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a b s t r a c t

In this paper we are concerned with the oscillation of solutions of a certain higher order
linear neutral type difference equation with an oscillating coefficient. We obtain some
sufficient criteria for oscillatory behaviour. In particular, the results are new even when
n = 2 and there are few results in the case of p is an oscillatory function.
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1. Introduction

We consider the higher order linear difference equation of the form

∆n [y(k)+ p(k)y(τ (k))]+ q(k)y(σ (k)) = 0, N 3 n ≥ 2, k ∈ N (1)

where N is a set of natural numbers. Throughout this work, we assume that

(i) p is an oscillating function with limk→∞ p(k) = 0,
(ii) q(k) ≥ 0 for k ≥ k0,
(iii) τ(k) < kwith τ(k)→+∞ as k→+∞ and σ(k) < k with σ(k)→+∞ as k→+∞.

By a solution of Eq. (1), wemean any function y(k) : Z→ R (Z andR are set of integers and real numbers respectively)which
is defined for all k ≥ mini≥0{τ(i), σ (i)} and satisfies Eq. (1) for sufficiently large k. We consider only such solutions which
are nontrivial for all large k. As it is customary, a solution {y(k)} is said to be oscillatory if the terms y(k) of the sequence are
not eventually positive or not eventually negative. Otherwise, the solution is called nonoscillatory. A difference equation is
called oscillatory if all of its solutions oscillate. Otherwise, it is nonoscillatory.
Neutral difference equations find numerous applications in natural science and technology. For instance, they are

frequently used for the study of distributed networks containing lossless transmission lines. Recently, much researches
have been carried out on the oscillatory and asymptotic behaviour of solutions of higher order delay and neutral delay type
difference equations (see [1] Theorems 22.2, 22.3, 22.4, and Theorem 22.5, [2–12]) where either the function p(k) ≥ 0 or
p(k) ≤ 0. But the results on oscillation of Eq. (1) when the coefficient p is an oscillatory function are relatively scarce, see [4].
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The purpose of this paper is to study oscillatory behaviour of solutions of Eq. (1) and to give some comparison results. For
the general theory of difference equations, one can refer to [1–3,6,7,9]. Many references for the applications of the difference
equations can be found in [6,7,9].
For the sake of convenience, the function z(k) is defined as

z(k) = y(k)+ p(k)y(τ (k)). (2)

2. Some auxiliary lemmas

Lemma 2.1 ([1], p. 56, 57, Lemma 1.13.1). Let y(k) be defined for k ≥ k0 ∈ N, and y(k) > 0 with ∆ny(k) of constant sign for
k ≥ k0 and not identically zero. Then, there exists an integer m, 0 ≤ m ≤ n with (n+m) odd for ∆ny(k) ≤ 0 and (n+m) even
for ∆ny(k) ≥ 0 such that

(i) m ≤ n− 1 implies (−1)m+i∆iy(k) > 0 for all k ≥ k0, m ≤ i ≤ n− 1
(ii) m ≥ 1 implies∆iy(k) > 0 for all large k ≥ k0, 1 ≤ i ≤ m− 1.

Lemma 2.2 ([1], p. 57, Lemma 1.13.2). Let y(k) be defined for k ≥ k0, and y(k) > 0 with ∆ny(k) ≤ 0 for k ≥ k0 and not
identically zero. Then, there exists a large integer k1 ≥ k0 such that

y(k) ≥
1

(n− 1)!
(k− k1)n−1∆n−1y(2n−m−1k), k ≥ k1

where m is defined as in Lemma 2.1. Further, if y(k) is increasing, then

y(k) ≥
1

(n− 1)!

(
k
2n−1

)n−1
∆n−1y(k), k ≥ 2n−1k1.

3. Main results

Theorem 3.1. Assume that n is even and every bounded solution of the first order delay difference equation

∆z(k)+
1

(n− 1)!
1

2(n−1)2+1
q(k)σ n−1(k)z(σ (k)) = 0 (C1)

is oscillatory. Then every bounded solution of Eq. (1) is either oscillatory or tends to zero as k→+∞.

Proof. Assume that Eq. (1) has a bounded nonoscillatory solution y(k). Without loss of generality, assume that y(k) is
eventually positive (the proof is similar when y(k) is eventually negative). That is, y(k) > 0, y(τ (k)) > 0 and y(σ (k)) > 0
for all k ≥ k1 ≥ k0. Further, suppose that y(k) does not tend to zero as k→∞. By (1) and (2) we have

∆nz(k) = −q(k)y(σ (k)) ≤ 0, k ≥ k1. (3)

It follows that ∆az(k) (a = 0, 1, 2, . . . , n − 1) is strictly monotone and eventually of constant sign. Since y(k) is bounded
and does not tend to zero as k → ∞, by virtue of (i), limk→∞ p(k)y(τ (k)) = 0. Then we can find a k2 ≥ k1 such that
z(k) = y(k) + p(k)y(τ (k)) > 0 eventually and z(k) is also bounded for sufficiently large k ≥ k2. Because n is even and
(n + m) odd for ∆nz(k) ≤ 0 and z(k) > 0 is bounded, by Lemma 2.1, since m = 1 (otherwise, z(k) is not bounded) there
exists a k3 ≥ k2 such that for k ≥ k3

(−1)i+1∆iz(k) > 0 (i = 1, 2, . . . , n− 1). (4)

In particular, since ∆z(k) > 0 for k ≥ k3, z(k) is increasing. Since y(k) is bounded, limk→∞ p(k)y(τ (k)) = 0 by (i). Then
there exists a k4 ≥ k3 by (2)

y(k) = z(k)− p(k)y(τ (k)) ≥
1
2
z(k) > 0

for k ≥ k4. We may find a k5 ≥ k4 such that for k ≥ k5 we have

y(σ (k)) ≥
1
2
z(σ (k)) > 0. (5)

From (3) and (5), we can obtain the result of

∆nz(k)+
1
2
q(k)z(σ (k)) ≤ 0, (6)
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for k ≥ k5. Since z(k) defined for k ≥ k2, and z(k) > 0 with∆nz(k) ≤ 0 for k ≥ k2 and not identically zero, applying directly
Lemma 2.2 (second part, since z(k) is increasing) in the inequality (6), we obtain that the above inequality (6) becomes

∆nz(k)+
1
2

1
(n− 1)!

(
σ(k)
2n−1

)n−1
q(k)∆n−1z(σ (k)) ≤ 0, k ≥ k6 ≥ k5.

Let us take u(k) = ∆n−1z(k) > 0. Thus u(k) satisfies that for k, which is large enough,

∆u(k)+
1
2

1
(n− 1)!

(
1
2n−1

)n−1
q(k)σ n−1(k)u(σ (k)) ≤ 0, k ≥ k6 ≥ k5.

By a well-known result (see [5, p. 186, Corollary 7.6.1]), the difference equation

∆u(k)+
1

(n− 1)!
1

2(n−1)2+1
q(k)σ n−1(k)u(σ (k)) = 0, k ≥ k6 ≥ k5

has an eventually positive solution. This contradicts the fact that (C1) is oscillatory. The proof of Theorem 3.1 is completed.
In the case where y(k) is an eventually negative solution, then −y(k) = x(k) will be an eventually positive solution. Thus
the proof can made as same as in the case y(k) > 0. Hence the proof is completed. �

It is well known (see [2, p. 423, Theorem 6.20.5], [7]) that if {q(k)} is a nonnegative sequence of real numbers and

lim inf
k→∞

k−1∑
s=σ(k)

q(s) >
1
e

(7)

is satisfied, then the equation of

∆y(k)+ q(k)y(σ (k)) = 0, k ≥ k0 (8)

is oscillatory.
Thus, from Theorem 3.1 we can obtain the following corollary.

Corollary 3.2. If

lim inf
k→∞

k−1∑
s=σ(k)

σ n−1(s)

2(n−1)2+1
q(s) >

(n− 1)!
e

and lim sup
k→∞

q(k)σ n−1(k) > 0, (9)

then every bounded solution of Eq. (1) is either oscillatory or tends to zero as k→∞.

When p(k) ≡ 0 and n = 2, Corollary 3.2 yields that if

lim inf
k→∞

k−1∑
s=σ(k)

1
4
σ(s)q(s) >

1
e
and lim sup

k→∞
q(k)σ (k) > 0,

then

∆2y(k)+ q(k)y(σ (k)) = 0, k ≥ k0 (10)

is oscillatory. These results have been established in [9,10] and the references cited therein.
Let

φ(k) = max
k0≤s≤k

σ(s) and φ−1(k) = sup{s ≥ k0 : φ(s) = k},

φ−(m+1)(k)
4
=φ−1(φ−m(k)) = sup{s ≥ φ−m(k0) : φ−m(s) = k}.

Set

Φ(k) =
1

(n− 1)!
1

2(n−1)2+1
q(k)σ n−1(k).

Define a sequence {Φm(k)} of functions as follows:

Φ1(k) =
k−1∑
s=φ(k)

Φ(s), k ≥ φ−1(k0),

Φm+1(k) =
k−1∑
s=φ(k)

Φ(s)Φm(s), k ≥ φ−(m+1)(k0), m = 1, 2, . . . , (11)
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then there exists s positive integerM such that

ΦM(k) =

[
k−1∑
s=φ(k)

Φ(s)

]M
, k ≥ φ−(m+1)(k0).

Theorem 3.3. Assume that

lim inf
k→∞

ΦM(k) >
1
eM

(C2)

satisfied. Then every bounded solution of Eq. (1) is either oscillatory or tends to zero as k→∞.

Proof. Let lim infk→∞ΦM(k) = c > 0. In view of (C2)we can write ceM > 1, that is,

lim inf
k→∞

ΦM(k) >
1
eM
. (12)

Suppose, for the sake of contradiction, that (1) has an eventually positive solution y(k). Let z(k) = y(k) + p(k)y(τ (k)). For
the rest of the proof, we can proceed as in the proof of Theorem 3.1. Thus, we have the following equality

∆z(k)+
1

(n− 1)!
1

2(n−1)2+1
q(k)σ n−1(k)z(σ (k)) = 0 (13)

which has an eventually positive solution. On the other hand, by [2, p. 421, Theorem 6.20.2] and (12), all the solutions of
(13) are oscillatory. This is a contradiction. In the case where y(k) is an eventually negative solution, then−y(k) = x(k)will
be an eventually positive solution. Thus the proof can made as same as in the case y(k) > 0. Hence the proof of Theorem 3.3
is completed. �

Corollary 3.4. Assume that the condition (C2) is satisfied, then the Eq. (10) is oscillatory.

Example 3.1. Consider equation of the form

∆2

[
y(k)+

(
−
1
2

)k
y(k− 1)

]
+

(
4−

1
4

(
−
1
2

)k)
y(k− 3) = 0. (14)

Every bounded solution of the first order delay difference equation

∆u(k)+

(
1−

1
16

(
−
1
2

)k)
(k− 3)u(k− 3) = 0, for all sufficiently large k

is oscillatory.
Because of lim infk→∞

[∑k−1
s=k−3

(
1− 1

16

(
−
1
2

)s)
(s− 3)

]
>
( 3
4

)4
[5, p. 179, Theorem 7.5.1]. Also, forM = 1,

lim inf
k→∞

Φ1 = lim inf
k→∞

[
k−1∑
s=k−3

(
1−

1
16

(
−
1
2

)s)
(s− 3)

]
>
1
e1

for k ≥ φ−1(k0) = k0 + 3. Thus all conditions of Theorems 3.1 and 3.3 are satisfied. Hence every bounded solution of the
Eq. (14) is oscillatory. Its one of such solution is y(k) = (−1)k.
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