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Abstract 

Learning of large-scale neural networks suffers from computational cost and the local minima 
problem. One solution to these difficulties is the use of modular structured networks. Proposed 
here is the learning of modular networks using structural learning with forgetting. It enables the 
formation of modules. It also enables automatic utilization of appropriate modules from among 
the previously learned ones. This not only achieves efficient learning, but also makes the resulting 
network understandable due to its modular character. 

In the learning of a Boolean function, the present module acquires information from its subtask 
module without any supervision. In the parity problem, a previously learned lower-order parity 
problem is automatically used. The geometrical transformation of figures can be realized by a 
sequence of elementary transformations. This sequence can also be discovered by the learning 
of multi-layer modular networks. These examples well demonstrate the effectiveness of modular 
structured networks constructed by structural learning with forgetting. 

1. Introduction 

Neural networks are widely used in many fields such as pattern recognition [ 1,5, 
61. The backpropagation learning (hereafter referred to as BP learning) is the most 
frequently used learning method in neural networks. It, however, suffers from serious 
difficulties: computational cost and the local minima problem [4] in case of large-scale 
homogeneous networks. There have been two alternative approaches to the solution to 
these difficulties. 

The first approach is the use of modular structured networks, i.e., a large-scale network 
composed of modules, each of which performs a simple task [ 31. A module, here, means 
a group of units which jointly perform a function. It is assumed that only the output of 
each module is accessible from its outside. 
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The second approach is the use of innate network structure and connection weights 
[ I]. In this approach, the role of learning is limited to only small perturbations around 

true values. 
In the present paper, I propose a novel method for the learning of modular structured 

networks using the previously proposed structural learning with forgetting [2]. The 
essence of the previous proposal is that the forgetting of connection weights makes 
unnecessary connections fade out, thus generating a skeletal network. 

The structural learning with forgetting enables formation of modules by eliminating 

unnecessary connections due to forgetting. It also enables automatic utilization of appro- 
priate modules from among the previously learned ones. This not only achieves efficient 
learning, but also makes the resulting network understandable due to its modular char- 

acter. These characteristics are in sharp contrast to the learning of conventional modular 
structured networks [ 51. 

In the following chapter, an outline of structural learning with forgetting is presented. 

Chapter 3 explains the formation and learning of modular structured networks. This 

is followed by various examples demonstrating the effectiveness of the learning of 

modular structured networks by structural learning with forgetting: Boolean functions in 
Chapter 4, the parity problems in Chapter 5 and geometrical transformation of figures 

in Chapter 6. Chapter 7 concludes the paper. 

2. Structural learning with forgetting 

A major purpose of structural learning with forgetting is the discovery of regularities 
and rules in training data. Its essential idea is that forgetting or decay of connection 
weights enables the emergence of regularities and rules in the form of skeletal network 

structure. The crucial point is the way how connection weights are decayed at each 
weight change. The criterion function adopted here is: 

~i=C(O1-‘a)*+E’~~lM’;,;l (1) 
k i i 

where the first term on the right-hand side is the criterion in the BP learning, i.e., the 
sum of squared output errors, the second term is a penalty criterion preventing a network 
from becoming complex, c’ is its relative importance, Jf is a total criterion, WQ is the 
connection weight from unit j to unit i, ok is the output of output unit k, and tk is its 
target. 

The change of the connection weight, Wij, is represented as, 

Awii = -772 = Awji - csgn(wii) 
11 

where Aw:, (= -vJJ/awij) is the weight change due to the BP learning, 77 is a learning 
rate, F (= 7~‘) is the amount of forgetting at each weight change, and sgn( x) is the 
sign function, i.e., 1 when x is positive and -1 otherwise. 

A quasi-linear form of wi,i in Eq. ( I ) is simple and indicates the preference of simple 
structured networks over complex ones. Eq. (2) shows that each connection loses its 
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weight by the constant amount, E, at each weight change. This is the reason why it is 
named forgetting. 

Due to the above forgetting, the resulting network is composed of only the connections 
which are definitely necessary. The resulting skeletal network structure reveals regularity 

in training data. The learning of networks of various sizes by trial and error is no longer 
necessary, because a priori information on the network structure such as the number of 
layers and the number of hidden units at each hidden layer is not required. 

3. Module formation and learning of modular networks 

The learning of modular structured networks here is performed in two stages: the first 
stage being the learning of connection weights in each module and the second stage 

being that of inter-module connection weights. Merits of using modular networks are 

the following. Firstly, because each module is small, computational cost and the local 
minima problem in the first stage is not serious. 

Secondly, computational cost in the second stage is not so serious as that of a homo- 
geneous structured network, because component modules have already been learned. 

Thirdly, a resulting modular network is easy to understand, because understanding 
how component modules are connected to each other is far simpler than understanding 
how separate units are connected to each other. Whether or not this merit holds depends 

on learning methods. As shown previously, structural learning with forgetting generates 
networks with a small number of connections. This property greatly helps to understand 

the resulting modular networks. The BP learning, however, does not share this property. 
Lastly, as will be shown later, learning becomes more efficient as it proceeds, because 

many previously learned modules become available. This merit is not only useful from 

a practical point of view, but also interesting from a cognitive science point of view 
because of its similarity to the learning by humans. 

Fig. 1 illustrates how a module is formed. A task is given to a group of units 
(called output units) from the outside as pairs of input and target outputs. Suppose the 
input layer contains all the necessary information to do the given task. The network 
is composed of a group of hidden units in addition to those input and output units, 
and can freely use these hidden units. The structural learning with forgetting generates 
a subnetwork with a small number of input and hidden units due to the elimination 

of connections. The resulting subnetwork in Fig. 1 can be interpreted as a module 

composed of output units and relevant hidden units. 
In contrast to this, the BP learning uses up all the input and hidden units. Therefore 

the resulting network cannot be interpreted as a module. 
It is not a realistic assumption that the learning of a module is based solely on 

information from the input layer. The more complex a task becomes, the larger the size 
of a resulting module becomes. This increases the seriousness of computational cost and 

the local minima problem for the learning of a new module. 
A more realistic assumption is that a module, during its learning, may acquire infor- 

mation either from the input layer or from previously learned modules. Fig. 2 illustrates 
an example of a 2-module network. Suppose module A is to learn a task, and module B 
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output layer 

0 0 0 0 
input layer 

Fig. I. Formation of a module. 

f=(aub)n(cue) 

Fig. 2. An example of a network composed of two modules and the input layer. 

has already learned its subtask. Suppose further that the input layer contains all the nec- 
essary information on those tasks. Module A, during its learning, acquires information 

on the subtask from module B, not from the input layer. The reason is the following. 
Information in module B is more condensed than that in the input layer. Therefore a 
module acquiring information from module B is simpler than the one acquiring infor- 
mation solely from the input layer. The property of structural learning with forgetting 
enables the generation of the former module. 

Generally speaking, if a module uses outputs of previously learned modules, its 
learning becomes more efficient and a resulting network is constructed by assembling 

the previously learned modules. The penalty term in Eq. ( 1) helps the generation of 
this simplified network. 

As learning proceeds, the number of available modules increases. The essential prob- 
lem is this: from where does a module acquire information for its learning? This prob- 
lem becomes serious as the number of available modules increases. As will be shown 
in Section 4.2, appropriate modules can be selected without any supervision, provided 
structural learning with forgetting is adopted. 

4. Modular networks for Boolean functions 

The purpose of the learning of Boolean functions is not merely to realize the mapping 
from input to output, but also to discover forms of Boolean functions based on input 
and output data. 
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Fig. 3. Output and target output patterns of module B under various degrees of learning performance in terms 
of the criterion of squared output errors. The height of each bar indicates the output value. Four bars in a 
row illustrate the output values corresponding to the four training inputs: (c, e) = ( 1.0). (0, 1 ), (0,O) and 
( I,1 ). The length of the solid line on the right signifies the value of 1. 

4.1. Sequential leaning of a 2-module network 

The problem considered here is sequential learning, i.e., one of the modules has 
finished learning and the other one learns using the outputs of the previously learned 
module. In other words, the information flow between the two modules is one-directional. 

Suppose module A in Fig. 2 is to learn the Boolean function, f = (a U b) fl (c U e), 

whefe U and 17 stand for disjunction and conjunction, respectively. Suppose further that 
module B has already learned the subtask, g = (c U e), to some degree. Without module 
B, module A acquires information solely from the input layer. The existence of module 
B is expected to accelerate the learning of module A. 

Fig. 3 illustrates output patterns of module B under various degrees of learning per- 
formance: complete learning, XGiteration learning, 200-iteration learning, loo-iteration 
learning and 50-iteration learning. The output pattern in the complete learning case is 
the same as the target output pattern. The 50-iteration learning case is quite immature, 
but can just differentiate between 0 and 1. 

In the complete learning case, it is expected that module A uses the output of module 
B during learning. An interesting question that next arises is whether or not module A 
acquires information on (c U e) from incompletely learned module B instead of that 
from the input layer. Fig. 4 displays this result: percentages of the connection weight 
from module B to module A. 

Fig. 4 indicates that in all cases except the 50-learning case the connection weights 
from the input units, c and e, to module A diminishes to zero, and the connection 
weight from module B to module A increases during learning. In the 50-learning case 
the learning performance of module B is too poor to be used by module A. In the 
lOO-learning case, although only partly shown in Fig. 4, the connection weight from 
module B to module A becomes completely dominant after 50,000 iterations. Fig. 4 
also illustrates that the better the learning performance of module B is, the faster the 
connection from module B to module A becomes dominant. 

Fig. 5 shows that the higher the learning performance of module B is, the faster the 
learning of module A becomes. This is in accordance with the difference of the speed 
at which the connection from module B to module A becomes dominant, as in Fig. 4. 

The reorganization of modular structured networks is also noteworthy. Fig. 6 illustrates 
the result of learning; modules A and B independently learn their tasks using structural 
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Fig. 4. Percentages of the connection weight from Inodule 5 to module A, i.e., 
IO0 x / WAB I/( 1 WAB/ + 1 WA.input I), where 1 WAB 1 is the absolute value of the connection weight from module 

B to module A, and I WA.i~~pu~ I is the sum of the absolute values of the connection weights from the input 

units, c and r, to module A. The vertical axis indicates the percentage. The horizontal axis represents the 

number of iterations during learning. Since the initial connection weight from module B to module A is set 

to zero, the initial value of the percentage is also zero. The percentage of connections from the input units, c 

and r. to module A is calculated by subtracting the above percentage from 100. The parameters of learning 

are: a learning rate 17 = 0.1, a momentum (Y = 0.2 and the amount of forgetting E = I Ow4. 

number of iterations 
01 

0 5000 10000 
. cmlplete learning . xmteratmn learn,“* 

Fig. 5. Learning speed of module A under various degrees of learning performance of module B. The 

parameters of learning are the same as in Fig. 4. 

learning with forgetting based on information from the input layer. Starting from this 

modular network, structural learning with forgetting generates Fig. 7. These two figures 
indicate that the initial connections from the input units, c and e, to module A are 

completely replaced by the connection from module B to module A. This can be regarded 
as a simple example of the process in which pieces of knowledge are reorganized into 

more coherent and amalgamated knowledge. 

4.2. Sequential learning of a multiple-module network 

Suppose a new module may acquire information from either previously learned mod- 
ules or the input layer. From where does the present module acquire information for its 
learning? 

Module A is to learn the Boolean function, f = (a U 6) ~7 (c U e). Five modules, 

BI , B2, B3, B4 and B5, are to learn the Boolean function, (cue), which correspond to the 
complete-learning, 500-iteration learning, 200-iteration learning, loo-iteration learning 
and SO-iteration learning, respectively. Fig. 8 displays how the information source on 
(cue) changes as the learning proceeds. It shows that in the beginning stage information 
both from the modules, Bls, and from the inputs, c and e, is used, but as learning 
proceeds information from the best learned module, BI , to module A becomes dominant. 
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Fig. 6. The independently learned modular structured network. Boldness of each connection is approx- 
imately proportional to the absolute value of the corresponding connection weight. Module A learns 
f = (N U h) fl (c U e), and module B learns g = (c U e). The parameters of leaming are the same as 
in Fig. 4. 

module A module ll 

input layer 

Fig. 7. The modular structured network after reorganization. Module B learns g = (c U e), and module A 
learns f = ((1 U b) I? (c U e) using the output of module B. The parameters of learning are the same as in 
Fig. 4. 

percentage 

‘“I % 7 

Fig. 8. The percentage of the connection weight concerning (c U e) from each module, Bi, to module A. 
The cases where the percentage is almost zero throughout learning are not shown here. The initial connection 
weight from each module, Bi, to module A is set to zero. The percentage of connection weights from the 
inputs, c and e, to module A is calculated by subtracting the sum of the above percentages from 100. The 
parameters of learning are the same as in Fig. 4. 

In other words, in cases where multiple modules are available, the best module for 
the learning of the present module is automatically selected, provided structural learning 
with forgetting is used. This property of the appropriate selection without any supervision 
is desirable for the learning of modular structured networks. 

In case of the BP learning, on the other hand, the information on (c U e) comes 
from all the modules and the input layer, as in Fig. 9. Generally, in the BP learning the 
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Fig. 9. The percentage of the connection weight concerning (C U e) from each module, Bi, to module A. Not 

all the cases are shown here for clarity. The parameters of learning are: the learning rate r] = 0.1 and the 

momentum (Y = 0.2. 
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Fig. IO. The percentage of the connection weight concerning (c U e) from one module to the other. The 

parameters of learning are the same as in Fig. 4. 

present module acquires information from modules whose outputs have correlation with 
the present target output. For this reason, the BP learning is not suited for the learning 
of modular networks. 

4.3. Concurrent learning of a 2-module network 

Here two modules learn concurrently, i.e., each module can use the output of the 
other one. Suppose module A is to learn the Boolean function, f = (a U b) n (c U e), 

and module B is to learn g = (c U e). These two modules start learning at the same 
time. Qualitatively speaking, the learning of module B precedes that of module A due 
to its simplicity. 

In the beginning stage of learning, both modules acquire information on (c U e) from 
the input layer. Since the learning of module B becomes almost complete in about 2,000 
iterations, module A begins to acquire information on (c U e) from module B instead of 
acquiring it from the input layer. Fig. 10 illustrates that the percentage of the connection 
weight from module B to module A increases and that from module A to module B 
diminishes to zero as learning proceeds. The percentage of connection weights from the 
input layer to module A is calculated by subtracting the above percentage from 100. 

This result shows that even if multiple modules learn concurrently, a simple modular 
network can emerge, provided there exist part-whole relations among tasks to be learned. 



M. Ishikawa/Artificial Intelligence 75 (1995) 51-62 59 

3 

P 
r-k hldden 

layer 

Fig. II. Learning of the parity problem of order 5 using the modular structured network. The parameters of 
learning are the same as in fig. 4. 

5. Modular networks for parity problems 

A parity problem is to judge whether the number of I’s in a binary input vector is 
odd or even; when it is odd, the output is 1 and when it is even, the output is 0. The 
parity problem with 12 inputs is called the parity problem of order n. 

As the order of a parity problem increases, its learning becomes more difficult due 
to the local minima problem. When a parity problem of some order has already been 
solved, it helps solve parity problems of higher orders because of the similarity among 
parity problems of various orders. 

In this chapter, a trial is performed to solve a high-order parity problem under the 
assumption that lower-order parity problems have already been solved and their outputs 
are available for its learning. 

Let the parity problems of orders 2, 3 and 4 be P2, P3 and P4, respectively, and 
their inputs be (xt , x2), (xl, x2, x3) and (xl, x2, x3, x4), respectively. Suppose, in the 
learning of the parity problem of order 5, Ps, not only the inputs, (x1, x2, x3, x4, x5), 
but also the outputs of lower-order parity problems, 4,Ps and P4 are available as shown 
in Fig. 11. The structural learning with forgetting using all 32 (= 25) training samples 
generates the modular network constructed as the exclusive or of two inputs: P4, which 
has the largest similarity to Ps among modules and the additional input unit, x5. It 
clearly reveals the structure of the parity problem Ps. It is to be noted that the inputs, 
(xt , x2, x3, x4), and lower-order parity problems, P2 and 4, are not used in solving the 
parity problem, Ps. 

This result can be extended to parity problems of higher orders. The parity problem 
of order n, P,,, is represented as the modular network constructed as the exclusive or of 
P,_I and the additional input unit, x,,. 

6. Modular networks for geometrical transformation of figures 

The property that only the appropriate modules among previously learned ones are 
used and all the connections from other modules diminish without any supervision is 
useful in the learning of modular structured networks. Up to now all the previously 
learned modules are located at the same level as the input layer. In other words, only as 
it were flat modular networks have been considered. 

In this chapter, the learning of a sequence of modules by dynamically concatenating 
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Table I 
Modules for elementary geometrical transformations 

of figures. 

Module Elementary transformation 

MI 
M? 
M7 
M4 

M5 

Mh 

M7 

MU 

no transformation 

rotation of 90’ clockwise 

rotation of 180’ clockwise 

rotation of 270’ clockwise 

rightward translation by one block 

leftward translation by one block 

upward translation by one block 

downward translation by one block 

Fig. 12. A 24ayer modular structured network. Fach module layer is composed of eight modules. Each module 

is realized by a 2-layer subnetwork. 

previously learned modules is considered. As an example, geometrical transformation 
of simple figures is adopted here. Table 1 shows a list of elementary geometrical 
transformations of figures. Each of these geometrical transformations corresponds to a 

module. 
Here, a simple geometrical transformation realized by concatenating two modules is 

considered. Fig. 12 illustrates an example of a multi-layer modular structured network. 

Both the first and the second module layers have 8 modules in Table 1. Each module can 
easily be realized by a 24ayer neural subnetwork and is held fixed during the learning 
of the modular network. At first glance Fig. 12 seems to be a 6-layer network, but since 
the input layer and the lower layer of the first module layer are one and the same layer, 
it actually is a Slayer network. In Fig. 12 all the layers except the output layer use 
linear units instead of sigmoidal units. 

The problem considered here is to discover a sequence of geometrical transformation 
modules based on four pairs of input and output figures in Fig. 13. The supposed solution 
to this problem is the rotation of 90” clockwise followed by the upward translation by 
one block. 

If the BP learning is used in this problem, the realization of the mapping from 
input figures to output figures is straightforward, but the resulting inter-module con- 
nections cannot be interpreted as a sequence of geometrical transformations. Instead, 
they correspond to a complex combination of all the transformations and are impossible 
to understand. Therefore structural learning with forgetting plays an essential role in 
discovering a sequence of geometrical transformation modules. 
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output figures 

61 

input fiaures 

Fig. 13. Input figures and taqet output figures. The former is the figure before transformation and the latter 
is the one after transformation. 

Given four pairs of input figures and target output figures, inter-module connections 
are trained. The structural learning with forgetting generates a single path or at most a 

few parallel paths from input to output, explicitly presenting a sequence of geometrical 
transformation modules. 

Ten simulations with different initial connection weights are tried. The solution of 
leftward translation by one block followed by rotation of 90” clockwise is obtained five 
times. In this case, only the connections from MS in the first module layer to M:! in the 
second module layer and the connections from this M2 to the output layer remain, and 
all other connections fade out. In three out of ten cases, the supposed solution of the 
rotation of 90” clockwise followed by the upward translation by one block is obtained. 
In two out of ten cases, both solutions appear simultaneously. 

Generally speaking, it is impossible to know a priori how many layers of modules 
are necessary. Preparing an excess number of module layers solves this problem; if the 
number of module layers is too large, no transformation, MI, in Table 1 can be used 
for necessary number of times. 

In cases where a given task does not depend on a sequence of modules, the problem 
is reduced to the discovery of a subset of modules instead of a sequence of modules. In 
other words, only one module layer is sufficient to solve this kind of problems. 

7. Conclusions 

In the paper, I have demonstrated that structural learning with forgetting can efficiently 
construct modular networks in various examples: Boolean functions, parity problems, 
and the transformation of geometrical figures. The property that appropriate modules can 
automatically be selected without any supervision is especially important in the learning 
of modular networks. 

The use of previously learned modules helps shorten the required learning time. It 
also simplifies the resulting modular networks, because previously learned modules can 
be utilized as building blocks. This could be seen as a model of progressive learning 
based on the previously learned results and is similar to the layers of sociev in the 
society of mind [ 31. 
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