case is when i∈Y\X . Then the corresponding co-
ordinate is

ui + di(X )− di(Y\X ) = ui − di( RY )¿0:

This lemma is applied to the proof of Theorem 10 as follows. Given X; Y two subsets
of G\{n}, let their corresponding toppling polynomials be written as

T (X ) = B(X )−W (X ); T (Y ) = B(Y )−W (Y )

with B(X ) and B(Y ) their leading monomials.
The S-polynomial S = S(T (X ); T (Y )) is obtained by multiplying both T (X ) and

T (Y ) by the smallest monomials m(X ) and m(Y ) such that m(X )B(X )=m(Y )B(Y ),
and then subtracting these polynomials. Thus,

S = m(X )W (X )− m(Y )W (Y ):

Combinatorially, the monomial m(X )B(X ) corresponds to a con2guration u where both
X and Y can topple. (Here the fact that n =∈X ∪Y is used to determine the leading
term of T (X ) and T (Y ) for the toppling order.) In the S-polynomial, m(X )W (X ) thus
corresponds to the con2guration obtained from u after toppling X , while m(Y )W (Y )
corresponds to the result of toppling Y . Without loss of generality, assume that the lead-
ing monomial of S is m(X )W (X ). Now reduce S by T (Y\X ). This replaces m(X )W (X )
by a monomial & corresponding to the result of toppling X and then Y\X from u. The
other monomial is m(Y )W (Y ) which is now the leading monomial since it contains
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variables with indices in Y . Then perform a reduction by T (X \Y ). By the lemma, this
replaces m(Y )W (Y ) by & and leads to 0, as was to be proved.
To conclude the proof of Theorem 10, it remains to be shown that the S-polynomials

S(T (X ); xn−1) also reduce to 0, but that follows from Buchberger’s 2rst criterion (when
the leading terms are relatively prime, the S-polynomial reduces to 0).

3.2. Minimal Gr;obner basis

The Gr$obner basis introduced in Theorem 10 contains 2n−1 elements, where n is the
number of vertices of the graph. In this section we exhibit a minimal Gr$obner basis
for the toppling ideal with respect to the same reverse lexicographic order.
Recall that a Gr$obner basis is minimal when its elements have leading coeScient 1

and no leading monomial divides another leading monomial in the basis.

De�nition 13. A subset X of vertices of the graph G=(V; E) is well connected if the
subgraphs of G induced by X and RX are both connected.

Theorem 14. The set Sc of toppling polynomials corresponding to the sets X ⊆
{1; : : : ; n − 1} which are well connected is a minimal Gr;obner basis for the toppling
order.

Proof. The proof consists in pruning T by successively removing polynomials whose
leading monomial is divisible by the leading monomial of another element of T. Let
X be a set of vertices which is not well connected, we show that T (X ) is removed
during this process.
First, if X is not connected, then for any connected component C of X the leading

monomial of T (C) divides that of T (X ) since di( RC)=di( RX ) for i∈C.
If RX is not connected, one of its connected components, say C, does not contain n.

Then the leading monomial of T (X ∪C) divides that of T (X ): for i∈X , X ∪C ⊂ RX
implies that di(X ∪C)6di( RX ), while for i∈C, di(X ∪C)= 0.
We now prove that no toppling polynomial corresponding to a well-connected set

can be removed. Let X and Y be elements of Sc and assume the leading monomial of
T (Y ) divides that of T (X ). We now show that either Y ⊂X and the subgraph induced
by X is not connected or Y �⊂X and the subgraph induced by RX is not connected. Both
cases lead to a contradiction.
If Y ⊂X , for any i∈Y , di( RY )6di( RX ), so that any neighbour of i in RY is also in

RX , hence there is no edge from Y to X \Y and the subgraph induced by X is not
connected.
Otherwise, if Y �⊂X , for any i∈Y\X , di( RY )= 0, hence there is no edge from Y\X to

RX \Y , which is not empty since it contains the sink n. Therefore, the subgraph induced
by RX is not connected.

Note that in the worst case, the minimal Gr$obner basis still contains 2n−1 elements
for the complete graph, but it can be much smaller, as shown by the examples below.
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4. Recurrent con�gurations and irreducible monomials

As mentioned before, the quotient Q[x1; : : : ; xn]=IG is a Q-vector space whose di-
mension is the order of the group of recurrent con2gurations. From a Gr$obner basis
for IG, a basis of this vector space is given by the set of monomials that do not
reduce to 0 by the basis. We call these reduced monomials. In this section we exhibit
a simple bijection between reduced monomials for the toppling order and recurrent
con2gurations.

4.1. Bijection

Let �=(d1−1; : : : ; dn−1) and ( be the mapping from the set of stable con2gurations
onto itself given by ((u)= �−u. We also denote ((M) :=((a1; : : : ; an) for a monomial
M = xa11 · · · xann .

Theorem 15. The mapping ( de6nes a bijection between the set of reduced monomials
with respect to the toppling order and the set of recurrent con6gurations.

Proof. Since the number of reduced monomials is the order of the group, it is suScient
to prove that for each reduced monomial M , ((M) is recurrent.
We use Proposition 6 to characterize recurrent con2gurations. Suppose that u=((M)

is not recurrent and consider v= u+ �. Stabilizing the con2guration v yields the con-
2guration v̂. In the sequence of topplings, the subset X of vertices that do not topple
is not empty. Let j be a vertex in X , since it does not topple, v̂j¡dj− 1. However, in
the sequence v ∗→ v̂, j has received dj( RX ) grains since only vertices not in X topple.
Hence vj¡dj − 1 − dj( RX ). On the other hand, if B(X ) is the leading monomial of
T (X ),

w = ((B(X )) = (d1 − 1− d1( RX ); : : : ; dn − 1− dn( RX )):

Thus, w contains more grains on each cell than u. This implies that (−1(w) divides
M which is impossible since M is reduced.

4.2. Group operation

For a con2guration u, let �(u) denote the reduced con2guration obtained from the
monomial associated to u by performing reductions in the Gr$obner basis of IG asso-
ciated with the toppling order. We now exploit ( and � to make the link between
the operation of the group of recurrent con2gurations and reduction by the Gr$obner
basis.

Proposition 16. If u is a con6guration then the recurrent con6guration equivalent
to u is ((�(((�(u)))). The identity in the group of recurrent con6gurations is
((�(�)).
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Proof. For any con2guration u, �(u) is a con2guration which is equivalent to u. By
Theorem 15, ((�(v)) is a recurrent con2guration for any con2guration v. This con2g-
uration is equivalent to ((v). Since ( is an involution, taking v=((�(u)) concludes
the 2rst part of the proof.
The identity of the group is the recurrent con2guration equivalent to 0=((�),

whence the second part.

Corollary 17. For two recurrent con6gurations u and v;

u⊕ v = ((�(((u) + ((v))):

4.3. Application: computation of the identity

Proposition 16 yields the following algorithm to compute the identity on a graph
G with sink s: beginning with con2guration �=(d1 − 1; : : : ; dn − 1), perform the set
topplings for all well-connected subgraphs of G\{s} (this is equivalent to reducing
by the Gr$obner basis for the toppling order). When no further set toppling can be
performed, for each cell i replace its number of grains ni with di − ni. The resulting
con2guration is the identity.
The set of well-connected subgraphs can be identi2ed for special classes of graphs.

For instance, the (p; q)-grid, whose vertex set C consists of cells (i; j) (16i6p and
16j6q) and a sink s, and where each cell (i; j) in the boundary of the grid (i.e.,
i∈{1; p} or j∈{1; q}) is adjacent to the sink. A path is a sequence of adjacent cells.
A polyomino - is a subset of C\{s} such that two elements of - are connected
by a path consisting of cells of - and two elements R- are connected by a path in
R-. In this con2guration, polyominoes correspond to the well-connected subgraphs of
the grid.
When a con2guration contains two reducible polyominoes -1 and -2, it may happen

that the toppling of -1 leads to a con2guration in which -2 is no further reducible.
However the algorithm yields the same reduced con2guration when toppling -1 or -2

2rst. This is a consequence of the fact that these topplings correspond to reductions
by the Gr$obner basis.
Note however, that our algorithm is not very eScient for this type of graph since the

determination of a reducible polyomino is not an elementary operation. The following
examples are given to illustrate the diLerent aspects of the correspondence between
sandpiles and Gr$obner bases of toppling ideals.

4.4. Examples

4.4.1. Multigraph with 4 vertices
This example corresponds to the graph displayed in Fig. 1. The structure of the

graph is reQected by the toppling polynomials for the vertices:

x31 − x22x3; x
3
2 − x21x4; x

2
3 − x1x4; x24 − x2x3; x4 − 1:
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Fig. 1. Multigraph with 4 vertices.

Fig. 2. Staircase of the Gr$obner basis.

The minimal Gr$obner basis for the graded reverse lexicographic order on mono-
mials is

x23 − x1; x32 − x21 ; x
3
1 − x2; x2x3 − 1; x2x1 − x3; x3x21 − x22 ; x4 − 1:

Apart from the last, these polynomials correspond respectively to well-connected sub-
graphs with vertices:

{3}; {2}; {1}; {1; 2; 3}; {1; 2}; {1; 3}:
Given a Gr$obner basis G= {p1; : : : ; pk}⊂K[x1; : : : ; xn] for any 2eld K, it is usual
to represent the leading monomials of the pi on an integer lattice in n dimensions.
Each polynomial p is associated to a point c(p) whose coordinates are the expo-
nents of its leading monomial. The leading terms of the pi generate the ideal of
leading terms of polynomials in the ideal. These leading terms are thus exactly repre-
sented by

⋃
c(pi) +Nn. This removes from Nn a staircase shape whose lattice points

correspond to the quotient (see Fig. 2). Their number is exactly the order of the
group of recurrent con2gurations. Note that in our example, those seven monomials
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are {1; x1; x21 ; x2; x22 ; x3; x2x3}, none of which correspond to a recurrent con2guration.
However, applying ( yields the recurrent con2gurations as explained above.

4.4.2. The 2× 2 grid
Our second example is the 2× 2 grid consisting of 4 cells, each connected twice to

the sink. The sandpile group of this grid, computed for instance in [8], is the product
of two cyclic groups of orders 24 and 8.
The toppling polynomials of vertices, including the sink, are

x41 − x2x3x25 ; x
2
2 − x1x4x25 ; x

4
3 − x1x4x25 ; x

4
4 − x2x3x25 ; x

8
5 − x21x

2
2x

2
3x

2
4 :

The computation of the Gr$obner basis of the ideal generated by these polynomials and
x5 − 1 with the graded lexicographic order yields

x41 − x2x3; x42 − x1x4; x43 − x1x4; x44 − x2x3; x5 − 1; x21x
2
2x

2
3x

2
4 − 1;

x31x
3
2 − x3x4; x31x

3
3 − x2x4; x32x

3
4 − x3x1; x33x

3
4 − x2x1;

x31x
2
3x

3
4 − x22 ; x

3
1x

2
2x

3
4 − x23 ; x

2
1x

3
2x

3
3 − x24 ; x

3
2x

3
3x

2
4 − x21 :

The irreducible con2gurations correspond to monomials which are not divisible by one
of the following monomials:

x41 ; x
4
2 ; x

4
3 ; x

4
4 ; x5; x

2
1x

2
2x

2
3x

2
4 ; x

3
1x

3
2 ; x

3
3x

3
4 ; x

3
1x

2
3x

3
4 ; x

3
1x

2
2x

3
4 ; x

2
1x

3
2x

3
3 ; x

3
2x

3
3x

2
4 :

It is easy to compute that the number of these irreducible monomials is 192, as
expected.
Note that the dimension of the quotient is an invariant of the ideal and thus does

not depend on the order for which the Gr$obner basis has been computed. Computing
the Gr$obner basis with the pure lexicographic order gives

x1 − x234 x
4
3 ; x2 − x73x

12
4 ; x

8
3 − x164 ; x

24
4 − 1; x5 − 1:

From this follows that x4 is of order 24 and that any element can be expressed as a
product xi3x

j
4 where 06i67 and 06j623, which gives that the order of the group is

192. Also, since x1 and x2 can be expressed in terms of x3 and x4, it is seen that the
group has two generators.

4.4.3. The 3× n grid
Our last example is a 3× n grid for which we compute the identity using the al-

gorithm described in the previous section. Each element of the border of the grid is
connected once to the sink, except the corners, which are connected twice to it. We
2rst consider the grid corresponding to �, with 3 grains of sand in each cell. Then
we compute the reduced form of this con2guration by successively 2nding a well-
connected subset X of cells, such that each cell x in the boundary of X contains at
least as many grains as x has neighbours in RX . At each step we perform the toppling
of the whole set of cells which are in X . The process ends when there is no such



14 R. Cori et al. / Theoretical Computer Science 276 (2002) 1–15

Fig. 3. Computation of identity on the 3× (n + 6) grid.

set X . Note that since the T (X ) constitute a Gr$obner basis the order in which the
topplings are performed and the choice of the subsets X which are toppled have no
inQuence on the 2nal result. The successive steps of the algorithm and its result are
displayed in Fig. 3. The number of grains is indicated in each cell and the coloured
area corresponds to the polyomino being used for the toppling. The last grid gives the
identity, obtained by complementing with �. The process depicted in this 2gure applies
to any 3× (n+ 6) grid. Experiments also lead us to the following.

Conjecture 18. The identity in the k× (n+2k) grid contains a k× n rectangle of 2’s
in the middle.

However, we do have an (inelegant) proof for a k × (n+ 4k) grid.

4.4.4. The square grid
We brieQy comment on an experiment on the 100× 100 grid. The minimal Gr$obner

basis is clearly out of reach because of its cardinality. However, the polyomino ap-
proach is still possible, provided the polyominoes are chosen in an appropriate way.
We use the algorithm from [9]: if u is the con2guration for which we want to 2nd a
reducing polyomino, we add �n to u and topple, the set of vertices that do not topple
is an appropriate polyomino. We display in Fig. 4 the number of polyomino topplings
in which each cell has been involved during the computation of the identity using this
technique. This is related to the intrinsic complexity of computing the identity.
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Fig. 4. Number of topplings to compute the identity on the 100 × 100 grid. From white (less than 10) to
black (more than 80).
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