

Available online at www.sciencedirect.com

ADVANCES IN Mathematics

Advances in Mathematics 180 (2003) 64-86

http://www.elsevier.com/locate/aim

Independence of ℓ in Lafforgue's theorem

CheeWhye Chin¹

Department of Mathematics, Princeton University, Princeton, NJ 08544, USA

Received 30 November 2001; accepted 24 June 2002

Communicated by Johan De Jong

Abstract

Let X be a smooth curve over a finite field of characteristic p, let $\ell \neq p$ be a prime number, and let \mathscr{L} be an irreducible lisse $\bar{\mathbb{Q}}_{\ell}$ -sheaf on X whose determinant is of finite order. By a theorem of L. Lafforgue, for each prime number $\ell' \neq p$, there exists an irreducible lisse $\bar{\mathbb{Q}}_{\ell'}$ sheaf \mathscr{L}' on X which is compatible with \mathscr{L} , in the sense that at every closed point x of X, the characteristic polynomials of Frobenius at x for \mathscr{L} and \mathscr{L}' are equal. We prove an "independence of ℓ " assertion on the fields of definition of these irreducible ℓ' -adic sheaves \mathscr{L}' : namely, that there exists a number field F such that for any prime number $\ell' \neq p$, the $\bar{\mathbb{Q}}_{\ell'}$ sheaf \mathscr{L}' above is defined over the completion of F at one of its ℓ' -adic places. © 2003 Elsevier Science (USA). All rights reserved.

MSC: 14G10; 14F20; 14G13; 14G15

0. Introduction

In the recent spectacular work [L], L. Lafforgue has proved the Langlands Correspondence and the Ramanujan–Petersson conjecture for GL_r over function fields. As a consequence, he has also established the following fundamental result concerning irreducible lisse ℓ -adic sheaves on curves over finite fields.

Theorem (L. Lafforgue [L, Théorème VII.6]). Let X be a smooth curve over a finite field of characteristic p. Let $\ell \neq p$ be a prime number, and let \mathcal{L} be a lisse $\overline{\mathbb{Q}}_{\ell}$ -sheaf on X, which is irreducible, of rank r, and whose determinant is of finite order.

E-mail address: cchin@math.princeton.edu, cheewhye@math.berkeley.edu.

¹Present address: Department of Mathematics, University of California, Berkeley, CA 94720, USA

(1) There exists a number field $E \subset \overline{\mathbb{Q}}_{\ell}$ such that for every closed point x of X, the polynomial

$$\det(1 - T \operatorname{Frob}_{x}, \mathscr{L})$$

has coefficients in E.

(2) Let x be a closed point of X, and let α∈Q
_ℓ be an eigenvalue of Frobenius at x acting on L, i.e. 1/α is a root of the polynomial

$$\det(1 - T \operatorname{Frob}_{x}, \mathscr{L}).$$

Then:

- (a) α is an algebraic number;
- (b) for every archimedean absolute value $|\cdot|$ of $E(\alpha)$, one has

 $|\alpha| = 1;$

(c) for every non-archimedean valuation λ of $E(\alpha)$ not lying over p, α is a λ -adic unit, i.e. one has

$$\lambda(\alpha) = 0;$$

(d) for every non-archimedean valuation v of $E(\alpha)$ lying over p, one has

$$\left|\frac{v(\alpha)}{v(\#\kappa(x))}\right| \leqslant \frac{(r-1)^2}{r}.$$

(3) For any place λ' of E lying over a prime number $\ell' \neq p$, and for any algebraic closure $\overline{\mathbb{Q}}_{\ell'}$ of the completion $E_{\lambda'}$ of E at λ' , there exists a lisse $\overline{\mathbb{Q}}_{\ell'}$ -sheaf \mathcal{L}' on X, which is irreducible, of rank r, such that for every closed point x of X, one has

$$det(1 - T \operatorname{Frob}_{x}, \mathscr{L}') = det(1 - T \operatorname{Frob}_{x}, \mathscr{L}) \quad (equality in E[T]).$$

Moreover, the sheaf \mathcal{L}' is defined over a finite extension of $E_{\lambda'}$.

In part (3) of Lafforgue's theorem, it is not a priori clear that the number field E may be replaced by a finite extension (in $\overline{\mathbb{Q}}_{\ell}$) so that the various $\overline{\mathbb{Q}}_{\ell'}$ -sheaves \mathscr{L}' form an (E, Λ) -compatible system in the sense of Katz (cf. [K, pp. 202–203, "The notion of (E, Λ) -compatibility"]), or equivalently, that they form an *E*-rational system of λ -adic representations in the sense of Serre (cf. [Se, Sections 2.3 and 2.5]). The existence of a number field with this property may be interpreted as an "independence of ℓ " assertion on the fields of definition of these irreducible ℓ' -adic sheaves \mathscr{L}' . We shall prove that this is indeed the case.

Theorem. With the notation and hypotheses of Lafforgue's Theorem, the following assertion holds.

(3') There exists a finite extension F of E in $\overline{\mathbb{Q}}_{\ell}$ such that for any place λ' of the number field F lying over a prime number $\ell' \neq p$, there exists a lisse $F_{\lambda'}$ -sheaf \mathcal{L}' on X (i.e. a lisse $\overline{\mathbb{Q}}_{\ell'}$ -sheaf defined over $F_{\lambda'}$), which is absolutely irreducible, of rank r, such that for every closed point x of X, one has

 $\det(1 - T\operatorname{Frob}_x, \mathscr{L}') = \det(1 - T\operatorname{Frob}_x, \mathscr{L}) \quad (\text{equality in } E[T]).$

According to a conjecture of Deligne (cf. [D, Conjecture (1.2.10)]), all four assertions (1), (2), (3), (3') should also hold in the general case when X is a normal variety of arbitrary dimension over a finite field. Our proof of assertion (3') uses assertions (1) and (3) of Lafforgue's Theorem only as "black boxes"; so assertion (3') will hold for higher-dimensional varieties *if* parts (1) and (3) of Lafforgue's Theorem hold for these varieties. To state this more precisely, we make assertions (1) and (3) into hypotheses, as follows:

Definition. Let \mathbb{F}_q be a finite field of characteristic p, and let $\ell \neq p$ be a prime number. Let Y be a normal variety over \mathbb{F}_q , and let \mathscr{F} be a lisse $\overline{\mathbb{Q}}_\ell$ -sheaf on Y, which is irreducible, and whose determinant is of finite order. We shall say that *hypothesis* (1) *holds for* (Y, \mathscr{F}) if:

(1) there exists a number field $E \subset \overline{\mathbb{Q}}_{\ell}$ such that for every closed point y of Y, the polynomial

$$det(1 - T \operatorname{Frob}_{v}, \mathscr{F})$$

has coefficients in E.

When hypothesis (1) holds for (Y, \mathcal{F}) , we shall say that hypothesis (3) holds for (Y, \mathcal{F}) if:

(3) for any place λ' of E lying over a prime number ℓ' ≠ p, and for any algebraic closure Q

{ℓ'} of the completion E{λ'} of E at λ', there exists a lisse Q
_{ℓ'}-sheaf F' on Y, which is irreducible, such that for every closed point y of Y, one has

$$det(1 - T \operatorname{Frob}_{v}, \mathscr{F}') = det(1 - T \operatorname{Frob}_{v}, \mathscr{F}) \quad (equality \text{ in } E[T]).$$

With this definition, our goal is to prove:

Main Theorem. Let \mathbb{F}_q be a finite field of characteristic p, and let $\ell \neq p$ be a prime number. Let X be a normal variety over \mathbb{F}_q . Assume that:

for any normal variety Y over \mathbb{F}_q which is finite etale over X, and for any lisse $\overline{\mathbb{Q}}_{\ell}$ -sheaf \mathscr{F} on Y, which is irreducible, and whose determinant is of finite order, hypotheses (1) and (3) hold for the pair (Y, \mathscr{F}) .

Let \mathscr{L} be a lisse $\overline{\mathbb{Q}}_{\ell}$ -sheaf on X, which is irreducible, of rank r, and whose determinant is of finite order. Let $E \subset \overline{\mathbb{Q}}_{\ell}$ denote the number field given by hypothesis (1) applied to (X, \mathscr{L}) . Then:

(3') There exists a finite extension F of E in $\overline{\mathbb{Q}}_{\ell}$ such that for any place λ' of the number field F lying over a prime number $\ell' \neq p$, there exists a lisse $F_{\lambda'}$ -sheaf $\mathscr{L}_{\lambda'}$ on X, which is absolutely irreducible, of rank r, such that for every closed point x of X, one has

 $\det(1 - T\operatorname{Frob}_{x}, \mathscr{L}_{i'}) = \det(1 - T\operatorname{Frob}_{x}, \mathscr{L}) \quad (\text{equality in } E[T]).$

We shall prove this theorem by exploiting properties of the *monodromy groups* associated to these irreducible lisse sheaves. The proof begins in Section 4, after a discussion of the preliminary results we need: Propositions 1 and 2 of Section 1, Corollary 6 of Section 2, and Propositions 7 and 9 of Section 3.

1. Monodromy groups

In this section, we recall some basic properties of monodromy groups of lisse ℓ -adic sheaves on varieties over a finite field; see [D, Sections 1.1 and 1.3] for details.

Let X be a normal, geometrically connected variety over a finite field \mathbb{F}_q of characteristic p. Let $\bar{\eta} \to X$ be a geometric point of X, and let $\bar{\mathbb{F}}_q$ be the algebraic closure \mathbb{F}_q in $\kappa(\bar{\eta})$; we regard $\bar{\eta}$ also as a geometric point of $X \otimes_{\mathbb{F}_q} \bar{\mathbb{F}}_q$. The profinite groups $\pi_1(X, \bar{\eta})$ and $\pi_1(X \otimes_{\mathbb{F}_q} \bar{\mathbb{F}}_q, \bar{\eta})$ are respectively called the *arithmetic fundamental group* of X and the *geometric fundamental group* of X. They sit in a short exact sequence

$$1 \to \pi_1(X \otimes_{\mathbb{F}_q} \bar{\mathbb{F}}_q, \bar{\eta}) \to \pi_1(X, \bar{\eta}) \xrightarrow{\text{deg}} \text{Gal}(\bar{\mathbb{F}}_q/\mathbb{F}_q) \to 1.$$

The group $\operatorname{Gal}(\overline{\mathbb{F}}_q/\mathbb{F}_q)$ has a canonical topological generator $\operatorname{Frob}_{\mathbb{F}_q}$ called the *geometric Frobenius*, which is defined as the inverse of the *arithmetic Frobenius* automorphism $a \mapsto a^q$ of the field $\overline{\mathbb{F}}_q$. We have the canonical isomorphism

$$\hat{\mathbb{Z}} \xrightarrow{\cong} \operatorname{Gal}(\bar{\mathbb{F}}_q/\mathbb{F}_q)$$
, sending 1 to $\operatorname{Frob}_{\mathbb{F}_q}$.

For a prime number $\ell \neq p$, the functor

$$\{\text{lisse } \bar{\mathbb{Q}}_{\ell}\text{-sheaves on } X\} \rightarrow \{\text{finite-dimensional continuous} \\ \bar{\mathbb{Q}}_{\ell}\text{-representations of } \pi_1(X, \bar{\eta})\} \\ \mathscr{L} \mapsto \mathscr{L}_{\bar{\eta}}$$

is an equivalence of categories; a similar statement holds with $X \otimes_{\mathbb{F}_q} \bar{\mathbb{F}}_q$ in place of X. Via this equivalence, standard notions associated to representations (e.g. irreducibility, semisimplicity, constituent, etc.) are also applicable to lisse sheaves.

Let \mathscr{L} be a lisse $\overline{\mathbb{Q}}_{\ell}$ -sheaf on X, corresponding to the continuous monodromy representation

$$\pi_1(X,\bar{\eta}) \rightarrow \operatorname{GL}(\mathscr{L}_{\bar{\eta}})$$

of the arithmetic fundamental group of X. The arithmetic monodromy group $G_{\text{arith}}(\mathscr{L},\bar{\eta})$ of \mathscr{L} is the Zariski closure of the image of $\pi_1(X,\bar{\eta})$ in $GL(\mathscr{L}_{\bar{\eta}})$. The inverse image $\mathscr{L} \otimes_{\mathbb{F}_q} \bar{\mathbb{F}}_q$ of \mathscr{L} on $X \otimes_{\mathbb{F}_q} \bar{\mathbb{F}}_q$ is a lisse $\bar{\mathbb{Q}}_{\ell}$ -sheaf on $X \otimes_{\mathbb{F}_q} \bar{\mathbb{F}}_q$, corresponding to the continuous monodromy representation

$$\pi_1(X \otimes_{\mathbb{F}_q} \bar{\mathbb{F}}_q, \bar{\eta}) \hookrightarrow \pi_1(X, \bar{\eta}) \to \mathrm{GL}(\mathscr{L}_{\bar{\eta}})$$

of the geometric fundamental group of X, obtained by restriction. The geometric monodromy group $G_{geom}(\mathcal{L}, \bar{\eta})$ of \mathcal{L} is the Zariski closure of the image of $\pi_1(X \otimes_{\mathbb{F}_q} \bar{\mathbb{F}}_q, \bar{\eta})$ in $GL(\mathcal{L}_{\bar{\eta}})$.

Both $G_{arith}(\mathscr{L}, \bar{\eta})$ and $G_{geom}(\mathscr{L}, \bar{\eta})$ are linear algebraic groups, and it is clear that $G_{geom}(\mathscr{L}, \bar{\eta})$ is a closed normal subgroup of $G_{arith}(\mathscr{L}, \bar{\eta})$. Both $G_{arith}(\mathscr{L}, \bar{\eta})$ and $G_{geom}(\mathscr{L}, \bar{\eta})$ are given with a faithful representation on $\mathscr{L}_{\bar{\eta}}$ corresponding to their realizations as subgroups of $GL(\mathscr{L}_{\bar{\eta}})$. Thus, if \mathscr{L} is semisimple (as a representation of $\pi_1(X, \bar{\eta})$, and therefore as a representation of $\pi_1(X \otimes_{\mathbb{F}_q} \bar{\mathbb{F}}_q, \bar{\eta})$), then both $G_{arith}(\mathscr{L}, \bar{\eta})$ and $G_{geom}(\mathscr{L}, \bar{\eta})$ are (possibly non-connected) reductive algebraic groups.

Proposition 1. Let \mathscr{L} be a lisse $\overline{\mathbb{Q}}_{\ell}$ -sheaf on X.

- (i) If \mathscr{L} is semisimple, then $G_{geom}(\mathscr{L}, \overline{\eta})$ is a (possibly non-connected) semisimple algebraic group.
- (ii) If *L* is irreducible, and its determinant is of finite order, then G_{arith}(*L*, η
) is a (possibly non-connected) semisimple algebraic group, containing G_{geom}(*L*, η
) as a normal subgroup of finite index.

Assertion (i) is [D, Corollaire (1.3.9)]. For the proof of assertion (ii), we shall make use of the construction in [D, (1.3.7)], which we summarize below.

Recall that the *Weil group* $W(\overline{\mathbb{F}}_q/\mathbb{F}_q)$ of \mathbb{F}_q is the subgroup of $Gal(\overline{\mathbb{F}}_q/\mathbb{F}_q)$ consisting of integer-powers of $Frob_{\mathbb{F}_q}$; it is considered as a topological group given with the discrete topology, and we have the canonical isomorphism

$$\mathbb{Z} \xrightarrow{=} W(\overline{\mathbb{F}}_q/\mathbb{F}_q)$$
, sending 1 to $\operatorname{Frob}_{\mathbb{F}_q}$.

The Weil group $W(X, \bar{\eta})$ of X is the preimage of $W(\bar{\mathbb{F}}_q/\mathbb{F}_q)$ in $\pi_1(X, \bar{\eta})$ by the degree homomorphism $\pi_1(X, \bar{\eta}) \xrightarrow{\text{deg}} \text{Gal}(\bar{\mathbb{F}}_q/\mathbb{F}_q)$; it is considered as a topological group given with the product topology via the isomorphism

$$\mathbf{W}(X,\bar{\eta}) \cong \pi_1(X \otimes_{\mathbb{F}_q} \bar{\mathbb{F}}_q, \bar{\eta}) \rtimes_{\operatorname{Gal}(\bar{\mathbb{F}}_q/\mathbb{F}_q)} \mathbf{W}(\bar{\mathbb{F}}_q/\mathbb{F}_q),$$

where $\pi_1(X \otimes_{\mathbb{F}_q} \bar{\mathbb{F}}_q, \bar{\eta})$ retains its profinite topology, and is an open and closed subgroup of $W(X, \bar{\eta})$. These groups sit in the following diagram:

where the right two vertical arrows are inclusion homomorphisms with dense images. (Note that the topologies of $W(X, \bar{\eta})$ and $W(\bar{\mathbb{F}}_q/\mathbb{F}_q)$ are not the ones induced by the right two vertical arrows!)

Given a lisse $\overline{\mathbb{Q}}_{\ell}$ -sheaf \mathscr{L} on X, the *push-out construction* of [D, (1.3.7)] produces an algebraic group $\mathbf{G}(\mathscr{L}, \overline{\eta})$, which is locally of finite type, but not quasi-compact; it is characterized by the fact that it sits in a diagram:

such that the composite of the two continuous homomorphisms

$$W(X, \bar{\eta}) \rightarrow G(\mathscr{L}, \bar{\eta}) \rightarrow GL(\mathscr{L}_{\bar{\eta}})$$

is equal to the continuous representation of $W(X, \bar{\eta})$ on $\mathscr{L}_{\bar{\eta}}$ obtained via restriction:

$$W(X,\bar{\eta}) \hookrightarrow \pi_1(X,\bar{\eta}) \to GL(\mathscr{L}_{\bar{\eta}}).$$

Proof of Proposition 1 (ii). From assertion (i), we already know that the group $G_{geom}(\mathscr{L}, \bar{\eta})$ is a semisimple closed normal subgroup of $G_{arith}(\mathscr{L}, \bar{\eta})$. Hence, to prove assertion (ii), it suffices for us to show that $G_{arith}(\mathscr{L}, \bar{\eta})$ contains $G_{geom}(\mathscr{L}, \bar{\eta})$ as a subgroup of finite index, for then both groups will have the same identity component, which is a connected semisimple algebraic group.

Since $W(X, \bar{\eta}) \hookrightarrow \pi_1(X, \bar{\eta})$ is an inclusion with dense image, $G_{arith}(\mathcal{L}, \bar{\eta})$ can also be described as the Zariski closure of the image of $W(X, \bar{\eta})$ in $GL(\mathcal{L}_{\bar{\eta}})$; likewise, since $W(X, \bar{\eta}) \hookrightarrow G(\mathcal{L}, \bar{\eta})$ is an inclusion with dense image, $G_{arith}(\mathcal{L}, \bar{\eta})$ is also equal to the

Zariski closure of the image of $\mathbf{G}(\mathscr{L}, \bar{\eta})$ in $\mathrm{GL}(\mathscr{L}_{\bar{\eta}})$. Let

$$\rho: \mathbf{G}(\mathscr{L}, \bar{\eta}) \to \mathbf{GL}(\mathscr{L}_{\bar{\eta}})$$

denote the canonical homomorphism from $G(\mathcal{L}, \bar{\eta})$ into $GL(\mathcal{L}_{\bar{\eta}})$; then the composite map

$$G_{geom}(\mathscr{L}, \bar{\eta}) \hookrightarrow \mathbf{G}(\mathscr{L}, \bar{\eta}) \xrightarrow{\rho} \mathbf{GL}(\mathscr{L}_{\bar{\eta}})$$

is just the identity map on $G_{geom}(\mathscr{L}, \bar{\eta})$. We are thus reduced to showing that $\rho^{-1}(G_{geom}(\mathscr{L}, \bar{\eta}))$ is a subgroup of $\mathbf{G}(\mathscr{L}, \bar{\eta})$ of finite index.

The fundamental fact we need about $\mathbf{G}(\mathscr{L}, \bar{\eta})$ is [D, Corollaire (1.3.11)], which asserts that because \mathscr{L} is irreducible (hence semisimple) by hypothesis, there exists some element g in the center of $\mathbf{G}(\mathscr{L}, \bar{\eta})$ whose degree is >0 (i.e. g maps to a positive integer under $\mathbf{G}(\mathscr{L}, \bar{\eta}) \xrightarrow{\text{deg}} \mathbb{Z} \cong \mathbf{W}(\bar{\mathbb{F}}_q/\mathbb{F}_q)$). Therefore, $\rho(g)$ is an element of $\mathbf{GL}(\mathscr{L}_{\bar{\eta}})$ which centralizes $\rho(\mathbf{G}(\mathscr{L}, \bar{\eta}))$, and so it centralizes $\mathbf{G}_{\text{arith}}(\mathscr{L}, \bar{\eta})$. Since \mathscr{L} is irreducible as a representation of $\pi_1(X, \bar{\eta})$ and hence as a representation of $\mathbf{G}_{\text{arith}}(\mathscr{L}, \bar{\eta})$, it follows that $\rho(g)$ must be a scalar.

By hypothesis, the determinant of \mathscr{L} is of finite order, which means that the onedimensional representation of $\pi_1(X, \bar{\eta})$ on the determinant $\det(\mathscr{L}_{\bar{\eta}})$ of $\mathscr{L}_{\bar{\eta}}$ is given by a character of finite order, say d. The same is therefore true for $\det(\mathscr{L}_{\bar{\eta}})$ as a representation of $W(X, \bar{\eta})$ and of $\mathbf{G}(\mathscr{L}, \bar{\eta})$. From this it follows that, if \mathscr{L} has rank r, then $\rho(g)$ is a scalar which is a root of unity of order dividing dr, and so $g^{dr} \in \mathbf{G}(\mathscr{L}, \bar{\eta})$ lies in the kernel of ρ . Hence $\rho^{-1}(\mathbf{G}_{\text{geom}}(\mathscr{L}, \bar{\eta}))$ contains $\deg^{-1}(\deg(g^{dr}))$ in $\mathbf{G}(\mathscr{L}, \bar{\eta})$, which is of finite index in $\mathbf{G}(\mathscr{L}, \bar{\eta})$. \Box

Let \mathscr{L} be a lisse $\overline{\mathbb{Q}}_{\ell}$ -sheaf \mathscr{L} on X. Its arithmetic monodromy group $G_{\text{arith}}(\mathscr{L}, \overline{\eta})$ contains the identity component $G_{\text{arith}}(\mathscr{L}, \overline{\eta})^0$ as an open normal subgroup; $G_{\text{arith}}(\mathscr{L}, \overline{\eta})^0$ is a connected algebraic group. The faithful representation

$$G_{arith}(\mathscr{L},\bar{\eta}) \hookrightarrow GL(\mathscr{L}_{\bar{\eta}})$$

of $G_{arith}(\mathscr{L}, \bar{\eta})$, when restricted to the subgroup $G_{arith}(\mathscr{L}, \bar{\eta})^0$ of $G_{arith}(\mathscr{L}, \bar{\eta})$, gives a faithful representation

$$\mathbf{G}_{\mathrm{arith}}(\mathscr{L},\bar{\eta})^{0} \hookrightarrow \mathbf{G}_{\mathrm{arith}}(\mathscr{L},\bar{\eta}) \hookrightarrow \mathrm{GL}(\mathscr{L}_{\bar{\eta}})$$

of $G_{arith}(\mathscr{L}, \bar{\eta})^0$ on $\mathscr{L}_{\bar{\eta}}$. We say that the lisse sheaf \mathscr{L} is *Lie-irreducible* if $\mathscr{L}_{\bar{\eta}}$ is irreducible as a representation of $G_{arith}(\mathscr{L}, \bar{\eta})^0$. It is clear that Lie-irreducibility implies irreducibility.

Proposition 2. Let \mathscr{L} be a lisse $\overline{\mathbb{Q}}_{\ell}$ -sheaf on X, which is Lie-irreducible, and whose determinant is of finite order. Then there exist $\alpha \in \overline{\mathbb{Q}}_{\ell}$ and a closed point x_0 of X, such

that α is an eigenvalue of multiplicity one of $\operatorname{Frob}_{x_0}$ acting on \mathcal{L} ; i.e. $1/\alpha$ is a root of multiplicity one of the polynomial

$$\det(1 - T\operatorname{Frob}_{x_0}, \mathscr{L}).$$

Proof. First, we claim that it is a Zariski-open condition for an element of $G_{\text{arith}}(\mathscr{L}, \bar{\eta})$ to have an eigenvalue of multiplicity one on $\mathscr{L}_{\bar{\eta}}$; in other words, we claim that the set

$$U \coloneqq \{g \in G_{\text{arith}}(\mathscr{L}, \bar{\eta}) \colon g \text{ acting on } \mathscr{L}_{\bar{\eta}} \text{ has an eigenvalue of}$$
multiplicity one in $\bar{\mathbb{Q}}_{\ell}\}$

is a Zariski-open subset of $G_{arith}(\mathcal{L}, \bar{\eta})$. We show this as follows. For an element $g \in G_{arith}(\mathcal{L}, \bar{\eta})$, let $ch(g) \in \bar{\mathbb{Q}}_{\ell}[T]$ denote the characteristic polynomial of g; then the set U can also be described as

 $U = \{g \in \mathbf{G}_{\mathrm{arith}}(\mathscr{L}, \bar{\eta}): \operatorname{ch}(g) \in \bar{\mathbb{Q}}_{\ell}[T] \text{ has a root of multiplicity one in } \bar{\mathbb{Q}}_{\ell}\}.$

Let *r* be the rank of \mathscr{L}_{η} ; then ch gives rise to a morphism of $\overline{\mathbb{Q}}_{\ell}$ -varieties

ch:
$$G_{\text{arith}}(\mathscr{L}, \bar{\eta}) \rightarrow \bar{\mathbb{Q}}_{\ell}[T]_{\text{deg } r}^{\text{monic}}, \quad g \mapsto \operatorname{ch}(g),$$

where $\bar{\mathbb{Q}}_{\ell}[T]_{\deg r}^{\text{monic}}$ denotes the affine space of monic polynomials in T of degree r. For $g \in G_{\text{arith}}(\mathcal{L}, \bar{\eta})$, the polynomial $\operatorname{ch}(g)$ has a root of multiplicity one in $\bar{\mathbb{Q}}_{\ell}$ if and only if it does not divide the square $\operatorname{ch}(g)^{\prime 2}$ of its derivative $\operatorname{ch}(g)^{\prime}$ in $\bar{\mathbb{Q}}_{\ell}[T]$. Thus it suffices for us to show that the set

$$Z \coloneqq \{f \in \overline{\mathbb{Q}}_{\ell}[T]_{\deg r}^{\text{monic}} \colon f \text{ divides } f'^2 \text{ in } \overline{\mathbb{Q}}_{\ell}[T]\}$$

is Zariski-closed in $\bar{\mathbb{Q}}_{\ell}[T]_{\deg r}^{\text{monic}}$. But for $f \in \bar{\mathbb{Q}}_{\ell}[T]_{\deg r}^{\text{monic}}$, the Euclidean division algorithm shows that the remainder of dividing f'^2 by f is a polynomial of degree < r whose coefficients are given by certain (universal) \mathbb{Z} -polynomial expressions in terms of the coefficients of f; as the set Z above is precisely the zero-set of these polynomial expressions, it is Zariski-closed.

Next, we claim that the set U above is in fact Zariski-open and *non-empty* in $G_{arith}(\mathscr{L},\bar{\eta})$. Indeed, by part (ii) of Proposition 1, $G_{arith}(\mathscr{L},\bar{\eta})^0$ is a connected semisimple algebraic group; the representation $\mathscr{L}_{\bar{\eta}}$ of $G_{arith}(\mathscr{L},\bar{\eta})^0$ is irreducible by hypothesis, and so by the representation theory of connected semisimple algebraic groups, it is classified by its highest weight, which occurs with multiplicity one. Thus, a generic element of any maximal torus of $G_{arith}(\mathscr{L},\bar{\eta})^0$ lies in U.

Finally, by Čebotarev's density theorem, there exist infinitely many closed points x of X whose Frobenius conjugacy classes $\operatorname{Frob}_x \subset \pi_1(X, \overline{\eta})$ are mapped into U under the monodromy representation of $\pi_1(X, \overline{\eta})$ on $\mathscr{L}_{\overline{\eta}}$. Thus we can pick x_0 to be any one

of these closed points of X, and pick $\alpha \in \overline{\mathbb{Q}}_{\ell}$ to be an eigenvalue of multiplicity one of $\operatorname{Frob}_{x_0}$ acting on \mathscr{L} . \Box

Remark. In Proposition 2, it is not enough to just assume that the lisse $\bar{\mathbb{Q}}_{\ell}$ -sheaf \mathscr{L} is irreducible; the assumption that it is *Lie-irreducible* is necessary. If \mathcal{L} is irreducible but not Lie-irreducible, it may happen that every element of $G_{arith}(\mathscr{L}, \bar{\eta})$ acting on $\mathscr{L}_{\bar{n}}$ has repeated eigenvalues, which is to say that the set $U \subset G_{\text{arith}}(\mathscr{L}, \bar{\eta})$ in the proof of the proposition is empty. For a specific example, we may take $G_{arith}(\mathscr{L}, \bar{\eta})$ to be the finite symmetric group on 6 letters, and take \mathscr{L}_{η} to be the 16-dimensional irreducible representation of this finite group; such a situation can arise geometrically.

2. Dévissage of representations

Let k be an algebraically closed field of characteristic 0—such as $\overline{\mathbb{Q}}_{\ell}$. In this section, we consider (possibly non-connected) reductive groups over k and their finite-dimensional k-rational representations. If G is such a reductive group, any krational representation of G is semisimple (a direct sum of irreducible representations), since k is of characteristic 0. By the quasi-compactness of G, a subgroup H of G is (Zariski-) open if and only if it is (Zariski-) closed of finite index, in which case H necessarily contains the identity component G^0 of G.

The following two results are proved in [I] for representations of finite groups. The same proofs, with minor modifications, work for representations of reductive groups. We reproduce the (modified) arguments below for the sake of completeness.

Lemma 3 (I.M. Isaacs [I, Theorem 6.18]). Let G be a reductive group, and let K and L be open normal subgroups of G, with $L \subseteq K$. Suppose that K/L is abelian, and that there does not exist a normal subgroup M of G with $L \subsetneq M \subsetneq K$. Let π be an irreducible representation of K whose isomorphism class is invariant under G-conjugation. Then one of the following holds:

- (i) $\operatorname{Res}_{L}^{K}(\pi)$ is isomorphic to a direct sum $\sigma_{1} \oplus \cdots \oplus \sigma_{t}$ of t := [K : L] many irreducible representations $\sigma_1, ..., \sigma_t$ of L which are pairwise non-isomorphic;
- (ii) $\operatorname{Res}_{L}^{K}(\pi)$ is an irreducible representation of L; (iii) $\operatorname{Res}_{L}^{K}(\pi)$ is isomorphic to $\sigma^{\oplus e}$, where σ is an irreducible representation of L, and $e^2 = [K:L].$

Proof. Since L is normal in K, the irreducible constituents of $\operatorname{Res}_{L}^{K}(\pi)$ are Kconjugate to one another, and each of these constituents occurs in $\operatorname{Res}_L^K(\pi)$ with the same multiplicity. Choose any irreducible constituent σ of $\operatorname{Res}_{L}^{K}(\pi)$, and let

$$I := \{g \in G: {}^{g} \sigma \cong \sigma \text{ as representations of } L\}$$

be the open subgroup of *G* (containing *L*) which stabilizes the isomorphism type of σ under *G*-conjugation. Since π is invariant under *G*-conjugation, every *G*-conjugate of σ is a constituent of $\text{Res}_L^K(\pi)$, and so every *G*-conjugate of σ is *K*-conjugate to σ . It follows that $[G:I] = [K: K \cap I]$, and hence KI = G. Since K/L is abelian, $K \cap I$ is normal in *K*; since *K* is normal in *G*, $K \cap I$ is normal in *I*. As KI = G, we see that $K \cap I$ is normal in *G*. From the hypothesis of the proposition, it follows that $K \cap I$ is either *L* or *K*.

Suppose $K \cap I = L$. Then there are t = [K : L] many pairwise non-isomorphic irreducible constituents $\sigma = \sigma_1, ..., \sigma_t$ of $\text{Res}_L^K(\pi)$, and so we have

$$\operatorname{Res}_{L}^{K}(\pi) \cong (\sigma_{1} \oplus \cdots \oplus \sigma_{t})^{\oplus a}$$

for some multiplicity $e \ge 1$. The constituents σ_j of $\operatorname{Res}_L^K(\pi)$ are *K*-conjugate to one another, and so they have the same rank as σ . Hence

$$\operatorname{rk}(\pi) = \operatorname{rk}(\operatorname{Res}_{L}^{K}(\pi)) = et \operatorname{rk}(\sigma).$$

But π is a constituent of $\operatorname{Ind}_{L}^{K}(\sigma)$, so

$$\operatorname{rk}(\pi) \leq \operatorname{rk}(\operatorname{Ind}_{L}^{K}(\sigma)) = t \operatorname{rk}(\sigma).$$

Thus e = 1, and this is case (i).

Henceforth suppose $K \cap I = K$. Then σ is invariant under K-conjugation, so we have

$$\operatorname{Res}_{L}^{K}(\pi) \cong \sigma^{\oplus e}$$

for some multiplicity $e \ge 1$. Let $\chi_1, ..., \chi_t$ be the distinct linear characters of the abelian group K/L. Then $\chi_1 \otimes \pi, ..., \chi_t \otimes \pi$ are irreducible representations of K, each having the same rank as π , and we have

$$\operatorname{Res}_{L}^{K}(\chi_{j}\otimes\pi)\cong\sigma^{\oplus e}$$
 for each $j=1,\ldots,t$.

Suppose $\chi_1 \otimes \pi, ..., \chi_t \otimes \pi$ are pairwise non-isomorphic representations of *K*. Then we obtain an inclusion

$$\bigoplus_{j=1}^{l} (\chi_j \otimes \pi)^{\oplus e} \subseteq \operatorname{Ind}_L^K(\sigma).$$

Comparing ranks, we get

$$et \operatorname{rk}(\pi) \leq \operatorname{rk}(\operatorname{Ind}_{L}^{K}(\sigma)) = t \operatorname{rk}(\sigma),$$

and so

$$e \operatorname{rk}(\pi) \leq \operatorname{rk}(\sigma).$$

But

$$e \operatorname{rk}(\sigma) = \operatorname{rk}(\operatorname{Res}_{L}^{K}(\pi)) = \operatorname{rk}(\pi).$$

Thus e = 1, and this is case (ii).

In the remaining situation, at least two of the representations $\chi_1 \otimes \pi, ..., \chi_t \otimes \pi$ are isomorphic; this implies that $\pi \cong \chi \otimes \pi$ for some non-trivial linear character χ of K/L. Let $M = \text{Ker}(\chi)$; we have $L \subseteq M \subsetneq K$. First, consider the representation π , with trace-function

$$\operatorname{Tr} \circ \pi : K \to k, \quad x \mapsto \operatorname{Tr}(\pi(x)).$$

On K - M, the linear character χ takes values different from 1; since $\operatorname{Tr} \circ \pi = \operatorname{Tr} \circ (\chi \otimes \pi) = \chi \cdot (\operatorname{Tr} \circ \pi)$, it follows that $\operatorname{Tr} \circ \pi$ vanishes on K - M. Since the representation π is invariant under *G*-conjugation, it follows that $\operatorname{Tr} \circ \pi$ vanishes on $K - gMg^{-1}$ for all $g \in G$. The normal subgroup $\bigcap_{g \in G} gMg^{-1}$ of *G* contains *L* and is properly contained in *K*, so it must be equal to *L* by hypothesis. Thus $\operatorname{Tr} \circ \pi$ vanishes on K - L. Next, consider the representation $\operatorname{Ind}_{L}^{K}(\operatorname{Res}_{L}^{K}(\pi)) \cong \operatorname{Ind}_{L}^{K}(1) \otimes \pi$, with its trace-function

$$\operatorname{Tr} \circ \operatorname{Ind}_{L}^{K}(\operatorname{Res}_{L}^{K}(\pi)) : K \to k, \quad x \mapsto \operatorname{Tr}(\operatorname{Ind}_{L}^{K}(1)(x)) \operatorname{Tr}(\pi(x)).$$

Since the trace-function of $\operatorname{Ind}_{L}^{K}(1)$ is 0 on K - L and is t on L, it follows that the trace-function of $\operatorname{Ind}_{L}^{K}(\operatorname{Res}_{L}^{K}(\pi))$ vanishes on K - L, and its values on L are t times those of $\operatorname{Tr} \circ \pi$. Comparing the trace-functions of π and $\operatorname{Ind}_{L}^{K}(\operatorname{Res}_{L}^{K}(\pi))$, we see that

$$\operatorname{Tr} \circ (\pi^{\oplus t}) = \operatorname{Tr} \circ \operatorname{Ind}_{L}^{K}(\operatorname{Res}_{L}^{K}(\pi)).$$

By the trace comparison theorem of Bourbaki (cf. [B, Section 12, no. 1, Propositon 3]), this implies

$$\pi^{\oplus t} \cong \operatorname{Ind}_{L}^{K}(\operatorname{Res}_{L}^{K}(\pi))$$

as representations of K. Hence

$$e^2 = \dim \operatorname{Hom}_L(\operatorname{Res}_L^K(\pi), \operatorname{Res}_L^K(\pi)) = \dim \operatorname{Hom}_K(\pi, \operatorname{Ind}_L^K(\operatorname{Res}_L^K(\pi))) = t = [K : L]$$

and this is case (iii). \Box

Proposition 4 (I.M. Isaacs [I, Theorem 6.22]). Let G be a reductive group, and let N be an open normal subgroup of G such that G/N is a nilpotent finite group. Let ρ be an irreducible representation of G. Then there exists an open subgroup H of G with $N \subseteq H \subseteq G$, and an irreducible representation σ of H, such that $\rho \cong \operatorname{Ind}_{H}^{G}(\sigma)$, and such that $\operatorname{Res}_{N}^{N}(\sigma)$ is an irreducible representation of N.

74

Remark. The proposition holds in slightly greater generality: we need only to assume that G/N is a solvable finite group whose *chief factors* are of square-free orders; see [I]. This technical condition is automatically verified when G/N is nilpotent or supersolvable.

Proof of Proposition 4. The theorem is clear when G = N. We proceed by induction on #(G/N); hence assume that the theorem holds for any proper subgroup of Gcontaining N. If $\operatorname{Res}_N^G(\rho)$ is irreducible, then the theorem holds with H = G and $\sigma = \rho$. Hence suppose $\operatorname{Res}_N^G(\rho)$ is reducible.

Since G/N is finite, we can find an open normal subgroup K of G which is minimal for the conditions that $N \subseteq K$ and $\operatorname{Res}_{K}^{G}(\rho)$ is irreducible. Then $N \subsetneq K$ necessarily, and so we can find an open normal subgroup L of G which is maximal for the conditions that $N \subseteq L \subsetneq K$. Since G/N is nilpotent, it follows that K/L is cyclic of prime order, say t.

The isomorphism class of the irreducible representation $\pi = \operatorname{Res}_{K}^{G}(\rho)$ of K is invariant under G-conjugation, since π is the restriction of an irreducible representation ρ of G. Thus we may apply Lemma 3 to the representation π of K. By the choice of L and K, $\operatorname{Res}_{L}^{K}(\pi)$ is not irreducible, so case (ii) cannot occur; since t = [K : L] is a prime number, case (iii) cannot occur. Hence we are in case (i), and it follows that $\operatorname{Res}_{L}^{G}(\rho)$ is isomorphic to a direct sum $\sigma_{1} \oplus \cdots \oplus \sigma_{t}$ of t many irreducible representations $\sigma_{1}, \ldots, \sigma_{t}$ of L which are pairwise non-isomorphic.

Let

$$I \coloneqq \{g \in G : {}^{g}\sigma_{1} \cong \sigma_{1} \text{ as representations of } L\}$$

be the open subgroup of *G* (containing *L*) which stabilizes the isomorphism type of σ_1 under *G*-conjugation. Thus [G:I] = t is >1, and $\rho \cong \operatorname{Ind}_I^G(\rho')$ for some irreducible representation ρ' of *I*. Applying the induction hypothesis to *I*, we obtain an open subgroup *H* of *I* with $N \subseteq H \subseteq I$, and an irreducible representation σ of *H*, such that $\rho' \cong \operatorname{Ind}_H^I(\sigma)$ and $\operatorname{Res}_N^H(\sigma)$ is an irreducible representation of *N*. Then $\rho \cong \operatorname{Ind}_H^G(\sigma)$, which completes the proof of the proposition. \Box

If G is a reductive group over k, we let K(G) denote the Grothendieck group of the abelian category of finite-dimensional k-rational representations of G. It is clear that K(G) as a \mathbb{Z} -module is freely generated by the irreducible representations of G. The tensor product of representations gives rise to a commutative ring structure on K(G), whose unit element is the class 1 of the trivial representation of G. If $H \subseteq G$ is an open subgroup, then induction of representations from H to G gives rise to a homomorphism of \mathbb{Z} -modules

Ind :
$$K(H) \rightarrow K(G)$$
.

The projection formula shows that the Ind-image of K(H) in K(G) is an ideal.

Recall that, for p a prime number, a finite group G is called *p*-elementary if it is isomorphic to a direct product $A \times B$, where A is a cyclic group of order prime to p, and B is a *p*-group. A finite group G is called *elementary* if it is *p*-elementary for some prime number p. It is clear that an elementary finite group is nilpotent.

Let G be a reductive group, and N be an open normal subgroup of G. We say that, for a prime number p, an open subgroup H of G is p-elementary modulo N if one has the inclusions $N \subseteq H \subseteq G$ and furthermore the finite quotient H/N is p-elementary; we say that H is elementary modulo N if it is p-elementary modulo N for some prime number p.

Proposition 5 (R. Brauer). Let G be a reductive group, and let N be an open normal subgroup of G. Then the \mathbb{Z} -homomorphism

Ind :
$$\bigoplus_{\substack{H \subseteq G \\ \text{elem.mod } N}} \mathbf{K}(H) \to \mathbf{K}(G)$$

is surjective (the direct sum is over all subgroups H of G which are elementary modulo N).

Proof. Recall that Brauer's theorem on induced characters for finite groups (see [I, Theorem 8.4] or [H, Theorem 34.2] for instance) states that if G is a finite group, then the \mathbb{Z} -homomorphism

Ind :
$$\bigoplus_{\substack{H \subseteq G \\ elem.}} \mathbf{K}(H) \to \mathbf{K}(G)$$

is surjective; the key point is that the unit element 1 of K(G) lies in the ideal generated by the Ind-images of K(H) where H runs over all elementary subgroups of G. Therefore, the proposition follows from applying Brauer's theorem to the finite group G/N. \Box

Corollary 6. Let G be a reductive group, and let N be an open normal subgroup of G. Let ρ be a representation of G. Then there exist a finite list of pairs:

$$(H_1,\sigma_1),\ldots,(H_s,\sigma_s),\tag{(*)}$$

where, for each $i = 1, \ldots, s$,

- (a) H_i is an open subgroup of G with $N \subseteq H_i \subseteq G$,
- (b) σ_i is an irreducible representation of H_i , and in fact,
- (c) $\operatorname{Res}_{N}^{H_{i}}(\sigma_{i})$ is an irreducible representation of N,

such that one has an isomorphism of representations of G of the form

$$\rho \oplus \left(\bigoplus_{i=1}^{t} \operatorname{Ind}_{H_{i}}^{G}(\sigma_{i}) \right) \cong \left(\bigoplus_{j=t+1}^{s} \operatorname{Ind}_{H_{j}}^{G}(\sigma_{j}) \right)$$
(**)

for some t with $1 \leq t \leq s$.

Remark. If one takes N to be the identity component G^0 of G, then property (c) asserts that each σ_i is Lie-irreducible. This is the situation which we shall encounter later in Section 4.

Proof of Corollary 6. Proposition 5 tells us that we can find a finite list of pairs as in (*), such that an isomorphism of form (**) holds, such that properties (a) and (b) are verified, and such that each H_i is elementary modulo N. Since each H_i/N is then a nilpotent finite group, Proposition 4 allows us to replace each H_i by a subgroup containing N and each σ_i by an irreducible representation of the corresponding subgroup, so that, furthermore, property (c) is also verified. This proves the corollary. \Box

3. Descent of representations

Let Γ be a group, let k_0 be a field of characteristic zero, and let k be a field extension of k_0 . In this section, we prove two criteria (Propositions 7 and 9) for descending a k-representation of Γ to a k_0 -representation.

Proposition 7. Let ρ be a finite-dimensional k-representation of Γ , which is absolutely irreducible (i.e. irreducible over an algebraic closure of k). Assume:

- (i) ρ is defined over a finite Galois extension K of k_0 in k;
- (ii) for every $\gamma \in \Gamma$, the trace $\operatorname{Tr}(\rho(\gamma))$ of γ with respect to ρ lies in k_0 ;
- (iii) there exists some $\alpha \in k_0$ and some $\gamma_0 \in \Gamma$ such that α is an eigenvalue of multiplicity one of γ_0 with respect to ρ .

Then ρ is defined over k_0 .

Proof. By (i), we may assume that ρ is given as a K-matrix representation of Γ :

$$\rho: \Gamma \to \operatorname{GL}_r(K),$$

and we let $\Sigma = \text{Gal}(K/k_0)$ be the finite Galois group. According to (iii), we may choose an eigenvector $v \in K^{\oplus r}$ of $\rho(\gamma_0)$ with eigenvalue α . By changing basis, we may assume that v is the first basis vectors of $K^{\oplus r}$; thus the matrix $\rho(\gamma_0)$

has the form

$$\begin{pmatrix} \alpha & * & \dots & * \\ 0 & * & \dots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & * & \dots & * \end{pmatrix}.$$

Each $\sigma \in \Sigma$ defines a *K*-representation

$$\sigma\rho:\Gamma\xrightarrow{\rho}\operatorname{GL}_r(K)\xrightarrow{\operatorname{GL}_r(\sigma)}\operatorname{GL}_r(K).$$

Since $\alpha \in k_0$ is invariant under Σ , the matrices $\sigma \rho(\gamma_0)$ also have the same form as $\rho(\gamma_0)$ above; thus v is also an eigenvector with eigenvalue α of each $\sigma \rho(\gamma_0)$, $\sigma \in \Sigma$.

Assumption (ii) and the invariance of k_0 under Σ gives the equality in k_0 :

 $\operatorname{Tr}(\sigma\rho(\gamma)) = \operatorname{Tr}(\rho(\gamma))$ for any $\sigma \in \Sigma$, any $\gamma \in \Gamma$.

Therefore, by the trace comparison theorem of Bourbaki (cf. [B, Section 12, no. 1, Proposition 3]), the *K*-representations $\sigma\rho$ of Γ , for various $\sigma\in\Sigma$, are all isomorphic over *K* to ρ . Choose such isomorphisms over *K*:

$$a(\sigma): (\sigma\rho, K^{\oplus r}) \xrightarrow{\cong} (\rho, K^{\oplus r}), \quad \sigma \in \Sigma.$$

Since ρ is absolutely irreducible by hypothesis, any automorphism of it must be a scalar in K. It follows that each $a(\sigma) \in GL_r(K)$ is determined up to a K-scalar multiple. For any $\sigma, \sigma' \in \Sigma$, the two different ways of expressing $\sigma' \sigma \rho$ in terms of ρ then gives

$$a(\sigma'\sigma) = (\text{scalar in } K) \cdot a(\sigma') \cdot \sigma' a(\sigma).$$

We shall now rigidify the situation. For each $\sigma \in \Sigma$, we have the equality

$$a(\sigma) \cdot \sigma \rho(\gamma_0) = \rho(\gamma_0) \cdot a(\sigma),$$

and the fact that $v \in K^{\oplus r}$ is an eigenvector of $\sigma \rho(\gamma_0)$ with eigenvalue α ; it follows that $a(\sigma)v \in K^{\oplus r}$ is an eigenvector of $\rho(\gamma_0)$ with eigenvalue α . Thanks to the multiplicity-one hypothesis (iii) on α , $a(\sigma)v$ is necessarily a K-scalar multiple of v itself. Since we are free to adjust $a(\sigma) \in \operatorname{GL}_r(K)$ by any K-scalar multiple, we may and do assume that each $a(\sigma)$ maps v to itself. Thus the matrices $a(\sigma)$, for $\sigma \in \Sigma$, have the form

$$\begin{pmatrix} 1 & * & \dots & * \\ 0 & * & \dots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & * & \dots & * \end{pmatrix},$$

78

and it follows that the matrices $\sigma' a(\sigma)$, for $\sigma, \sigma' \in \Sigma$, also have the same form above, which implies that each $\sigma' a(\sigma)$ also maps v to itself. Therefore, we now have

$$a(\sigma'\sigma) = a(\sigma') \cdot \sigma' a(\sigma)$$
 for any $\sigma, \sigma' \in \Sigma$.

By Hilbert Theorem 90 for GL_r , there exists some $b \in GL_r(K)$ such that

$$a(\sigma) = b \cdot \sigma b^{-1}$$
 for each $\sigma \in \Sigma$.

Using $b^{-1} \in \operatorname{GL}_r(K)$ for a change of basis, we obtain the *K*-representation $\tilde{\rho} := b^{-1}\rho b$ defined by

$$\tilde{\rho}: \Gamma \to \operatorname{GL}_r(K), \quad \gamma \mapsto b^{-1} \rho(\gamma) b,$$

which is isomorphic over K to ρ . A straightforward computation now shows that the matrices

$$\tilde{\rho}(\gamma) \in \operatorname{GL}_r(K)$$
 for $\gamma \in \Gamma$,

are all fixed under the action of the Galois group Σ ; in other words, $\sigma \tilde{\rho} = \tilde{\rho}$ for any $\sigma \in \Sigma$. Thus the representation $\tilde{\rho}$ factorizes as

$$\Gamma \rightarrow \operatorname{GL}_r(k_0) \hookrightarrow \operatorname{GL}_r(K).$$

So $\tilde{\rho}$ is defined over k_0 , and the same is therefore true for ρ . \Box

Lemma 8. Let M, N be k_0 -representations of Γ .

(i) The canonical homomorphism of k-vector spaces

$$k \otimes_{k_0} \operatorname{Hom}_{k_0 \Gamma}(M, N) \to \operatorname{Hom}_{k \Gamma}(k \otimes_{k_0} M, k \otimes_{k_0} N)$$

is injective; it is surjective if M is finitely generated as a left $k_0\Gamma$ -module. (ii) The canonical homomorphism of k-vector spaces

$$k \otimes_{k_0} \operatorname{Ext}^{1}_{k_0\Gamma}(M, N) \to \operatorname{Ext}^{1}_{k\Gamma}(k \otimes_{k_0} M, k \otimes_{k_0} N)$$

is injective if M is finitely generated as a left $k_0\Gamma$ -module.

Remark. (a) If *M* is *finitely presented* as a left $k_0\Gamma$ -module, the lemma follows from the well-known "change of rings" isomorphisms applied to $k_0\Gamma \hookrightarrow k\Gamma$ (see [R, Theorem 2.39] for instance). Of course, if *M* is a finite-dimensional k_0 -representation of Γ , then it is automatically a finitely generated left $k_0\Gamma$ -module; however, it need not be finitely presented as a left $k_0\Gamma$ -module.

(b) When Γ is a finite group, the group ring $k_0\Gamma$ is left-noetherian, so a finite-dimensional k_0 -representation M of Γ is finitely presented as a left $k_0\Gamma$ -module, and the lemma follows from (a) above. But since we will use the lemma when Γ is a profinite group, and we could not identify a satisfactory reference for the corresponding result, we find it prudent to give a complete proof here.

(c) The proof below actually shows that the lemma holds in slightly greater generality: it suffices to assume that k_0 is any commutative ring, and that k is a k_0 -algebra which is *free as a k_0-module*.

Proof of Lemma 8. We first show that the canonical homomorphism

$$\begin{array}{rcl} k \otimes_{k_0} \mathrm{Hom}_{k_0 \Gamma}(M, N) & \to & \mathrm{Hom}_{k \Gamma}(k \otimes_{k_0} M, k \otimes_{k_0} N) \\ \alpha \otimes \phi & \mapsto & (\beta \otimes m \mapsto \alpha \beta \otimes \phi(m)) \end{array}$$

is injective. Choose a basis $\{e_i \in k : i \in I\}$ of k as a k_0 -vector space. Then the $k_0\Gamma$ -module $k \otimes_{k_0} N$ is the direct sum of the $k_0\Gamma$ -submodules $e_i \otimes N$:

$$k \otimes_{k_0} N \cong \bigoplus_{i \in I} e_i \otimes N;$$

likewise, the k_0 -vector space $k \otimes_{k_0} \operatorname{Hom}_{k_0\Gamma}(M, N)$ is the direct sum of the corresponding k_0 -subspaces $e_i \otimes \operatorname{Hom}_{k_0\Gamma}(M, N)$:

$$k \otimes_{k_0} \operatorname{Hom}_{k_0\Gamma}(M,N) \cong \bigoplus_{i \in I} e_i \otimes \operatorname{Hom}_{k_0\Gamma}(M,N).$$

Any $\phi \in k \otimes_{k_0} \operatorname{Hom}_{k_0 \Gamma}(M, N)$ is therefore equal to a sum

$$\phi = \sum_{i \in I} e_i \otimes \phi_i$$

for some uniquely determined $\phi_i \in \text{Hom}_{k_0 \Gamma}(M, N)$, $i \in I$, all but finitely of which are the zero-map. Suppose ϕ lies in the kernel of the canonical homomorphism. Then for any $m \in M$, one has

$$\sum_{i\in I} e_i \otimes \phi_i(m) = 0 \quad \text{in} \quad k \otimes_{k_0} N \cong \bigoplus_{i\in I} e_i \otimes N,$$

so $\phi_i(m) = 0$ in N for each $i \in I$. It follows that $\phi = 0$, which is what we want.

If M is finite free as a left $k_0\Gamma$ -module, then it follows from the functorial properties of Hom and \otimes that the canonical homomorphism is an isomorphism. In general, if M is finitely generated as a left $k_0\Gamma$ -module, let

$$0 \rightarrow K \rightarrow F \rightarrow M \rightarrow 0$$

be a short exact sequence of left $k_0\Gamma$ -modules with F finite free. Then

$$0 \rightarrow \operatorname{Hom}_{k_0\Gamma}(M, N) \rightarrow \operatorname{Hom}_{k_0\Gamma}(F, N) \rightarrow \operatorname{Hom}_{k_0\Gamma}(K, N)$$

is an exact sequence of k_0 -vector spaces. From this and the fact that k is flat over k_0 , we obtain the following commutative diagram with exact columns:

where the middle horizontal arrow is an isomorphism and the bottom horizontal arrow is injective, by what we have already shown. A diagram chase shows that the top horizontal arrow is surjective. This proves part (i).

For part (ii), we write down the next terms in the above commutative diagram:

By part (i), the top horizontal arrow is an isomorphism and the middle horizontal arrow is injective. A diagram chase shows that the bottom horizontal arrow is injective. This proves part (ii). \Box

Proposition 9 (E. Noether–M. Deuring). Let ρ , τ and π be semisimple finitedimensional k-representations of Γ such that

$$\rho \oplus \tau \cong \pi$$
.

Suppose τ and π are defined over k_0 . Then ρ is also defined over k_0 .

Proof. Our argument here is adapted from that given for representations of finite groups (see [H, Theorem 37.6] for instance). The proposition is clear when $\tau = 0$. We proceed by induction on the rank $rk(\tau)$ of τ ; hence assume that $rk(\tau) \ge 1$. By hypothesis, there exist k_0 -representations τ_0 , π_0 of Γ such that

$$\tau \cong k \otimes_{k_0} \tau_0, \quad \pi \cong k \otimes_{k_0} \pi_0$$

For any finite-dimensional k_0 -representations M, N of Γ , we have the canonical inclusion:

$$\operatorname{Ext}^{1}_{k_{0}\Gamma}(M,N) \hookrightarrow k \otimes_{k_{0}} \operatorname{Ext}^{1}_{k_{0}\Gamma}(M,N) \underset{\operatorname{Lemma } 8}{\hookrightarrow} \operatorname{Ext}^{1}_{k_{\Gamma}}(k \otimes_{k_{0}} M, k \otimes_{k_{0}} M);$$

this fact and the hypothesis that τ , π are semisimple as k-representations of Γ imply that τ_0 , π_0 are semisimple as k_0 -representations of Γ .

Let $\sigma_0 \subseteq \tau_0$ be an irreducible constituent of the k_0 -representation τ_0 of Γ . Then

$$k \otimes_{k_0} \operatorname{Hom}_{k_0\Gamma}(\sigma_0, \pi_0) \xrightarrow[]{\cong} _{\operatorname{Lemma 8}} \operatorname{Hom}_{k\Gamma}(\sigma, \pi) \cong \operatorname{Hom}_{k\Gamma}(\sigma, \rho \oplus \tau)$$

contains

$$\operatorname{Hom}_{k\Gamma}(\sigma,\tau) \underset{\operatorname{Lemma 8}}{\overset{\cong}{\leftarrow}} k \otimes_{k_0} \operatorname{Hom}_{k_0\Gamma}(\sigma_0,\tau_0) \neq 0,$$

whence $\operatorname{Hom}_{k_0\Gamma}(\sigma_0, \pi_0) \neq 0$. Thus σ_0 is also an irreducible constituent of the k_0 -representation π_0 of Γ . Therefore,

$$\tau_0 \cong \tau'_0 \oplus \sigma_0, \quad \pi_0 \cong \pi'_0 \oplus \sigma_0$$

for some semisimple k_0 -representations τ'_0 and π'_0 of Γ . Letting

we obtain an isomorphism

$$\rho \oplus \tau' \oplus \sigma \cong \pi' \oplus \sigma$$

of semisimple k-representations of Γ , and hence an equality of their k-valued trace functions:

$$\operatorname{Tr}(\rho(g)) + \operatorname{Tr}(\tau'(g)) + \operatorname{Tr}(\sigma(g)) = \operatorname{Tr}(\pi'(g)) + \operatorname{Tr}(\sigma(g))$$
 for every $g \in \Gamma$.

Applying the trace comparison theorem of Bourbaki (cf. [B, Section 12, no. 1, Proposition 3]) to the equality

$$\operatorname{Tr}(\rho(g)) + \operatorname{Tr}(\tau'(g)) = \operatorname{Tr}(\pi'(g))$$
 for every $g \in \Gamma$,

we obtain an isomorphism

 $\rho \oplus \tau' \cong \pi'$

of semisimple k-representations of Γ . Since $rk(\tau') < rk(\tau)$, our induction hypothesis shows that ρ is defined over k_0 . \Box

4. Proof of main theorem

We shall now prove the main theorem stated in the introduction.

Thus, let \mathbb{F}_q be a finite field of characteristic p, let $\ell \neq p$ be a prime number, let X be a normal variety over \mathbb{F}_q , and let \mathscr{L} be a lisse $\overline{\mathbb{Q}}_\ell$ -sheaf on X, which is irreducible, and whose determinant is of finite order. Let $E \subset \overline{\mathbb{Q}}_\ell$ denote the number field given by hypothesis (1) applied to (X, \mathscr{L}) ; thus for every closed point x of X, the polynomial

$$det(1 - T \operatorname{Frob}_{x}, \mathscr{L})$$

has coefficients in *E*. We may replace the finite field \mathbb{F}_q by its algebraic closure in the function field $\kappa(X)$ of *X*, and hence assume that *X* is geometrically connected over \mathbb{F}_q ; this allows us to use the results in Section 1. Let $\bar{\eta} \to X$ be a geometric point of *X*, and set

$$\Gamma \coloneqq \pi_1(X, \bar{\eta}), \quad G \coloneqq \mathcal{G}_{\operatorname{arith}}(\mathscr{L}, \bar{\eta}).$$

Let

$$\rho_{\mathscr{Q}}: \Gamma \to \mathrm{GL}(\mathscr{L}_{\bar{n}})$$

denote the monodromy $\bar{\mathbb{Q}}_{\ell}$ -representation of Γ corresponding to \mathscr{L} , and let

$$\rho: G \hookrightarrow \operatorname{GL}(\mathscr{L}_{\bar{n}})$$

denote the faithful representation of $G_{\text{arith}}(\mathscr{L}, \bar{\eta})$ on $\mathscr{L}_{\bar{\eta}}$.

By Proposition 1 (ii), G is a (possibly non-connected) semisimple algebraic group. We apply Corollary 6 to the representation ρ of G, with $N \coloneqq G^0 = G_{\text{arith}}(\mathcal{L}, \bar{\eta})^0$, to obtain a finite list of pairs as in (*), satisfying properties (a)–(c) listed there, such that an isomorphism of representations of G of the form (**) holds.

Consider any pair (H_i, σ_i) in (*). By property (a), the identity component H_i^0 of H_i is a connected semisimple algebraic group (in fact it is $G_{arith}(\mathscr{L}, \bar{\eta})^0$), which is therefore equal to its own commutator subgroup; hence the one-dimensional representation det (σ_i) of H_i , given by the determinant of σ_i , factors through H_i/H_i^0 , and so is given by a character of H_i of finite order. This and properties (b) and (c) show that each σ_i is a Lie-irreducible representation of H_i , and its determinant is of finite order.

Set

$$\Gamma_i \coloneqq (\rho_{\mathscr{L}})^{-1}(H_i) \subseteq \Gamma.$$

Then Γ_i is an open subgroup of Γ , corresponding to a finite etale cover $X_i \rightarrow X$ of X by a connected variety X_i pointed by the geometric point $\bar{\eta}$; we identify Γ_i with the arithmetic fundamental group $\pi_1(X_i, \bar{\eta})$ of X_i . If V_i is the representation space of σ_i , then the composite homomorphism

$$\sigma_{\mathscr{F}_i} \colon \Gamma_i \xrightarrow{\rho_{\mathscr{D}}} H_i \xrightarrow{\sigma_i} \mathrm{GL}(V_i)$$

is a $\overline{\mathbb{Q}}_{\ell}$ -representation of Γ_i which corresponds to a lisse $\overline{\mathbb{Q}}_{\ell}$ -sheaf \mathscr{F}_i on the variety X_i . It follows from the corresponding properties of σ_i that \mathscr{F}_i is Lie-irreducible, and its determinant is of finite order. By hypothesis (1) applied to (X_i, \mathscr{F}_i) , there is a number field $E_i \subset \overline{\mathbb{Q}}_{\ell}$ such that for every closed point x of X_i , the polynomial

$$det(1 - T \operatorname{Frob}_x, \mathscr{F}_i)$$

has coefficients in E_i ; and by Proposition 2, there is some $\alpha_i \in \overline{\mathbb{Q}}_{\ell}$ and some closed point $x_0^{(i)}$ of X_i such that α_i is an eigenvalue of multiplicity one of $\operatorname{Frob}_{x_0^{(i)}}$ acting on \mathscr{F}_i . It follows that α_i is algebraic over the number field E_i . Let

$$\rho_{\mathscr{L}_i} \coloneqq \operatorname{Ind}_{\Gamma_i}^{\Gamma}(\sigma_{\mathscr{F}_i})$$

be the $\bar{\mathbb{Q}}_{\ell}$ -representation of Γ induced from $\sigma_{\mathcal{F}_i}$, and let

$$F \coloneqq$$
 composite of $E_1(\alpha_1), \ldots, E_s(\alpha_s)$ and E in \mathbb{Q}_ℓ .

It is clear that F is a finite extension of E in $\overline{\mathbb{Q}}_{\ell}$. The isomorphism (**) implies that for any closed point x of X, one has

$$\operatorname{Tr}(\rho_{\mathscr{L}}(\operatorname{Frob}_{x})) + \sum_{i=1}^{t} \operatorname{Tr}(\rho_{\mathscr{L}_{i}}(\operatorname{Frob}_{x}))$$
$$= \sum_{j=t+1}^{s} \operatorname{Tr}(\rho_{\mathscr{L}_{j}}(\operatorname{Frob}_{x})) \quad (\text{equality in } F \subset \overline{\mathbb{Q}}_{\ell}). \quad (***)$$

We shall now show that the number field F satisfies the conclusion of assertion (3').

To that end, pick a place λ' of F lying over a prime number $\ell' \neq p$, and choose an algebraic closure $\bar{\mathbb{Q}}_{\ell'}$ of $F_{\lambda'}$. By hypothesis (3) applied to (X, \mathscr{L}) and each (X_i, \mathscr{F}_i) , there exist irreducible lisse $\bar{\mathbb{Q}}_{\ell'}$ -sheaves \mathscr{L}' on X and \mathscr{F}'_i on X_i , which are *compatible with* \mathscr{L} and \mathscr{F}_i , respectively; i.e. for each closed point x of X, one has

$$det(1 - T \operatorname{Frob}_{x}, \mathscr{L}') = det(1 - T \operatorname{Frob}_{x}, \mathscr{L}) \quad (equality \text{ in } F[T]), \qquad (1)$$

84

and for each i = 1, ..., s and each closed point x of X_i , one has

$$\det(1 - T\operatorname{Frob}_{x}, \mathscr{F}'_{i}) = \det(1 - T\operatorname{Frob}_{x}, \mathscr{F}_{i}) \quad (\text{equality in } F[T]). \tag{2}$$

It follows that \mathscr{L}' has the same rank as \mathscr{L} (and each \mathscr{F}'_i has the same rank as \mathscr{F}_i). It also follows from these compatibility relations that

 $\alpha_i \in F \subset F_{\lambda'} \subset \bar{\mathbb{Q}}_{\ell'} \quad \text{is an eigenvalue of multiplicity one of } \operatorname{Frob}_{\chi_0^{(i)}} \operatorname{acting on} \mathscr{F}_i'.$ (3)

Let $\rho_{\mathscr{L}'}$ denote the irreducible monodromy $\overline{\mathbb{Q}}_{\ell'}$ -representation of Γ corresponding to \mathscr{L}' , and let $\sigma_{\mathscr{F}'_i}$ denote the irreducible monodromy $\overline{\mathbb{Q}}_{\ell'}$ -representation of Γ_i corresponding to \mathscr{F}'_i . Let

$$\rho_{\mathscr{L}'_i} \coloneqq \operatorname{Ind}^I_{\Gamma_i}(\sigma_{\mathscr{F}'_i})$$

be the $\overline{\mathbb{Q}}_{\ell'}$ -representation of Γ induced from $\sigma_{\mathscr{F}'_i}$. From (1) and (2), we deduce that for each closed point x of X, one has

$$\operatorname{Tr}(\rho_{\mathscr{L}'}(\operatorname{Frob}_x)) = \operatorname{Tr}(\rho_{\mathscr{L}}(\operatorname{Frob}_x)) \quad (\text{equality in } F), \tag{4}$$

and for each i = 1, ..., s and each closed point x of X_i , one has

$$\operatorname{Tr}(\sigma_{\mathscr{F}'_i}(\operatorname{Frob}_x)) = \operatorname{Tr}(\sigma_{\mathscr{F}_i}(\operatorname{Frob}_x)) \quad (\text{equality in } F), \tag{5}$$

whence for each i = 1, ..., s and each closed point x of X, one has

$$\operatorname{Tr}(\rho_{\mathscr{L}'_i}(\operatorname{Frob}_x)) = \operatorname{Tr}(\rho_{\mathscr{L}_i}(\operatorname{Frob}_x)) \quad (\text{equality in } F). \tag{6}$$

Combining equalities (4) and (6) with (***), we see that for any closed point x of X, one has

$$\operatorname{Tr}(\rho_{\mathscr{L}'}(\operatorname{Frob}_{x})) + \sum_{i=1}^{l} \operatorname{Tr}(\rho_{\mathscr{L}'_{i}}(\operatorname{Frob}_{x}))$$
$$= \sum_{j=l+1}^{s} \operatorname{Tr}(\rho_{\mathscr{L}'_{j}}(\operatorname{Frob}_{x})) \quad (\text{equality in } F \subset \overline{\mathbb{Q}}_{\ell'}). \quad (***')$$

By Čebotarev's density theorem, this equality of traces, as an equality in $\overline{\mathbb{Q}}_{\ell'}$, holds for every element of Γ . Therefore, by the trace comparison theorem of Bourbaki (cf. [B, Section 12, no. 1, Proposition 3]), we obtain an isomorphism of semisimple $\overline{\mathbb{Q}}_{\ell'}$ representations of Γ :

$$\rho_{\mathscr{L}'} \oplus \left(\bigoplus_{i=1}^{t} \rho_{\mathscr{L}'_i} \right) \cong \left(\bigoplus_{j=t+1}^{s} \rho_{\mathscr{L}'_j} \right).$$

$$\tag{7}$$

Consider the (absolutely) irreducible $\bar{\mathbb{Q}}_{\ell'}$ -representation $\sigma_{\mathscr{F}'_i}$ of Γ_i . We wish to apply Proposition 7 to this representation; so let us check that the hypotheses there are verified.

- (i) By the definition of lisse Q
 _{ℓ'}-sheaves (cf. [D, (1.1.1)]—alternatively, apply [KSa, Remark 9.0.7]), the Q
 {ℓ'}-representation σ{𝔅i} is defined over a finite extension of Q
 _{ℓ'}, which we may of course assume to be finite Galois over F
 _{i'}.
- (ii) From (5), we see that for every closed point x of X_i, the trace Tr(σ_{\$\vertil{\not}'_i\$}(Frob_x)) of Frob_x ⊂ Γ_i with respect to σ_{\$\vertil{\not}'_i\$} lies in F_{\$\lambda'\$}; so it follows from Čebotarev's density theorem that the trace Tr(σ_{\$\vertil{\not}'_i\$}(\vertil{\not})) of every element \$\vee\$ ∈ Γ_i with respect to σ_{\$\vee\$'} lies in F_{\$\lambda'\$}.
- (iii) Finally, from (3), we know that $\alpha_i \in F_{\lambda'}$ is an eigenvalue of multiplicity one of $\operatorname{Frob}_{\chi_{\alpha}^{(i)}} \subset \Gamma_i$ with respect to $\sigma_{\mathscr{F}'_i}$.

Hence Proposition 7 shows that $\sigma_{\mathscr{F}'_i}$ is defined over $F_{\lambda'}$. Then each $\rho_{\mathscr{L}'_i}$, being induced from $\sigma_{\mathscr{F}'_i}$, is also defined over $F_{\lambda'}$. Therefore, in (7), the two representations in parentheses are defined over $F_{\lambda'}$. Proposition 9 now shows that $\rho_{\mathscr{L}'}$ is also defined over $F_{\lambda'}$, and hence the lisse $\overline{\mathbb{Q}}_{\ell'}$ -sheaf \mathscr{L}' is defined over $F_{\lambda'}$; in other words, there exists a lisse $F_{\lambda'}$ -sheaf $\mathscr{L}_{\lambda'}$ on X such that $\mathscr{L}' \cong \mathscr{L}_{\lambda'} \otimes_{F_{\lambda'}} \overline{\mathbb{Q}}_{\ell'}$. The asserted properties of $\mathscr{L}_{\lambda'}$ follow from this isomorphism and (1).

This completes the proof of our main theorem.

Acknowledgments

I am grateful to P. Deligne, J. de Jong and especially N. Katz for many fruitful conversations, from which I have learned much of the material presented here.

References

- [B] N. Bourbaki, Algèbre. Chapitre 8: Modules et anneaux semi-simples, Hermann, Paris, 1958.
- [D] P. Deligne, La conjecture de Weil II, Inst. Hautes Études Sci. Publ. Math. 52 (1980) 137–252.
- [H] B. Huppert, Character theory of finite groups, de Gruyter, Berlin, 1998.
- I.M. Isaacs, Character theory of finite groups (Corrected reprint of the 1976 original, Academic Press, New York), Dover, New York, 1994.
- [K] N.M. Katz, Wild ramification and some problems of "independence of *l*", Amer. J. Math. 105 (1) (1983) 201–227.
- [KSa] N.M. Katz, P. Sarnak, Random matrices, Frobenius eigenvalues, and monodromy, Amer. Math. Soc, Providence, RI, 1999.
- [L] L. Lafforgue, Chtoucas de Drinfeld et correspondance de Langlands, Invent. Math. 147 (1) (2002) 1–241.
- [R] I. Reiner, Maximal orders, Academic Press, London, 1975.
- [Se] J.-P. Serre, Abelian ℓ-adic representations and elliptic curves, Revised reprint of the 1968 original, A K Peters, Wellesley, MA, 1998.