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Abstract

Let X be a smooth curve over a finite field of characteristic p; let cap be a prime number,

and let L be an irreducible lisse %Qc-sheaf on X whose determinant is of finite order. By a

theorem of L. Lafforgue, for each prime number c0ap; there exists an irreducible lisse %Qc0 -

sheaf L0 on X which is compatible with L; in the sense that at every closed point x of X ; the

characteristic polynomials of Frobenius at x for L and L0 are equal. We prove an

‘‘independence of c’’ assertion on the fields of definition of these irreducible c0-adic sheaves

L0: namely, that there exists a number field F such that for any prime number c0ap; the %Qc0 -

sheaf L0 above is defined over the completion of F at one of its c0-adic places.

r 2003 Elsevier Science (USA). All rights reserved.

MSC: 14G10; 14F20; 14G13; 14G15

0. Introduction

In the recent spectacular work [L], L. Lafforgue has proved the Langlands
Correspondence and the Ramanujan–Petersson conjecture for GLr over function
fields. As a consequence, he has also established the following fundamental result
concerning irreducible lisse c-adic sheaves on curves over finite fields.

Theorem (L. Lafforgue [L, Théorème VII.6]). Let X be a smooth curve over a finite

field of characteristic p: Let cap be a prime number, and let L be a lisse %Qc-sheaf on

X ; which is irreducible, of rank r; and whose determinant is of finite order.
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(1) There exists a number field EC %Qc such that for every closed point x of X ; the

polynomial

detð1 � T Frobx;LÞ

has coefficients in E:
(2) Let x be a closed point of X ; and let aA %Qc be an eigenvalue of Frobenius at x

acting on L; i.e. 1=a is a root of the polynomial

detð1 � T Frobx;LÞ:

Then:
(a) a is an algebraic number;
(b) for every archimedean absolute value j � j of EðaÞ; one has

jaj ¼ 1;

(c) for every non-archimedean valuation l of EðaÞ not lying over p; a is a l-adic

unit, i.e. one has

lðaÞ ¼ 0;

(d) for every non-archimedean valuation n of EðaÞ lying over p; one has

nðaÞ
nð#kðxÞÞ

����
����pðr � 1Þ2

r
:

(3) For any place l0 of E lying over a prime number c0ap; and for any

algebraic closure %Qc0 of the completion El0 of E at l0; there exists a lisse
%Qc0-sheaf L0 on X ; which is irreducible, of rank r; such that for every closed point

x of X ; one has

detð1 � T Frobx;L
0Þ ¼ detð1 � T Frobx;LÞ ðequality in E½T 	Þ:

Moreover, the sheaf L0 is defined over a finite extension of El0 :

In part (3) of Lafforgue’s theorem, it is not a priori clear that the number field E

may be replaced by a finite extension (in %Qc) so that the various %Qc0-sheaves L0 form
an ðE;LÞ-compatible system in the sense of Katz (cf. [K, pp. 202–203, ‘‘The notion of
ðE;LÞ-compatibility’’]), or equivalently, that they form an E-rational system of l-
adic representations in the sense of Serre (cf. [Se, Sections 2.3 and 2.5]). The existence
of a number field with this property may be interpreted as an ‘‘independence of c’’

assertion on the fields of definition of these irreducible c0-adic sheaves L0: We shall
prove that this is indeed the case.
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Theorem. With the notation and hypotheses of Lafforgue’s Theorem, the following

assertion holds.

(30) There exists a finite extension F of E in %Qc such that for any place l0 of the

number field F lying over a prime number c0ap; there exists a lisse Fl0 -sheaf L0

on X (i.e. a lisse %Qc0 -sheaf defined over Fl0), which is absolutely irreducible, of

rank r; such that for every closed point x of X ; one has

detð1 � T Frobx;L
0Þ ¼ detð1 � T Frobx;LÞ ðequality in E½T 	Þ:

According to a conjecture of Deligne (cf. [D, Conjecture (1.2.10)]), all four
assertions (1), (2), (3), (30) should also hold in the general case when X is a normal
variety of arbitrary dimension over a finite field. Our proof of assertion ð30Þ uses
assertions (1) and (3) of Lafforgue’s Theorem only as ‘‘black boxes’’; so assertion ð30Þ
will hold for higher-dimensional varieties if parts (1) and (3) of Lafforgue’s Theorem
hold for these varieties. To state this more precisely, we make assertions (1) and (3)
into hypotheses, as follows:

Definition. Let Fq be a finite field of characteristic p; and let cap be a prime number.

Let Y be a normal variety over Fq; and let F be a lisse %Qc-sheaf on Y ; which is

irreducible, and whose determinant is of finite order. We shall say that hypothesis (1)
holds for ðY ;FÞ if:

(1) there exists a number field EC %Qc such that for every closed point y of Y ; the
polynomial

detð1 � T Froby;FÞ
has coefficients in E:

When hypothesis (1) holds for ðY ;FÞ; we shall say that hypothesis (3) holds for

ðY ;FÞ if:

(3) for any place l0 of E lying over a prime number c0ap; and for any algebraic

closure %Qc0 of the completion El0 of E at l0; there exists a lisse %Qc0 -sheaf F0 on
Y ; which is irreducible, such that for every closed point y of Y ; one has

detð1 � T Froby;F
0Þ ¼ detð1 � T Froby;FÞ ðequality in E½T 	Þ:

With this definition, our goal is to prove:

Main Theorem. Let Fq be a finite field of characteristic p; and let cap be a prime

number. Let X be a normal variety over Fq: Assume that:

for any normal variety Y over Fq which is finite etale over X ; and for any lisse %Qc-

sheaf F on Y ; which is irreducible, and whose determinant is of finite order,
hypotheses (1) and (3) hold for the pair ðY ;FÞ:
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Let L be a lisse %Qc-sheaf on X ; which is irreducible, of rank r; and whose determinant

is of finite order. Let EC %Qc denote the number field given by hypothesis (1) applied to

ðX ;LÞ: Then:

(30) There exists a finite extension F of E in %Qc such that for any place l0 of the

number field F lying over a prime number c0ap; there exists a lisse Fl0-sheaf Ll0

on X ; which is absolutely irreducible, of rank r; such that for every closed point x

of X ; one has

detð1 � T Frobx;Ll0 Þ ¼ detð1 � T Frobx;LÞ ðequality in E½T 	Þ:

We shall prove this theorem by exploiting properties of the monodromy groups

associated to these irreducible lisse sheaves. The proof begins in Section 4, after a
discussion of the preliminary results we need: Propositions 1 and 2 of Section 1,
Corollary 6 of Section 2, and Propositions 7 and 9 of Section 3.

1. Monodromy groups

In this section, we recall some basic properties of monodromy groups of lisse c-
adic sheaves on varieties over a finite field; see [D, Sections 1.1 and 1.3] for details.

Let X be a normal, geometrically connected variety over a finite field Fq of

characteristic p: Let %Z-X be a geometric point of X ; and let %Fq be the algebraic

closure Fq in kð%ZÞ; we regard %Z also as a geometric point of X#Fq
%Fq: The profinite

groups p1ðX ; %ZÞ and p1ðX#Fq
%Fq; %ZÞ are respectively called the arithmetic fundamental

group of X and the geometric fundamental group of X : They sit in a short exact
sequence

1-p1ðX#Fq
%Fq; %ZÞ-p1ðX ; %ZÞ -

deg
Galð %Fq=FqÞ-1:

The group Galð %Fq=FqÞ has a canonical topological generator FrobFq
called the

geometric Frobenius, which is defined as the inverse of the arithmetic Frobenius

automorphism a/aq of the field %Fq: We have the canonical isomorphism

#Z -
D

Galð %Fq=FqÞ; sending 1 to FrobFq
:

For a prime number cap; the functor

flisse %Qc-sheaves on Xg - ffinite-dimensional continuous

%Qc-representations of p1ðX ; %ZÞg
L / L%Z
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is an equivalence of categories; a similar statement holds with X#Fq
%Fq in place of X :

Via this equivalence, standard notions associated to representations (e.g. irreduci-
bility, semisimplicity, constituent, etc.) are also applicable to lisse sheaves.

Let L be a lisse %Qc-sheaf on X ; corresponding to the continuous monodromy
representation

p1ðX ; %ZÞ-GLðL%ZÞ

of the arithmetic fundamental group of X : The arithmetic monodromy group

GarithðL; %ZÞ of L is the Zariski closure of the image of p1ðX ; %ZÞ in GLðL%ZÞ: The

inverse image L#Fq
%Fq of L on X#Fq

%Fq is a lisse %Qc-sheaf on X#Fq
%Fq;

corresponding to the continuous monodromy representation

p1ðX#Fq
%Fq; %ZÞ+p1ðX ; %ZÞ-GLðL%ZÞ

of the geometric fundamental group of X ; obtained by restriction. The geometric

monodromy group GgeomðL; %ZÞ of L is the Zariski closure of the image of

p1ðX#Fq
%Fq; %ZÞ in GLðL%ZÞ:

Both GarithðL; %ZÞ and GgeomðL; %ZÞ are linear algebraic groups, and it is clear that

GgeomðL; %ZÞ is a closed normal subgroup of GarithðL; %ZÞ: Both GarithðL; %ZÞ and

GgeomðL; %ZÞ are given with a faithful representation on L%Z corresponding to their

realizations as subgroups of GLðL%ZÞ: Thus, if L is semisimple (as a representation

of p1ðX ; %ZÞ; and therefore as a representation of p1ðX#Fq
%Fq; %ZÞ), then both

GarithðL; %ZÞ and GgeomðL; %ZÞ are (possibly non-connected) reductive algebraic

groups.

Proposition 1. Let L be a lisse %Qc-sheaf on X :

(i) If L is semisimple, then GgeomðL; %ZÞ is a (possibly non-connected) semisimple

algebraic group.
(ii) If L is irreducible, and its determinant is of finite order, then GarithðL; %ZÞ is a

(possibly non-connected) semisimple algebraic group, containing GgeomðL; %ZÞ as a

normal subgroup of finite index.

Assertion (i) is [D, Corollaire (1.3.9)]. For the proof of assertion (ii), we shall make
use of the construction in [D, (1.3.7)], which we summarize below.

Recall that the Weil group Wð %Fq=FqÞ of Fq is the subgroup of Galð %Fq=FqÞ
consisting of integer-powers of FrobFq

; it is considered as a topological group given

with the discrete topology, and we have the canonical isomorphism

Z -
D

Wð %Fq=FqÞ; sending 1 to FrobFq
:

The Weil group WðX ; %ZÞ of X is the preimage of Wð %Fq=FqÞ in p1ðX ; %ZÞ by the degree

homomorphism p1ðX ; %ZÞ -
deg

Galð %Fq=FqÞ; it is considered as a topological group
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given with the product topology via the isomorphism

WðX ; %ZÞDp1ðX#Fq
%Fq; %ZÞsGalð %Fq=FqÞWð %Fq=FqÞ;

where p1ðX#Fq
%Fq; %ZÞ retains its profinite topology, and is an open and closed

subgroup of WðX ; %ZÞ: These groups sit in the following diagram:

where the right two vertical arrows are inclusion homomorphisms with dense images.

(Note that the topologies of WðX ; %ZÞ and Wð %Fq=FqÞ are not the ones induced by the

right two vertical arrows!)

Given a lisse %Qc-sheaf L on X ; the push-out construction of [D, (1.3.7)] produces
an algebraic group GðL; %ZÞ; which is locally of finite type, but not quasi-compact; it
is characterized by the fact that it sits in a diagram:

such that the composite of the two continuous homomorphisms

WðX ; %ZÞ-GðL; %ZÞ-GLðL%ZÞ

is equal to the continuous representation of WðX ; %ZÞ on L%Z obtained via restriction:

WðX ; %ZÞ+p1ðX ; %ZÞ-GLðL%ZÞ:

Proof of Proposition 1 (ii). From assertion (i), we already know that the group
GgeomðL; %ZÞ is a semisimple closed normal subgroup of GarithðL; %ZÞ: Hence, to prove

assertion (ii), it suffices for us to show that GarithðL; %ZÞ contains GgeomðL; %ZÞ as a

subgroup of finite index, for then both groups will have the same identity
component, which is a connected semisimple algebraic group.

Since WðX ; %ZÞ+p1ðX ; %ZÞ is an inclusion with dense image, GarithðL; %ZÞ can also be
described as the Zariski closure of the image of WðX ; %ZÞ in GLðL%ZÞ; likewise, since

WðX ; %ZÞ+GðL; %ZÞ is an inclusion with dense image, GarithðL; %ZÞ is also equal to the
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Zariski closure of the image of GðL; %ZÞ in GLðL%ZÞ: Let

r : GðL; %ZÞ-GLðL%ZÞ

denote the canonical homomorphism from GðL; %ZÞ into GLðL%ZÞ; then the

composite map

GgeomðL; %ZÞ+GðL; %ZÞ -
r

GLðL%ZÞ

is just the identity map on GgeomðL; %ZÞ: We are thus reduced to showing that

r�1ðGgeomðL; %ZÞÞ is a subgroup of GðL; %ZÞ of finite index.

The fundamental fact we need about GðL; %ZÞ is [D, Corollaire (1.3.11)], which
asserts that because L is irreducible (hence semisimple) by hypothesis, there exists
some element g in the center of GðL; %ZÞ whose degree is 40 (i.e. g maps to a positive

integer under GðL; %ZÞ-
deg

ZDWð %Fq=FqÞ). Therefore, rðgÞ is an element of GLðL%ZÞ
which centralizes rðGðL; %ZÞÞ; and so it centralizes GarithðL; %ZÞ: Since L is
irreducible as a representation of p1ðX ; %ZÞ and hence as a representation of
GarithðL; %ZÞ; it follows that rðgÞ must be a scalar.

By hypothesis, the determinant of L is of finite order, which means that the one-
dimensional representation of p1ðX ; %ZÞ on the determinant detðL%ZÞ of L%Z is given by

a character of finite order, say d: The same is therefore true for detðL%ZÞ as a

representation of WðX ; %ZÞ and of GðL; %ZÞ: From this it follows that, if L has rank r;

then rðgÞ is a scalar which is a root of unity of order dividing dr; and so gdrAGðL; %ZÞ
lies in the kernel of r: Hence r�1ðGgeomðL; %ZÞÞ contains deg�1ðdegðgdrÞÞ in GðL; %ZÞ;
which is of finite index in GðL; %ZÞ: &

Let L be a lisse %Qc-sheaf L on X : Its arithmetic monodromy group GarithðL; %ZÞ
contains the identity component GarithðL; %ZÞ0 as an open normal subgroup;

GarithðL; %ZÞ0 is a connected algebraic group. The faithful representation

GarithðL; %ZÞ+GLðL%ZÞ

of GarithðL; %ZÞ; when restricted to the subgroup GarithðL; %ZÞ0 of GarithðL; %ZÞ; gives a
faithful representation

GarithðL; %ZÞ0+GarithðL; %ZÞ+GLðL%ZÞ

of GarithðL; %ZÞ0 on L%Z: We say that the lisse sheaf L is Lie-irreducible if L%Z is

irreducible as a representation of GarithðL; %ZÞ0: It is clear that Lie-irreducibility
implies irreducibility.

Proposition 2. Let L be a lisse %Qc-sheaf on X ; which is Lie-irreducible, and whose

determinant is of finite order. Then there exist aA %Qc and a closed point x0 of X ; such
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that a is an eigenvalue of multiplicity one of Frobx0
acting on L; i.e. 1=a is a root of

multiplicity one of the polynomial

detð1 � T Frobx0
;LÞ:

Proof. First, we claim that it is a Zariski-open condition for an element of
GarithðL; %ZÞ to have an eigenvalue of multiplicity one on L%Z; in other words, we

claim that the set

U :¼ fgAGarithðL; %ZÞ: g acting on L%Z has an eigenvalue of

multiplicity one in %Qcg

is a Zariski-open subset of GarithðL; %ZÞ: We show this as follows. For an element

gAGarithðL; %ZÞ; let chðgÞA %Qc½T 	 denote the characteristic polynomial of g; then the
set U can also be described as

U ¼ fgAGarithðL; %ZÞ: chðgÞA %Qc½T 	 has a root of multiplicity one in %Qcg:

Let r be the rank of L%Z; then ch gives rise to a morphism of %Qc-varieties

ch : GarithðL; %ZÞ- %Qc½T 	monic
deg r ; g/chðgÞ;

where %Qc½T 	monic
deg r denotes the affine space of monic polynomials in T of degree r: For

gAGarithðL; %ZÞ; the polynomial chðgÞ has a root of multiplicity one in %Qc if and only

if it does not divide the square chðgÞ
02 of its derivative chðgÞ0 in %Qc½T 	: Thus it suffices

for us to show that the set

Z :¼ ffA %Qc½T 	monic
deg r : f divides f

02 in %Qc½T 	g

is Zariski-closed in %Qc½T 	monic
deg r : But for fA %Qc½T 	monic

deg r ; the Euclidean division

algorithm shows that the remainder of dividing f
02 by f is a polynomial of degree

or whose coefficients are given by certain (universal) Z-polynomial expressions in
terms of the coefficients of f ; as the set Z above is precisely the zero-set of these
polynomial expressions, it is Zariski-closed.

Next, we claim that the set U above is in fact Zariski-open and non-empty in

GarithðL; %ZÞ: Indeed, by part (ii) of Proposition 1, GarithðL; %ZÞ0 is a connected

semisimple algebraic group; the representation L%Z of GarithðL; %ZÞ0 is irreducible by

hypothesis, and so by the representation theory of connected semisimple algebraic
groups, it is classified by its highest weight, which occurs with multiplicity one. Thus,

a generic element of any maximal torus of GarithðL; %ZÞ0 lies in U :
Finally, by C̆ebotarev’s density theorem, there exist infinitely many closed points x

of X whose Frobenius conjugacy classes FrobxCp1ðX ; %ZÞ are mapped into U under
the monodromy representation of p1ðX ; %ZÞ on L%Z: Thus we can pick x0 to be any one
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of these closed points of X ; and pick aA %Qc to be an eigenvalue of multiplicity one of
Frobx0

acting on L: &

Remark. In Proposition 2, it is not enough to just assume that the lisse %Qc-sheaf L is
irreducible; the assumption that it is Lie-irreducible is necessary. If L is irreducible
but not Lie-irreducible, it may happen that every element of GarithðL; %ZÞ acting on
L%Z has repeated eigenvalues, which is to say that the set UCGarithðL; %ZÞ in the proof

of the proposition is empty. For a specific example, we may take GarithðL; %ZÞ to be
the finite symmetric group on 6 letters, and take L%Z to be the 16-dimensional

irreducible representation of this finite group; such a situation can arise
geometrically.

2. Dévissage of representations

Let k be an algebraically closed field of characteristic 0—such as %Qc: In this
section, we consider (possibly non-connected) reductive groups over k and their
finite-dimensional k-rational representations. If G is such a reductive group, any k-
rational representation of G is semisimple (a direct sum of irreducible representa-
tions), since k is of characteristic 0. By the quasi-compactness of G; a subgroup H of
G is (Zariski-) open if and only if it is (Zariski-) closed of finite index, in which case

H necessarily contains the identity component G0 of G:
The following two results are proved in [I] for representations of finite groups. The

same proofs, with minor modifications, work for representations of reductive
groups. We reproduce the (modified) arguments below for the sake of completeness.

Lemma 3 (I.M. Isaacs [I, Theorem 6.18]). Let G be a reductive group, and let K and

L be open normal subgroups of G; with LDK : Suppose that K=L is abelian, and that

there does not exist a normal subgroup M of G with LD! MD! K : Let p be an irreducible

representation of K whose isomorphism class is invariant under G-conjugation. Then

one of the following holds:

(i) ResK
L ðpÞ is isomorphic to a direct sum s1"?"st of t :¼ ½K : L	 many

irreducible representations s1;y; st of L which are pairwise non-isomorphic;
(ii) ResK

L ðpÞ is an irreducible representation of L;
(iii) ResK

L ðpÞ is isomorphic to s"e; where s is an irreducible representation of L; and

e2 ¼ ½K : L	:

Proof. Since L is normal in K ; the irreducible constituents of ResK
L ðpÞ are K-

conjugate to one another, and each of these constituents occurs in ResK
L ðpÞ with the

same multiplicity. Choose any irreducible constituent s of ResK
L ðpÞ; and let

I :¼ fgAG: gsDs as representations of Lg
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be the open subgroup of G (containing L) which stabilizes the isomorphism type of s
under G-conjugation. Since p is invariant under G-conjugation, every G-conjugate of

s is a constituent of ResK
L ðpÞ; and so every G-conjugate of s is K-conjugate to s: It

follows that ½G : I 	 ¼ ½K : K-I 	; and hence KI ¼ G: Since K=L is abelian, K-I is
normal in K ; since K is normal in G; K-I is normal in I : As KI ¼ G; we see that
K-I is normal in G: From the hypothesis of the proposition, it follows that K-I is
either L or K :

Suppose K-I ¼ L: Then there are t ¼ ½K : L	 many pairwise non-isomorphic

irreducible constituents s ¼ s1;y;st of ResK
L ðpÞ; and so we have

ResK
L ðpÞDðs1"?"stÞ"e

for some multiplicity eX1: The constituents sj of ResK
L ðpÞ are K-conjugate to one

another, and so they have the same rank as s: Hence

rkðpÞ ¼ rkðResK
L ðpÞÞ ¼ et rkðsÞ:

But p is a constituent of IndK
L ðsÞ; so

rkðpÞprkðIndK
L ðsÞÞ ¼ t rkðsÞ:

Thus e ¼ 1; and this is case (i).
Henceforth suppose K-I ¼ K : Then s is invariant under K-conjugation, so we

have

ResK
L ðpÞDs"e

for some multiplicity eX1: Let w1;y; wt be the distinct linear characters of the
abelian group K=L: Then w1#p;y; wt#p are irreducible representations of K ; each
having the same rank as p; and we have

ResK
L ðwj#pÞDs"e for each j ¼ 1;y; t:

Suppose w1#p;y; wt#p are pairwise non-isomorphic representations of K : Then
we obtain an inclusion

Mt

j¼1

ðwj#pÞ"eDIndK
L ðsÞ:

Comparing ranks, we get

et rkðpÞprkðIndK
L ðsÞÞ ¼ t rkðsÞ;

and so

e rkðpÞprkðsÞ:
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But

e rkðsÞ ¼ rkðResK
L ðpÞÞ ¼ rkðpÞ:

Thus e ¼ 1; and this is case (ii).
In the remaining situation, at least two of the representations w1#p;y; wt#p are

isomorphic; this implies that pDw#p for some non-trivial linear character w of K=L:
Let M ¼ KerðwÞ; we have LDMD! K : First, consider the representation p; with trace-
function

Tr 3 p : K-k; x/TrðpðxÞÞ:

On K � M; the linear character w takes values different from 1; since Tr 3 p ¼
Tr 3 ðw#pÞ ¼ w � ðTr 3 pÞ; it follows that Tr 3 p vanishes on K � M: Since the
representation p is invariant under G-conjugation, it follows that Tr 3 p vanishes on

K � gMg�1 for all gAG: The normal subgroup
T

gAG gMg�1 of G contains L and is

properly contained in K ; so it must be equal to L by hypothesis. Thus Tr 3 p vanishes

on K � L: Next, consider the representation IndK
L ðResK

L ðpÞÞDIndK
L ð1Þ#p; with its

trace-function

Tr 3 IndK
L ðResK

L ðpÞÞ : K-k; x/TrðIndK
L ð1ÞðxÞÞ TrðpðxÞÞ:

Since the trace-function of IndK
L ð1Þ is 0 on K � L and is t on L; it follows that the

trace-function of IndK
L ðResK

L ðpÞÞ vanishes on K � L; and its values on L are t times

those of Tr 3 p: Comparing the trace-functions of p and IndK
L ðResK

L ðpÞÞ; we see that

Tr 3 ðp"tÞ ¼ Tr 3 IndK
L ðResK

L ðpÞÞ:

By the trace comparison theorem of Bourbaki (cf. [B, Section 12, no. 1, Propositon
3]), this implies

p"tDIndK
L ðResK

L ðpÞÞ

as representations of K : Hence

e2 ¼ dim HomLðResK
L ðpÞ;ResK

L ðpÞÞ ¼ dim HomKðp; IndK
L ðResK

L ðpÞÞÞ ¼ t ¼ ½K : L	

and this is case (iii). &

Proposition 4 (I.M. Isaacs [I, Theorem 6.22]). Let G be a reductive group, and let N

be an open normal subgroup of G such that G=N is a nilpotent finite group. Let r be an

irreducible representation of G: Then there exists an open subgroup H of G with

NDHDG; and an irreducible representation s of H; such that rDIndG
HðsÞ; and such

that ResH
N ðsÞ is an irreducible representation of N:
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Remark. The proposition holds in slightly greater generality: we need only to
assume that G=N is a solvable finite group whose chief factors are of square-free
orders; see [I]. This technical condition is automatically verified when G=N is
nilpotent or supersolvable.

Proof of Proposition 4. The theorem is clear when G ¼ N: We proceed by induction
on #ðG=NÞ; hence assume that the theorem holds for any proper subgroup of G

containing N: If ResG
NðrÞ is irreducible, then the theorem holds with H ¼ G and

s ¼ r: Hence suppose ResG
NðrÞ is reducible.

Since G=N is finite, we can find an open normal subgroup K of G which is minimal

for the conditions that NDK and ResG
KðrÞ is irreducible. Then ND! K necessarily, and

so we can find an open normal subgroup L of G which is maximal for the conditions
that NDLD! K : Since G=N is nilpotent, it follows that K=L is cyclic of prime order,
say t:

The isomorphism class of the irreducible representation p ¼ ResG
KðrÞ of

K is invariant under G-conjugation, since p is the restriction of an ir-
reducible representation r of G: Thus we may apply Lemma 3 to the represen-

tation p of K : By the choice of L and K; ResK
L ðpÞ is not irreducible, so case

(ii) cannot occur; since t ¼ ½K : L	 is a prime number, case (iii) cannot occur.

Hence we are in case (i), and it follows that ResG
LðrÞ is isomorphic to a direct

sum s1"?"st of t many irreducible representations s1;y; st of L which are
pairwise non-isomorphic.

Let

I :¼ fgAG : gs1Ds1 as representations of Lg

be the open subgroup of G (containing L) which stabilizes the isomorphism type of

s1 under G-conjugation. Thus ½G : I 	 ¼ t is 41; and rDIndG
I ðr0Þ for some

irreducible representation r0 of I : Applying the induction hypothesis to I ; we obtain
an open subgroup H of I with NDHDI ; and an irreducible representation s of H;

such that r0DIndI
HðsÞ and ResH

N ðsÞ is an irreducible representation of N: Then

rDIndG
HðsÞ; which completes the proof of the proposition. &

If G is a reductive group over k; we let KðGÞ denote the Grothendieck group of the
abelian category of finite-dimensional k-rational representations of G: It is clear that
KðGÞ as a Z-module is freely generated by the irreducible representations of G: The
tensor product of representations gives rise to a commutative ring structure on
KðGÞ; whose unit element is the class 1 of the trivial representation of G: If HDG is
an open subgroup, then induction of representations from H to G gives rise to a
homomorphism of Z-modules

Ind : KðHÞ-KðGÞ:

The projection formula shows that the Ind-image of KðHÞ in KðGÞ is an ideal.
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Recall that, for p a prime number, a finite group G is called p-elementary if it is
isomorphic to a direct product A � B; where A is a cyclic group of order prime to p;
and B is a p-group. A finite group G is called elementary if it is p-elementary for some
prime number p: It is clear that an elementary finite group is nilpotent.

Let G be a reductive group, and N be an open normal subgroup of G: We say that,
for a prime number p; an open subgroup H of G is p-elementary modulo N if one has
the inclusions NDHDG and furthermore the finite quotient H=N is p-elementary;
we say that H is elementary modulo N if it is p-elementary modulo N for some prime
number p:

Proposition 5 (R. Brauer). Let G be a reductive group, and let N be an open normal

subgroup of G: Then the Z-homomorphism

Ind :
M
HDG

elem:mod N

KðHÞ-KðGÞ

is surjective (the direct sum is over all subgroups H of G which are elementary

modulo N).

Proof. Recall that Brauer’s theorem on induced characters for finite groups (see
[I, Theorem 8.4] or [H, Theorem 34.2] for instance) states that if G is a finite group,
then the Z-homomorphism

Ind :
M
HDG
elem:

KðHÞ-KðGÞ

is surjective; the key point is that the unit element 1 of KðGÞ lies in the ideal
generated by the Ind-images of KðHÞ where H runs over all elementary subgroups of
G: Therefore, the proposition follows from applying Brauer’s theorem to the finite
group G=N: &

Corollary 6. Let G be a reductive group, and let N be an open normal subgroup of G:
Let r be a representation of G: Then there exist a finite list of pairs:

ðH1; s1Þ;y; ðHs; ssÞ; ð*Þ

where, for each i ¼ 1;y; s;

(a) Hi is an open subgroup of G with NDHiDG;
(b) si is an irreducible representation of Hi; and in fact,
(c) ResHi

N ðsiÞ is an irreducible representation of N;
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such that one has an isomorphism of representations of G of the form

r"
Mt

i¼1

IndG
Hi
ðsiÞ

 !
D

Ms

j¼tþ1

IndG
Hj
ðsjÞ

 !
ð* *Þ

for some t with 1ptps:

Remark. If one takes N to be the identity component G0 of G; then property (c)
asserts that each si is Lie-irreducible. This is the situation which we shall encounter
later in Section 4.

Proof of Corollary 6. Proposition 5 tells us that we can find a finite list of pairs as in
ð*Þ; such that an isomorphism of form ð* *Þ holds, such that properties (a) and (b)
are verified, and such that each Hi is elementary modulo N: Since each Hi=N is then
a nilpotent finite group, Proposition 4 allows us to replace each Hi by a subgroup
containing N and each si by an irreducible representation of the corresponding
subgroup, so that, furthermore, property (c) is also verified. This proves the
corollary. &

3. Descent of representations

Let G be a group, let k0 be a field of characteristic zero, and let k be a field
extension of k0: In this section, we prove two criteria (Propositions 7 and 9) for
descending a k-representation of G to a k0-representation.

Proposition 7. Let r be a finite-dimensional k-representation of G; which is absolutely

irreducible (i.e. irreducible over an algebraic closure of k). Assume:

(i) r is defined over a finite Galois extension K of k0 in k;
(ii) for every gAG; the trace TrðrðgÞÞ of g with respect to r lies in k0;

(iii) there exists some aAk0 and some g0AG such that a is an eigenvalue of multiplicity

one of g0 with respect to r:

Then r is defined over k0:

Proof. By (i), we may assume that r is given as a K-matrix representation of G:

r : G-GLrðKÞ;

and we let S ¼ GalðK=k0Þ be the finite Galois group. According to (iii), we

may choose an eigenvector vAK"r of rðg0Þ with eigenvalue a: By changing basis,

we may assume that v is the first basis vectors of K"r; thus the matrix rðg0Þ
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has the form

a * y *

0 * y *

^ ^ & ^

0 * y *

0
BBB@

1
CCCA:

Each sAS defines a K-representation

sr : G-
r

GLrðKÞ -
GLr ðsÞ

GLrðKÞ:

Since aAk0 is invariant under S; the matrices srðg0Þ also have the same form as rðg0Þ
above; thus v is also an eigenvector with eigenvalue a of each srðg0Þ; sAS:

Assumption (ii) and the invariance of k0 under S gives the equality in k0:

TrðsrðgÞÞ ¼ TrðrðgÞÞ for any sAS; any gAG:

Therefore, by the trace comparison theorem of Bourbaki (cf. [B, Section 12, no. 1,
Proposition 3]), the K-representations sr of G; for various sAS; are all isomorphic
over K to r: Choose such isomorphisms over K :

aðsÞ : ðsr;K"rÞ -
D ðr;K"rÞ; sAS:

Since r is absolutely irreducible by hypothesis, any automorphism of it must be a
scalar in K : It follows that each aðsÞAGLrðKÞ is determined up to a K-scalar
multiple. For any s; s0AS; the two different ways of expressing s0sr in terms of r
then gives

aðs0sÞ ¼ ðscalar in KÞ � aðs0Þ � s0aðsÞ:

We shall now rigidify the situation. For each sAS; we have the equality

aðsÞ � srðg0Þ ¼ rðg0Þ � aðsÞ;

and the fact that vAK"r is an eigenvector of srðg0Þ with eigenvalue a; it follows

that aðsÞvAK"r is an eigenvector of rðg0Þ with eigenvalue a: Thanks to
the multiplicity-one hypothesis (iii) on a; aðsÞv is necessarily a K-scalar
multiple of v itself. Since we are free to adjust aðsÞAGLrðKÞ by any K-scalar
multiple, we may and do assume that each aðsÞ maps v to itself. Thus the matrices
aðsÞ; for sAS; have the form

1 * y *

0 * y *

^ ^ & ^

0 * y *

0
BBB@

1
CCCA;
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and it follows that the matrices s0aðsÞ; for s; s0AS; also have the same form
above, which implies that each s0aðsÞ also maps v to itself. Therefore, we now
have

aðs0sÞ ¼ aðs0Þ � s0aðsÞ for any s; s0AS:

By Hilbert Theorem 90 for GLr; there exists some bAGLrðKÞ such that

aðsÞ ¼ b � sb�1 for each sAS:

Using b�1AGLrðKÞ for a change of basis, we obtain the K-representation *r :¼ b�1rb

defined by

*r : G-GLrðKÞ; g/b�1rðgÞb;

which is isomorphic over K to r: A straightforward computation now shows that the
matrices

*rðgÞAGLrðKÞ for gAG;

are all fixed under the action of the Galois group S; in other words, s *r ¼ *r for any
sAS: Thus the representation *r factorizes as

G-GLrðk0Þ+GLrðKÞ:

So *r is defined over k0; and the same is therefore true for r: &

Lemma 8. Let M;N be k0-representations of G:

(i) The canonical homomorphism of k-vector spaces

k#k0
Homk0GðM;NÞ-HomkGðk#k0

M; k#k0
NÞ

is injective; it is surjective if M is finitely generated as a left k0G-module.
(ii) The canonical homomorphism of k-vector spaces

k#k0
Ext1

k0GðM;NÞ-Ext1
kGðk#k0

M; k#k0
NÞ

is injective if M is finitely generated as a left k0G-module.

Remark. (a) If M is finitely presented as a left k0G-module, the lemma follows from
the well-known ‘‘change of rings’’ isomorphisms applied to k0G+kG (see [R,
Theorem 2.39] for instance). Of course, if M is a finite-dimensional k0-representation
of G; then it is automatically a finitely generated left k0G-module; however, it need
not be finitely presented as a left k0G-module.
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(b) When G is a finite group, the group ring k0G is left-noetherian, so a
finite-dimensional k0-representation M of G is finitely presented as a left
k0G-module, and the lemma follows from (a) above. But since we will use
the lemma when G is a profinite group, and we could not identify a satisfactory
reference for the corresponding result, we find it prudent to give a complete proof
here.

(c) The proof below actually shows that the lemma holds in slightly greater
generality: it suffices to assume that k0 is any commutative ring, and that k is a k0-
algebra which is free as a k0-module.

Proof of Lemma 8. We first show that the canonical homomorphism

k#k0
Homk0GðM;NÞ - HomkGðk#k0

M; k#k0
NÞ

a#f / ðb#m/ab#fðmÞÞ

is injective. Choose a basis feiAk : iAIg of k as a k0-vector space. Then the k0G-
module k#k0

N is the direct sum of the k0G-submodules ei#N:

k#k0
ND

M
iAI

ei#N;

likewise, the k0-vector space k#k0
Homk0GðM;NÞ is the direct sum of the

corresponding k0-subspaces ei#Homk0GðM;NÞ:

k#k0
Homk0GðM;NÞD

M
iAI

ei#Homk0GðM;NÞ:

Any fAk#k0
Homk0GðM;NÞ is therefore equal to a sum

f ¼
X
iAI

ei#fi

for some uniquely determined fiAHomk0GðM;NÞ; iAI ; all but finitely of which are
the zero-map. Suppose f lies in the kernel of the canonical homomorphism. Then for
any mAM; one has

X
iAI

ei#fiðmÞ ¼ 0 in k#k0
ND

M
iAI

ei#N;

so fiðmÞ ¼ 0 in N for each iAI : It follows that f ¼ 0; which is what we want.
If M is finite free as a left k0G-module, then it follows from the functorial

properties of Hom and # that the canonical homomorphism is an isomorphism. In
general, if M is finitely generated as a left k0G-module, let

0-K-F-M-0
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be a short exact sequence of left k0G-modules with F finite free. Then

0-Homk0GðM;NÞ-Homk0GðF ;NÞ-Homk0GðK ;NÞ

is an exact sequence of k0-vector spaces. From this and the fact that k is flat over k0;
we obtain the following commutative diagram with exact columns:

where the middle horizontal arrow is an isomorphism and the bottom horizontal
arrow is injective, by what we have already shown. A diagram chase shows that the
top horizontal arrow is surjective. This proves part (i).

For part (ii), we write down the next terms in the above commutative diagram:

By part (i), the top horizontal arrow is an isomorphism and the middle horizontal
arrow is injective. A diagram chase shows that the bottom horizontal arrow is
injective. This proves part (ii). &

Proposition 9 (E. Noether–M. Deuring). Let r; t and p be semisimple finite-

dimensional k-representations of G such that

r"tDp:

Suppose t and p are defined over k0: Then r is also defined over k0:
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Proof. Our argument here is adapted from that given for representations of finite
groups (see [H, Theorem 37.6] for instance). The proposition is clear when t ¼ 0: We
proceed by induction on the rank rkðtÞ of t; hence assume that rkðtÞX1: By
hypothesis, there exist k0-representations t0; p0 of G such that

tDk#k0
t0; pDk#k0

p0:

For any finite-dimensional k0-representations M;N of G; we have the canonical
inclusion:

Ext1
k0GðM;NÞ+k#k0

Ext1
k0GðM;NÞ +

Lemma 8
Ext1

kGðk#k0
M; k#k0

MÞ;

this fact and the hypothesis that t; p are semisimple as k-representations of G imply
that t0; p0 are semisimple as k0-representations of G:

Let s0Dt0 be an irreducible constituent of the k0-representation t0 of G: Then

k#k0
Homk0Gðs0; p0Þ -

D

Lemma 8
HomkGðs; pÞDHomkGðs; r"tÞ

contains

HomkGðs; tÞ ’
D

Lemma 8
k#k0

Homk0Gðs0; t0Þa0;

whence Homk0Gðs0; p0Þa0: Thus s0 is also an irreducible constituent of the k0-

representation p0 of G: Therefore,

t0Dt00"s0; p0Dp00"s0

for some semisimple k0-representations t00 and p00 of G: Letting

t0 :¼ k#k0
t00; p0 :¼ k#k0

p00; s :¼ k#k0
s0;

we obtain an isomorphism

r"t0"sDp0"s

of semisimple k-representations of G; and hence an equality of their k-valued trace
functions:

TrðrðgÞÞ þ Trðt0ðgÞÞ þ TrðsðgÞÞ ¼ Trðp0ðgÞÞ þ TrðsðgÞÞ for every gAG:

Applying the trace comparison theorem of Bourbaki (cf. [B, Section 12, no. 1,
Proposition 3]) to the equality

TrðrðgÞÞ þ Trðt0ðgÞÞ ¼ Trðp0ðgÞÞ for every gAG;
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we obtain an isomorphism

r"t0 D p0

of semisimple k-representations of G: Since rkðt0ÞorkðtÞ; our induction hypothesis
shows that r is defined over k0: &

4. Proof of main theorem

We shall now prove the main theorem stated in the introduction.
Thus, let Fq be a finite field of characteristic p; let cap be a prime number, let

X be a normal variety over Fq; and let L be a lisse %Qc-sheaf on X ; which is

irreducible, and whose determinant is of finite order. Let EC %Qc denote the number
field given by hypothesis (1) applied to ðX ;LÞ; thus for every closed point x of X ;
the polynomial

detð1 � T Frobx;LÞ

has coefficients in E: We may replace the finite field Fq by its algebraic closure in the

function field kðXÞ of X ; and hence assume that X is geometrically connected over
Fq; this allows us to use the results in Section 1. Let %Z-X be a geometric point of X ;

and set

G :¼ p1ðX ; %ZÞ; G :¼ GarithðL; %ZÞ:

Let

rL : G-GLðL%ZÞ

denote the monodromy %Qc-representation of G corresponding to L; and let

r : G+GLðL%ZÞ

denote the faithful representation of GarithðL; %ZÞ on L%Z:

By Proposition 1 (ii), G is a (possibly non-connected) semisimple algebraic group.

We apply Corollary 6 to the representation r of G; with N :¼ G0 ¼ GarithðL; %ZÞ0; to
obtain a finite list of pairs as in ð*Þ; satisfying properties (a)–(c) listed there, such
that an isomorphism of representations of G of the form ð* *Þ holds.

Consider any pair ðHi; siÞ in ð*Þ: By property (a), the identity component H0
i of

Hi is a connected semisimple algebraic group (in fact it is GarithðL; %ZÞ0), which is
therefore equal to its own commutator subgroup; hence the one-dimensional

representation detðsi) of Hi; given by the determinant of si; factors through Hi=H0
i ;

and so is given by a character of Hi of finite order. This and properties (b) and (c)
show that each si is a Lie-irreducible representation of Hi; and its determinant is of
finite order.
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Set

Gi :¼ ðrLÞ�1ðHiÞDG:

Then Gi is an open subgroup of G; corresponding to a finite etale cover Xi-X of X

by a connected variety Xi pointed by the geometric point %Z; we identify Gi with the
arithmetic fundamental group p1ðXi; %ZÞ of Xi: If Vi is the representation space of si;
then the composite homomorphism

sFi
: Gi -

rL
Hi -

si
GLðViÞ

is a %Qc-representation of Gi which corresponds to a lisse %Qc-sheaf Fi on the
variety Xi: It follows from the corresponding properties of si that Fi is
Lie-irreducible, and its determinant is of finite order. By hypothesis (1) applied

to ðXi;FiÞ; there is a number field EiC %Qc such that for every closed point x

of Xi; the polynomial

detð1 � T Frobx;FiÞ

has coefficients in Ei; and by Proposition 2, there is some aiA %Qc and some closed

point x
ðiÞ
0 of Xi such that ai is an eigenvalue of multiplicity one of Frob

x
ðiÞ
0

acting on

Fi: It follows that ai is algebraic over the number field Ei:
Let

rLi
:¼ IndG

Gi
ðsFi

Þ

be the %Qc-representation of G induced from sFi
; and let

F :¼ composite of E1ða1Þ;y;EsðasÞ and E in %Qc:

It is clear that F is a finite extension of E in %Qc: The isomorphism ð* *Þ implies that
for any closed point x of X ; one has

TrðrLðFrobxÞÞ þ
Xt

i¼1

TrðrLi
ðFrobxÞÞ

¼
Xs

j¼tþ1

TrðrLj
ðFrobxÞÞ ðequality in FC %QcÞ: ð* * *Þ

We shall now show that the number field F satisfies the conclusion of assertion ð30Þ:
To that end, pick a place l0 of F lying over a prime number c0ap; and choose

an algebraic closure %Qc0 of Fl0 : By hypothesis (3) applied to ðX ;LÞ and

each ðXi;FiÞ; there exist irreducible lisse %Qc0 -sheaves L0 on X and F0
i on Xi;

which are compatible with L and Fi; respectively; i.e. for each closed point x of X ;
one has

detð1 � T Frobx;L
0Þ ¼ detð1 � T Frobx;LÞ ðequality in F ½T 	Þ; ð1Þ
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and for each i ¼ 1;y; s and each closed point x of Xi; one has

detð1 � T Frobx;F
0
iÞ ¼ detð1 � T Frobx;FiÞ ðequality in F ½T 	Þ: ð2Þ

It follows that L0 has the same rank as L (and each F0
i has the same rank as Fi). It

also follows from these compatibility relations that

aiAFCFl0C %Qc0 is an eigenvalue of multiplicity one of Frob
x
ðiÞ
0

acting on F0
i:

ð3Þ

Let rL0 denote the irreducible monodromy %Qc0-representation of G corresponding

to L0; and let sF0
i

denote the irreducible monodromy %Qc0 -representation of Gi

corresponding to F0
i: Let

rL0
i
:¼ IndG

Gi
ðsF0

i
Þ

be the %Qc0 -representation of G induced from sF0
i
: From (1) and (2), we deduce that

for each closed point x of X ; one has

TrðrL0 ðFrobxÞÞ ¼ TrðrLðFrobxÞÞ ðequality in FÞ; ð4Þ

and for each i ¼ 1;y; s and each closed point x of Xi; one has

TrðsF0
i
ðFrobxÞÞ ¼ TrðsFi

ðFrobxÞÞ ðequality in FÞ; ð5Þ

whence for each i ¼ 1;y; s and each closed point x of X ; one has

TrðrL0
i
ðFrobxÞÞ ¼ TrðrLi

ðFrobxÞÞ ðequality in FÞ: ð6Þ

Combining equalities (4) and (6) with ð* * *Þ; we see that for any closed point x of X ;
one has

TrðrL0 ðFrobxÞÞ þ
Xt

i¼1

TrðrL0
i
ðFrobxÞÞ

¼
Xs

j¼tþ1

TrðrL0
j
ðFrobxÞÞ ðequality in FC %Qc0 Þ: ð* * *

0Þ

By C̆ebotarev’s density theorem, this equality of traces, as an equality in %Qc0 ; holds
for every element of G: Therefore, by the trace comparison theorem of Bourbaki (cf.

[B, Section 12, no. 1, Proposition 3]), we obtain an isomorphism of semisimple %Qc0 -
representations of G:

rL0"
Mt

i¼1

rL0
i

 !
D

Ms

j¼tþ1

rL0
j

 !
: ð7Þ

ARTICLE IN PRESS
C. Chin / Advances in Mathematics 180 (2003) 64–86 85



Consider the (absolutely) irreducible %Qc0 -representation sF0
i

of Gi: We wish to

apply Proposition 7 to this representation; so let us check that the hypotheses there
are verified.

(i) By the definition of lisse %Qc0-sheaves (cf. [D, (1.1.1)]—alternatively, apply [KSa,

Remark 9.0.7]), the %Qc0 -representation sF0
i

is defined over a finite extension of

Qc0 ; which we may of course assume to be finite Galois over Fl0 :
(ii) From (5), we see that for every closed point x of Xi; the trace TrðsF0

i
ðFrobxÞÞ of

FrobxCGi with respect to sF0
i
lies in Fl0 ; so it follows from C̆ebotarev’s density

theorem that the trace TrðsF0
i
ðgÞÞ of every element gAGi with respect to sF0

i
lies

in Fl0 :
(iii) Finally, from (3), we know that aiAFl0 is an eigenvalue of multiplicity one of

Frob
x
ðiÞ
0

CGi with respect to sF0
i
:

Hence Proposition 7 shows that sF0
i

is defined over Fl0 : Then each rL0
i
; being

induced from sF0
i
; is also defined over Fl0 : Therefore, in (7), the two representations

in parentheses are defined over Fl0 : Proposition 9 now shows that rL0 is also defined

over Fl0 ; and hence the lisse %Qc0-sheaf L0 is defined over Fl0 ; in other words, there

exists a lisse Fl0 -sheaf Ll0 on X such that L0DLl0#Fl0
%Qc0 : The asserted properties

of Ll0 follow from this isomorphism and (1).
This completes the proof of our main theorem.
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[B] N. Bourbaki, Algèbre. Chapitre 8: Modules et anneaux semi-simples, Hermann, Paris, 1958.

[D] P. Deligne, La conjecture de Weil II, Inst. Hautes Études Sci. Publ. Math. 52 (1980) 137–252.

[H] B. Huppert, Character theory of finite groups, de Gruyter, Berlin, 1998.

[I] I.M. Isaacs, Character theory of finite groups (Corrected reprint of the 1976 original, Academic

Press, New York), Dover, New York, 1994.

[K] N.M. Katz, Wild ramification and some problems of ‘‘independence of c’’, Amer. J. Math. 105 (1)

(1983) 201–227.

[KSa] N.M. Katz, P. Sarnak, Random matrices, Frobenius eigenvalues, and monodromy, Amer. Math.

Soc, Providence, RI, 1999.

[L] L. Lafforgue, Chtoucas de Drinfeld et correspondance de Langlands, Invent. Math. 147 (1)

(2002) 1–241.

[R] I. Reiner, Maximal orders, Academic Press, London, 1975.

[Se] J.-P. Serre, Abelian c-adic representations and elliptic curves, Revised reprint of the 1968 original,

A K Peters, Wellesley, MA, 1998.

ARTICLE IN PRESS
C. Chin / Advances in Mathematics 180 (2003) 64–8686


	Independence of ell in Lafforgue’s theorem
	Introduction
	L. Lafforgue [L, ThÕorÒme VII.6]
	Monodromy groups
	DÕvissage of representations
	I.M. Isaacs [I, Theorem 6.18]
	I.M. Isaacs [I, Theorem 6.22]
	R. Brauer
	Descent of representations
	E. Noether-M. Deuring
	Proof of main theorem
	Acknowledgements
	References


