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Abstract

Let X be a smooth curve over a finite field of characteristic p, let /#p be a prime number,
and let £ be an irreducible lisse @/-sheaf on X whose determinant is of finite order. By a
theorem of L. Lafforgue, for each prime number /' #p, there exists an irreducible lisse @,-
sheaf %" on X which is compatible with ., in the sense that at every closed point x of X, the
characteristic polynomials of Frobenius at x for % and %' are equal. We prove an
“independence of /" assertion on the fields of definition of these irreducible /'-adic sheaves
#': namely, that there exists a number field F such that for any prime number ¢ #p, the Q-
sheaf ' above is defined over the completion of F at one of its /’-adic places.
© 2003 Elsevier Science (USA). All rights reserved.
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0. Introduction

In the recent spectacular work [L], L. Lafforgue has proved the Langlands
Correspondence and the Ramanujan—Petersson conjecture for GL, over function
fields. As a consequence, he has also established the following fundamental result
concerning irreducible lisse Z-adic sheaves on curves over finite fields.

Theorem (L. Lafforgue [L, Théoréme VII.6]). Let X be a smooth curve over a finite
field of characteristic p. Let £ #p be a prime number, and let ¥ be a lisse Q-sheaf on
X, which is irreducible, of rank r, and whose determinant is of finite order.
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(1) There exists a number field E<Q, such that for every closed point x of X, the
polynomial

det(1 — T Frob,, &)

has coefficients in E.
(2) Let x be a closed point of X, and let 0. Q; be an eigenvalue of Frobenius at x
acting on &L, i.e. 1/a is a root of the polynomial

det(l — T Frob,, ).

Then:
(a) o is an algebraic number,
(b) for every archimedean absolute value |- | of E(2), one has

|| = 1;

(c) for every non-archimedean valuation 2 of E(o) not lying over p, o is a A-adic
unit, i.e. one has

(d) for every non-archimedean valuation v of E(a) lying over p, one has

() ’<<r—1>2
)|

(3) For any place 7 of E lying over a prime number ('#p, and for any
algebraic closure Q, of the completion E; of E at ), there exists a lisse
Q-sheaf &' on X, which is irreducible, of rank r, such that for every closed point
x of X, one has

det(1 — T Frob,, #') = det(1 — T Froby, #) (equality in E[T]).

Moreover, the sheaf &' is defined over a finite extension of E,.

In part (3) of Lafforgue’s theorem, it is not a priori clear that the number field £
may be replaced by a finite extension (in Q) so that the various Q,-sheaves .#’ form
an (E, A)-compatible system in the sense of Katz (cf. [K, pp. 202-203, “The notion of
(E, A)-compatibility’]), or equivalently, that they form an E-rational system of i-
adic representations in the sense of Serre (cf. [Se, Sections 2.3 and 2.5]). The existence
of a number field with this property may be interpreted as an “independence of /”
assertion on the fields of definition of these irreducible /’-adic sheaves .#’. We shall
prove that this is indeed the case.
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Theorem. With the notation and hypotheses of Lafforgue’s Theorem, the following
assertion holds.

(3') There exists a finite extension F of E in Q; such that for any place ' of the
number field F lying over a prime number /' # p, there exists a lisse F-sheaf &'
on X (ie. a lisse Qg-sheaf defined over F,), which is absolutely irreducible, of
rank r, such that for every closed point x of X, one has

det(1 — T Frob,, #') = det(1 — T Froby, #) (equality in E[T]).

According to a conjecture of Deligne (cf. [D, Conjecture (1.2.10)]), all four
assertions (1), (2), (3), (3’) should also hold in the general case when X is a normal
variety of arbitrary dimension over a finite field. Our proof of assertion (3') uses
assertions (1) and (3) of Lafforgue’s Theorem only as “black boxes”; so assertion (3')
will hold for higher-dimensional varieties if parts (1) and (3) of Lafforgue’s Theorem
hold for these varieties. To state this more precisely, we make assertions (1) and (3)
into hypotheses, as follows:

Definition. Let [, be a finite field of characteristic p, and let /# p be a prime number.
Let Y be a normal variety over F,, and let & be a lisse @Q,-sheaf on Y, which is

irreducible, and whose determinant is of finite order. We shall say that hypothesis (1)
holds for (Y,7) if:

(1) there exists a number field E =@, such that for every closed point y of Y, the
polynomial
det(1 — T Frob,, )

has coefficients in E.

When hypothesis (1) holds for (Y, %), we shall say that hypothesis (3) holds for
(Y, 7) if:

(3) for any place 2’ of E lying over a prime number /' #p, and for any algebraic
closure @, of the completion E; of E at 1, there exists a lisse Q,-sheaf %’ on
Y, which is irreducible, such that for every closed point y of Y, one has

det(1 — T Frob,, #') = det(l — T Frob,, #) (equality in E[T]).
With this definition, our goal is to prove:

Main Theorem. Let F, be a finite field of characteristic p, and let £ #p be a prime
number. Let X be a normal variety over F,. Assume that:

Jor any normal variety Y over F, which is finite etale over X, and for any lisse Q-
sheaf” F on Y, which is irreducible, and whose determinant is of finite order,
hypotheses (1) and (3) hold for the pair (Y, 7).
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Let & be a lisse Q,-sheaf on X, which is irreducible, of rank r, and whose determinant

is of finite order. Let E = Q, denote the number field given by hypothesis (1) applied to
(X, Z). Then:

(3') There exists a finite extension F of E in Q; such that for any place 2 of the
number field F lying over a prime number ' #p, there exists a lisse Fy-sheaf %
on X, which is absolutely irreducible, of rank r, such that for every closed point x
of X, one has

det(1 — T Froby, ¥ ;) = det(1 — T Frob,, ¥) (equality in E[T)).

We shall prove this theorem by exploiting properties of the monodromy groups
associated to these irreducible lisse sheaves. The proof begins in Section 4, after a
discussion of the preliminary results we need: Propositions 1 and 2 of Section 1,
Corollary 6 of Section 2, and Propositions 7 and 9 of Section 3.

1. Monodromy groups

In this section, we recall some basic properties of monodromy groups of lisse /-
adic sheaves on varieties over a finite field; see [D, Sections 1.1 and 1.3] for details.

Let X be a normal, geometrically connected variety over a finite field [F, of
characteristic p. Let 7— X be a geometric point of X, and let F, be the algebraic
closure [, in x(i7); we regard 77 also as a geometric point of X ®p, F,. The profinite
groups 7 (X, 17) and 7, (X ®¢, F,, 17) are respectively called the arithmetic fundamental
group of X and the geometric fundamental group of X. They sit in a short exact
sequence

Iom (X @5, Fp i) »m (X, 1) S Gal(F,/F,)— 1.

The group Gal(F,/F,) has a canonical topological generator Frobg, called the
geometric Frobenius, which is defined as the inverse of the arithmetic Frobenius
automorphism a+—a? of the field F,. We have the canonical isomorphism

7 > Gal(F,/F,), sending 1 to Froby,.

For a prime number / #p, the functor

{lisse Q/-sheaves on X} — {finite-dimensional continuous

Q,-representations of 7;(X,7)}
Y gﬁ
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is an equivalence of categories; a similar statement holds with X ®p, F, in place of X.
Via this equivalence, standard notions associated to representations (e.g. irreduci-
bility, semisimplicity, constituent, etc.) are also applicable to lisse sheaves.

Let % be a lisse Q,-sheaf on X, corresponding to the continuous monodromy
representation

T (X, ﬁ) aGL(gﬁ)

of the arithmetic fundamental group of X. The arithmetic monodromy group
Garith (&, 1) of & is the Zariski closure of the image of n;(X,7) in GL(%;). The
inverse image ¥ ®g¢,F, of £ on X®gF, is a lisse Q,-sheaf on X ®¢,Fy,
corresponding to the continuous monodromy representation

(X ®¢,Fy, 1) o m (X, 7) > GL(ZLy)

of the geometric fundamental group of X, obtained by restriction. The geometric
monodromy group Ggeom(Z,17) of &£ is the Zariski closure of the image of
TC](X@[Fq U_:q,ﬁ) in GL(gﬁ)

Both Gyritn(Z,7) and Ggeom (-2, 7) are linear algebraic groups, and it is clear that
Ggeom(Z,17) 18 a closed normal subgroup of Gy (%, 7). Both Guin(Z, 1) and
Ggeom (&, 17) are given with a faithful representation on %; corresponding to their
realizations as subgroups of GL(.%;). Thus, if & is semisimple (as a representation
of m(X,7), and therefore as a representation of (X ®p¢,Fy,7)), then both
Gurith (£, 1) and Ggeom(Z,7) are (possibly non-connected) reductive algebraic
groups.

Proposition 1. Let & be a lisse Q/-sheaf on X.

(1) If & is semisimple, then Ggeom(Z,1) is a (possibly non-connected) semisimple
algebraic group.

(i) If & is irreducible, and its determinant is of finite order, then Guin (L, 7) is a
(possibly non-connected) semisimple algebraic group, containing Ggeom (<, 17) as a
normal subgroup of finite index.

Assertion (i) is [D, Corollaire (1.3.9)]. For the proof of assertion (ii), we shall make
use of the construction in [D, (1.3.7)], which we summarize below.

Recall that the Weil group W(F,/F,) of F, is the subgroup of Gal(F,/F,)
consisting of integer-powers of Frobg,; it is considered as a topological group given
with the discrete topology, and we have the canonical isomorphism

7 5 W(F,/F,), sending I to Frobg, .

The Weil group W(X,17) of X is the preimage of W(F,/F,) in 7 (X,7) by the degree

homomorphism 7, (X, 7) &5 Gal(F,/F,); it is considered as a topological group
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given with the product topology via the isomorphism
W(Xa 77_) =7 (X® Fy Fl{v ’7) ><lGal([_F,//[F,,)W([_F(1/Fq)7

where 7;(X ®[Fq[_Fq,17) retains its profinite topology, and is an open and closed
subgroup of W(X,7). These groups sit in the following diagram:

1 —— m(X ®p, Fppl) —— W(X,7) —5 Z2W(F,/F,) — 1

| | |

1 —— m(X @, Fpyil) —— m(X,7) —% Z = Gal(F,/F,) — 1

where the right two vertical arrows are inclusion homomorphisms with dense images.
(Note that the topologies of W(X, 1) and W(F,/F,) are not the ones induced by the
right two vertical arrows!)

Given a lisse Q-sheaf ¥ on X, the push-out construction of [D, (1.3.7)] produces
an algebraic group G(%, 1), which is locally of finite type, but not quasi-compact; it
is characterized by the fact that it sits in a diagram:

1 —— m(X 8, Fp ) —— W(X,7) —%> Z2 W(E,/F,) — 1

! ! ll

1 —— Ggeom(gﬂ—)) _— G(Zﬁ) &) ZgW(Fq/]FQ) — 1

|

GL(Z5)
such that the composite of the two continuous homomorphisms
WX, 1) - G(Z, 1)~ GL(ZLy)
is equal to the continuous representation of W(X,#) on .#; obtained via restriction:

W(X7 ’7) c_’7'51()(7 1’7)—>GL($,7)

Proof of Proposition 1 (ii). From assertion (i), we already know that the group
Geom (&, 17) 1s a semisimple closed normal subgroup of Gain (&, 7). Hence, to prove
assertion (ii), it suffices for us to show that Gyum (%, 1) contains Geom(Z,1) as a
subgroup of finite index, for then both groups will have the same identity
component, which is a connected semisimple algebraic group.

Since W(X,17) & w1 (X, 7) is an inclusion with dense image, Gin (£, 17) can also be
described as the Zariski closure of the image of W(X,7) in GL(%); likewise, since
W(X, 7)< G(Z, 1) is an inclusion with dense image, G (2, 17) is also equal to the
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Zariski closure of the image of G(%,1]) in GL(%j). Let
p: G(Z,M—~GL(¥))

denote the canonical homomorphism from G(%,7) into GL(%j); then the
composite map

Ggeom(ga 7’7) L’G(ga 77_) ﬁ’ GL(gﬁ)

is just the identity map on Ggeom(Z,7). We are thus reduced to showing that
P N (Ggeom(Z, 1)) is a subgroup of G(Z,7) of finite index.

The fundamental fact we need about G(%,#) is [D, Corollaire (1.3.11)], which
asserts that because . is irreducible (hence semisimple) by hypothesis, there exists
some element ¢ in the center of G(Z, 7j) whose degree is >0 (i.e. g maps to a positive

integer under G(.%, 1) oo Z=W(F,/F,)). Therefore, p(g) is an element of GL(.Z;)

which centralizes p(G(%,177)), and so it centralizes Guiwh(Z,77). Since & is
irreducible as a representation of m;(X,7) and hence as a representation of
Gain (2, 1), it follows that p(g) must be a scalar.

By hypothesis, the determinant of # is of finite order, which means that the one-
dimensional representation of m; (X, 1) on the determinant det(¥;;) of £ is given by
a character of finite order, say d. The same is therefore true for det(.%;) as a
representation of W (X, 7) and of G(%, 7). From this it follows that, if % has rank r,
then p(g) is a scalar which is a root of unity of order dividing dr, and so ¢ € G(Z, 7))
lies in the kernel of p. Hence p~!' (Ggeom (%, 1)) contains deg~'(deg(g™)) in G(Z, 7)),
which is of finite index in G(%,7). O

Let . be a lisse Q/-sheaf # on X. Its arithmetic monodromy group G (-Z,7)
contains the identity component Gyn(%, 17)0 as an open normal subgroup;
Gurith (&, ﬁ)o is a connected algebraic group. The faithful representation

Garilh(gv 77) © GL(gﬁ)

of Guritn(Z, 17), when restricted to the subgroup Gy (%, ﬁ)o of Guritn (&, 17), gives a
faithful representation

Garith(g7 77)0 & Garith(g7 77) s GL(gﬁ)

of Gamh(f,ﬁ)o on Z;. We say that the lisse sheaf & is Lie-irreducible if ¥y is

irreducible as a representation of Gamh(g’,ﬁ)o. It is clear that Lie-irreducibility
implies irreducibility.

Proposition 2. Let ¥ be a lisse Qs-sheaf on X, which is Lie-irreducible, and whose
determinant is of finite order. Then there exist o.€ Q, and a closed point x of X, such
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that o is an eigenvalue of multiplicity one of Froby, acting on &; i.e. 1/ is a root of
multiplicity one of the polynomial

det(l — T Froby,, ).

Proof. First, we claim that it is a Zariski-open condition for an eclement of
Gurita (£, 1) to have an eigenvalue of multiplicity one on #j; in other words, we
claim that the set

U = {9€Guinn(Z,7): g acting on Z; has an eigenvalue of
multiplicity one in Q,}

is a Zariski-open subset of Gy (%, 7). We show this as follows. For an element

9€Gurin(Z, 1), let ch(g) e Q/[T] denote the characteristic polynomial of g; then the
set U can also be described as

U= {geGuin(Z,7): ch(g)eQ/[T] has a root of multiplicity one in Q,}.
Let r be the rank of Z;; then ch gives rise to a morphism of Q/-varieties

ch: Guin(Z,7)—>Q/[T]5en°,  gr>ch(g),

where @/[T]gg‘;c denotes the affine space of monic polynomials in T of degree r. For
g€ G (Z, 17), the polynomial ch(g) has a root of multiplicity one in @, if and only
if it does not divide the square ch(g)/2 of its derivative ch(g)’ in @,[T]. Thus it suffices
for us to show that the set

Z = {feQ/[T)2": £ divides £ in Q,[T]}

degr *
is Zariski-closed in Q/[T]gyy . But for feQ/[T|gy,", the Euclidean division
algorithm shows that the remainder of dividing £ by f is a polynomial of degree
<r whose coefficients are given by certain (universal) Z-polynomial expressions in
terms of the coefficients of f; as the set Z above is precisely the zero-set of these
polynomial expressions, it is Zariski-closed.

Next, we claim that the set U above is in fact Zariski-open and non-empty in
Gaiith (£, 17). Indeed, by part (ii) of Proposition 1, Garith(.ff,ﬁ)o is a connected
semisimple algebraic group; the representation #; of Gyyitn(Z, 77)0 is irreducible by
hypothesis, and so by the representation theory of connected semisimple algebraic
groups, it is classified by its highest weight, which occurs with multiplicity one. Thus,
a generic element of any maximal torus of Gyim (%, 17)0 lies in U.

Finally, by Cebotarev’s density theorem, there exist infinitely many closed points x
of X whose Frobenius conjugacy classes Frob, =, (X, 1) are mapped into U under
the monodromy representation of 7; (X, 7j) on %;. Thus we can pick x, to be any one
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of these closed points of X, and pick c.e @, to be an eigenvalue of multiplicity one of
Frob,, acting on . 0O

Remark. In Proposition 2, it is not enough to just assume that the lisse Q/-sheaf % is
irreducible; the assumption that it is Lie-irreducible is necessary. If % is irreducible
but not Lie-irreducible, it may happen that every element of G (%, 7) acting on
Z; has repeated eigenvalues, which is to say that the set U = G (&, 77) in the proof
of the proposition is empty. For a specific example, we may take G (&, 7) to be
the finite symmetric group on 6 letters, and take #; to be the 16-dimensional
irreducible representation of this finite group; such a situation can arise
geometrically.

2. Dévissage of representations

Let k be an algebraically closed field of characteristic 0—such as @Q,. In this
section, we consider (possibly non-connected) reductive groups over k and their
finite-dimensional k-rational representations. If G is such a reductive group, any k-
rational representation of G is semisimple (a direct sum of irreducible representa-
tions), since k is of characteristic 0. By the quasi-compactness of G, a subgroup H of
G is (Zariski-) open if and only if it is (Zariski-) closed of finite index, in which case
H necessarily contains the identity component G° of G.

The following two results are proved in [I] for representations of finite groups. The
same proofs, with minor modifications, work for representations of reductive
groups. We reproduce the (modified) arguments below for the sake of completeness.

Lemma 3 (I.M. Isaacs [I, Theorem 6.18]). Let G be a reductive group, and let K and
L be open normal subgroups of G, with LS K. Suppose that K/L is abelian, and that
there does not exist a normal subgroup M of G with L& MEK. Let © be an irreducible
representation of K whose isomorphism class is invariant under G-conjugation. Then
one of the following holds:

(i) ResK(n) is isomorphic to a direct sum ¢, @ - @a, of t:=[K:L] many
irreducible representations o1, ...,0, of L which are pairwise non-isomorphic;
(i) ResX(n) is an irreducible representation of L;
(ii1) Resf (m) is isomorphic to c®¢, where o is an irreducible representation of L, and
e =[K:Ll.

Proof. Since L is normal in K, the irreducible constituents of Resk(n) are K-
conjugate to one another, and each of these constituents occurs in Res) (7) with the
same multiplicity. Choose any irreducible constituent o of Resf (m), and let

I ={geG: Y6~ as representations of L}
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be the open subgroup of G (containing L) which stabilizes the isomorphism type of ¢
under G-conjugation. Since =« is invariant under G-conjugation, every G-conjugate of
¢ is a constituent of ResIL< (n), and so every G-conjugate of ¢ is K-conjugate to o. It
follows that [G : I] = [K : K 1], and hence KI = G. Since K/L is abelian, K1 is
normal in K; since K is normal in G, KN/ is normal in /. As KI = G, we see that
K I isnormal in G. From the hypothesis of the proposition, it follows that K1 is
either L or K.

Suppose KNI = L. Then there are = [K : L] many pairwise non-isomorphic
irreducible constituents ¢ = gy, ...,a, of ResIL< (n), and so we have

Resk(n)= (01 @ - @ 0,)®°

for some multiplicity e>1. The constituents o; of Resf (m) are K-conjugate to one
another, and so they have the same rank as o. Hence

rk(n) = rk(Resk (n)) = et k(o).
But 7 is a constituent of Indf (¢), so
rk(n) <rk(Ind¥ (¢)) = 11k (o).

Thus e = 1, and this is case (i).
Henceforth suppose KNI = K. Then ¢ is invariant under K-conjugation, so we
have

Resf (n)=a®°

for some multiplicity e>1. Let x, ...,y be the distinct linear characters of the
abelian group K/L. Then y; ®m, ..., y, ® 7 are irreducible representations of K, each
having the same rank as 7, and we have

Res} (1, @n)=c®® for each j=1,...,1.

Suppose y; ®, ..., y, ® ® are pairwise non-isomorphic representations of K. Then
we obtain an inclusion

13
P (@)% cindf (o).
=1
Comparing ranks, we get
et k() <rk(Ind% (¢)) = 11k(0),

and so

erk(n) <rk(o).
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But
erk(a) = rk(Res} (n)) = rk(r).

Thus e = 1, and this is case (ii).

In the remaining situation, at least two of the representations y; ®m, ..., y, ® @ are
isomorphic; this implies that 7~y ® n for some non-trivial linear character y of K/L.
Let M = Ker(y); we have L& M & K. First, consider the representation x, with trace-
function

Tron:K—k, x—Tr(n(x)).

On K — M, the linear character y takes values different from 1; since Trom =
Tro(y®mn) =y - (Trom), it follows that Trom vanishes on K — M. Since the
representation 7 is invariant under G-conjugation, it follows that Tr o = vanishes on
K — gMyg~" for all ge G. The normal subgroup (,.; gMg~" of G contains L and is
properly contained in K, so it must be equal to L by hypothesis. Thus Tr o © vanishes
on K — L. Next, consider the representation Ind} (Resk (n)) ~Indf (1) ®n, with its
trace-function

Tr o Ind¥ (Res¥ (n)): K-k, x> Tr(Indk (1)(x)) Tr(n(x)).

Since the trace-function of Ind% (1) is 0 on K — L and is 7 on L, it follows that the
trace-function of Ind% (ResX (r)) vanishes on K — L, and its values on L are ¢ times
those of Tr o 7. Comparing the trace-functions of 7 and Ind¥ (ResX (r)), we see that

Tro (n®') = Tro IndX (Res¥ (n)).

By the trace comparison theorem of Bourbaki (cf. [B, Section 12, no. 1, Propositon
3]), this implies

19 ~1Ind% (Resk ()
as representations of K. Hence
¢’ = dim Homp (Resk (), Resk (n)) = dim Homg (7, IndX (Res& (7)) = 1 = [K : L]
and this is case (iii). [
Proposition 4 (I.M. Isaacs [I, Theorem 6.22]). Let G be a reductive group, and let N

be an open normal subgroup of G such that G/ N is a nilpotent finite group. Let p be an
irreducible representation of G. Then there exists an open subgroup H of G with

N< H<G, and an irreducible representation o of H, such that p= Indg(a), and such
that Restl () is an irreducible representation of N.
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Remark. The proposition holds in slightly greater generality: we need only to
assume that G/N is a solvable finite group whose chief factors are of square-free
orders; see [I]. This technical condition is automatically verified when G/N is
nilpotent or supersolvable.

Proof of Proposition 4. The theorem is clear when G = N. We proceed by induction
on #(G/N); hence assume that the theorem holds for any proper subgroup of G
containing N. If Res$(p) is irreducible, then the theorem holds with H = G and
o = p. Hence suppose Res§(p) is reducible.

Since G/ N is finite, we can find an open normal subgroup K of G which is minimal
for the conditions that N < K and Res%(p) is irreducible. Then N K necessarily, and
so we can find an open normal subgroup L of G which is maximal for the conditions
that N L& K. Since G/N is nilpotent, it follows that K/L is cyclic of prime order,
say .

The isomorphism class of the irreducible representation n = Res%(p) of
K is invariant under G-conjugation, since 7 is the restriction of an ir-
reducible representation p of G. Thus we may apply Lemma 3 to the represen-
tation 7 of K. By the choice of L and K, Resk(n) is not irreducible, so case
(if) cannot occur; since = [K: L] is a prime number, case (iii) cannot occur.
Hence we are in case (i), and it follows that Resg(p) is isomorphic to a direct

sum o, @ - @o, of t many irreducible representations oy, ...,o, of L which are
pairwise non-isomorphic.
Let

I ={g9eG: Y9,=~0, as representations of L}

be the open subgroup of G (containing L) which stabilizes the isomorphism type of
o) under G-conjugation. Thus [G:I]=¢ is >1, and p=Ind¥(p’) for some
irreducible representation p’ of I. Applying the induction hypothesis to I, we obtain
an open subgroup H of I with N H <1, and an irreducible representation ¢ of H,
such that p’=Ind} (s) and Resk (o) is an irreducible representation of N. Then
p;Indg(a), which completes the proof of the proposition. [

If G is a reductive group over k, we let K(G) denote the Grothendieck group of the
abelian category of finite-dimensional k-rational representations of G. It is clear that
K(G) as a Z-module is freely generated by the irreducible representations of G. The
tensor product of representations gives rise to a commutative ring structure on
K(G), whose unit element is the class 1 of the trivial representation of G. If H= G is
an open subgroup, then induction of representations from H to G gives rise to a
homomorphism of Z-modules

Ind : K(H)-K(G).

The projection formula shows that the Ind-image of K(H) in K(G) is an ideal.
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Recall that, for p a prime number, a finite group G is called p-elementary if it is
isomorphic to a direct product 4 x B, where A4 is a cyclic group of order prime to p,
and Bis a p-group. A finite group G is called elementary if it is p-elementary for some
prime number p. It is clear that an elementary finite group is nilpotent.

Let G be a reductive group, and N be an open normal subgroup of G. We say that,
for a prime number p, an open subgroup H of G is p-elementary modulo N if one has
the inclusions N < H< G and furthermore the finite quotient H/N is p-elementary;
we say that H is elementary modulo N if it is p-elementary modulo N for some prime
number p.

Proposition 5 (R. Brauer). Let G be a reductive group, and let N be an open normal
subgroup of G. Then the Z-homomorphism

Ind: @ KH)-K(G)

HcG
elem.mod N

is surjective (the direct sum is over all subgroups H of G which are elementary
modulo N).

Proof. Recall that Brauer’s theorem on induced characters for finite groups (see
[I, Theorem 8.4] or [H, Theorem 34.2] for instance) states that if G is a finite group,
then the Z-homomorphism

Ind : @ K(H)-K(G)

HcG
elem.

is surjective; the key point is that the unit element 1 of K(G) lies in the ideal
generated by the Ind-images of K(H) where H runs over all elementary subgroups of
G. Therefore, the proposition follows from applying Brauer’s theorem to the finite
group G/N. 0O

Corollary 6. Let G be a reductive group, and let N be an open normal subgroup of G.
Let p be a representation of G. Then there exist a finite list of pairs:

(H1,01)7...,(Hx,0'3), (*)
where, for eachi =1, ...,s,
(a) H; is an open subgroup of G with N H;= G,

(b) o; is an irreducible representation of H;, and in fact,
(¢) Res (a;) is an irreducible representation of N,
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such that one has an isomorphism of representations of G of the form

p® (@ Indz‘,wi)) ~ (@ Indz/(a_,-)) (+2)
i=1 j

—i+1
for some t with 1 <t<s.

Remark. If one takes N to be the identity component G° of G, then property (c)
asserts that each g, is Lie-irreducible. This is the situation which we shall encounter
later in Section 4.

Proof of Corollary 6. Proposition 5 tells us that we can find a finite list of pairs as in
(%), such that an isomorphism of form (* ) holds, such that properties (a) and (b)
are verified, and such that each H; is elementary modulo N. Since each H;/N is then
a nilpotent finite group, Proposition 4 allows us to replace each H; by a subgroup
containing N and each ¢; by an irreducible representation of the corresponding
subgroup, so that, furthermore, property (c) is also verified. This proves the
corollary. [

3. Descent of representations

Let I' be a group, let ky be a field of characteristic zero, and let k be a field
extension of ky. In this section, we prove two criteria (Propositions 7 and 9) for
descending a k-representation of I' to a ky-representation.

Proposition 7. Let p be a finite-dimensional k-representation of T', which is absolutely
irreducible (i.e. irreducible over an algebraic closure of k). Assume:

(1) p is defined over a finite Galois extension K of kg in k;
(i) for every yel', the trace Tr(p(y)) of v with respect to p lies in ky;
(iii) there exists some a.€ ko and some yy € I' such that o is an eigenvalue of multiplicity
one of y, with respect to p.

Then p is defined over k.
Proof. By (i), we may assume that p is given as a K-matrix representation of I':
p:I'->GL,(K),

and we let ¥ = Gal(K/ky) be the finite Galois group. According to (iii), we
may choose an eigenvector ve K®" of p(y,) with eigenvalue «. By changing basis,
we may assume that v is the first basis vectors of K®7; thus the matrix p(y,)
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has the form

o % *
0 = *
0 = %

Each g€ defines a K-representation

op: T 5 GL/(K) 5 GL,(K).

Since o € k is invariant under X, the matrices op(y,) also have the same form as p(y,)
above; thus v is also an eigenvector with eigenvalue a of each op(y,), c€Z.
Assumption (ii) and the invariance of ky under X gives the equality in ky:

Tr(op(y)) = Tr(p(y)) for any c€X, any yel.

Therefore, by the trace comparison theorem of Bourbaki (cf. [B, Section 12, no. 1,
Proposition 3]), the K-representations op of I', for various o€ X, are all isomorphic
over K to p. Choose such isomorphisms over K:

a(e): (op, K®) 5 (p,K®"), ceX.

Since p is absolutely irreducible by hypothesis, any automorphism of it must be a
scalar in K. It follows that each a(o)eGL,(K) is determined up to a K-scalar
multiple. For any 0,6’ €Z, the two different ways of expressing ¢’op in terms of p
then gives

a(d’e) = (scalar in K) - a(d’) - o’a(o).
We shall now rigidify the situation. For each g€ X, we have the equality
a(o) - ap(70) = p(vo) - a(o),

and the fact that ve K®" is an eigenvector of ap(y,) with eigenvalue o; it follows
that a(o)veK®" is an eigenvector of p(y,) with eigenvalue «. Thanks to
the multiplicity-one hypothesis (iii) on o, a(o)v is necessarily a K-scalar
multiple of v itself. Since we are free to adjust a(¢)eGL,(K) by any K-scalar
multiple, we may and do assume that each a(g) maps v to itself. Thus the matrices
a(o), for ¢ X, have the form
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and it follows that the matrices o’'a(c), for o,6'€X, also have the same form
above, which implies that each ¢’a(c) also maps v to itself. Therefore, we now
have

a(d’'c) = a(d’) - d’a(c) for any 6,0’ €X.

By Hilbert Theorem 90 for GL,, there exists some b€ GL,(K) such that

a(c) =b-ob™! for each ceX.

Using b~' e GL,(K) for a change of basis, we obtain the K-representation p == b~'pb
defined by

p:I'->GL.(K), y—b"'p(y)b,

which is isomorphic over K to p. A straightforward computation now shows that the
matrices

6(y)eGL,(K) for yerl,

are all fixed under the action of the Galois group X; in other words, g = p for any
g€ X. Thus the representation g factorizes as

I'->GL,(ky) - GL,(K).
So p is defined over kg, and the same is therefore true for p. O
Lemma 8. Let M, N be ky-representations of T'.
(1) The canonical homomorphism of k-vector spaces
k ® x,Homy,r (M, N)—Homyy(k®x, M,k Q@ ,N)

is injective; it is surjective if M is finitely generated as a left kol'-module.
(i1) The canonical homomorphism of k-vector spaces

k® i, Exty, (M, N) > Exty (k@ M, k®,N)

is injective if M is finitely generated as a left koI'-module.

Remark. (a) If M is finitely presented as a left kyI'-module, the lemma follows from
the well-known ‘“‘change of rings” isomorphisms applied to ko' kI (see [R,
Theorem 2.39] for instance). Of course, if M is a finite-dimensional ky-representation
of I', then it is automatically a finitely generated left kyI"-module; however, it need
not be finitely presented as a left kyI'-module.
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(b) When I' is a finite group, the group ring koI is left-noetherian, so a
finite-dimensional ky-representation M of I' is finitely presented as a left
koI'-module, and the lemma follows from (a) above. But since we will use
the lemma when I' is a profinite group, and we could not identify a satisfactory
reference for the corresponding result, we find it prudent to give a complete proof
here.

(¢c) The proof below actually shows that the lemma holds in slightly greater
generality: it suffices to assume that k is any commutative ring, and that k is a ko-
algebra which is free as a ko-module.

Proof of Lemma 8. We first show that the canonical homomorphism

k® y,Homy,r(M,N) — Homyr(k®k,M,k®@,N)
1®¢ > (BOMafQp(m))

is injective. Choose a basis {e;ek : iel} of k as a kg-vector space. Then the koI'-
module k®y, N is the direct sum of the kyI'-submodules e¢; ® N:

k@uN=EP e;®N;

iel

likewise, the ko-vector space k® i Homy,r(M,N) is the direct sum of the
corresponding ky-subspaces ¢; ® Homy, (M, N):

k® y,Homy,r(M,N) = @ e;®@Homy, (M, N).

iel

Any ¢ ek ®r,Homy,r (M, N) is therefore equal to a sum

(1522 e ® ¢;

iel

for some uniquely determined ¢;e Homy,r(M,N), iel, all but finitely of which are
the zero-map. Suppose ¢ lies in the kernel of the canonical homomorphism. Then for
any me M, one has

Ze,-@qﬁi(m)zo in k®k0N;@e,-®N,
iel iel

so ¢;(m) =0 in N for each iel. It follows that ¢ = 0, which is what we want.

If M is finite free as a left kyoI'-module, then it follows from the functorial
properties of Hom and ® that the canonical homomorphism is an isomorphism. In
general, if M is finitely generated as a left koI-module, let

0-K—->F—->M-0



C. Chin | Advances in Mathematics 180 (2003) 64-86 81

be a short exact sequence of left koI'-modules with F finite free. Then
0—- Homy,r (M, N)—Homy,r(F, N)—->Homy,(K,N)

is an exact sequence of kj-vector spaces. From this and the fact that k is flat over k),
we obtain the following commutative diagram with exact columns:

0 0

| !

k ®k, Homg,r (M, N) —— Homgr(k ®k, M,k Qk, N)

! !

k ®k, Homg,r(F,N) ——— Homgr(k ®k, F,k ®k, N)

| !

k Rko HOInkOI‘(K, N) — Homkp(k ko Kk ko N)

! !

where the middle horizontal arrow is an isomorphism and the bottom horizontal
arrow is injective, by what we have already shown. A diagram chase shows that the
top horizontal arrow is surjective. This proves part (i).

For part (ii), we write down the next terms in the above commutative diagram:

k ®k, Homg,r(F,N) ——— Homyr(k ®, F, k Rk, N)

! !

k ®k, Homg,r(K,N) ——— Homgr(k Qk, K,k ®, N)

l !

k ®k, Exty (M, N) —— Extpr(k ®k, M,k ®p, N)

! !

0 0

By part (i), the top horizontal arrow is an isomorphism and the middle horizontal
arrow is injective. A diagram chase shows that the bottom horizontal arrow is
injective. This proves part (ii)). O

Proposition 9 (E. Noether—M. Deuring). Let p, © and n be semisimple finite-
dimensional k-representations of I' such that

pBTXm.

Suppose T and © are defined over ky. Then p is also defined over k.
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Proof. Our argument here is adapted from that given for representations of finite
groups (see [H, Theorem 37.6] for instance). The proposition is clear when t = 0. We
proceed by induction on the rank rk(z) of t; hence assume that rk(t)>1. By
hypothesis, there exist ky-representations 1¢, my of I" such that

T2k ®p10, Tk Mo-

For any finite-dimensional ky-representations M, N of I', we have the canonical
inclusion:

Exty,r(M,N) k@, Exty (M, N) & Extyr (k@ M, k@, M);

Lemma

this fact and the hypothesis that 7, = are semisimple as k-representations of I" imply
that 1, my are semisimple as ko-representations of I'.
Let o9 =1 be an irreducible constituent of the ky-representation 7y of I'. Then

L

k ® r,Homy, (09, m0) Homy (o, n) ~Homy (o, p @ 1)

Lemma 8

contains
Homyr(o,1) <  k®Homyr(oo,10)#0,
Lemma 8

whence Homy, (09, 7) #0. Thus oy is also an irreducible constituent of the ko-
representation ny of I'. Therefore,

=1 Doy, To=7my D0
for some semisimple ko-representations 7, and 7, of I'. Letting
T =k®pty, T =kQumny, 0 =k®;,00,
we obtain an isomorphism
POT Do Do

of semisimple k-representations of I'; and hence an equality of their k-valued trace
functions:

Tr(p(9)) + Tr(t'(9)) + Tr(a(g)) = Tr(n'(g)) + Tr(a(g)) for every ger.

Applying the trace comparison theorem of Bourbaki (cf. [B, Section 12, no. 1,
Proposition 3]) to the equality

Tr(p(g)) + Tr(7'(9)) = Tr(n'(g)) for every geT’,



C. Chin | Advances in Mathematics 180 (2003) 64-86 83

we obtain an isomorphism
p@®7 = o

of semisimple k-representations of I'. Since rk(t’) <rk(z), our induction hypothesis
shows that p is defined over ky. [

4. Proof of main theorem

We shall now prove the main theorem stated in the introduction.

Thus, let F, be a finite field of characteristic p, let /#p be a prime number, let
X be a normal variety over F,, and let & be a lisse @Q,-sheaf on X, which is
irreducible, and whose determinant is of finite order. Let E < @, denote the number
field given by hypothesis (1) applied to (X, %); thus for every closed point x of X,
the polynomial

det(1 — T Frob,, %)

has coefficients in £. We may replace the finite field F, by its algebraic closure in the
function field k(X) of X, and hence assume that X is geometrically connected over
F,; this allows us to use the results in Section 1. Let 7— X be a geometric point of X,
and set

I'=mn(X,7), G:=Guin(Z,7).
Let
py:I'—>GL(Zy)
denote the monodromy @Q,-representation of I' corresponding to .#, and let
p: G GL(Yy)

denote the faithful representation of Gy (%, 17) on Z.

By Proposition 1 (ii), G is a (possibly non-connected) semisimple algebraic group.
We apply Corollary 6 to the representation p of G, with N == G° = Gy (&, 17)0, to
obtain a finite list of pairs as in (=), satisfying properties (a)—(c) listed there, such
that an isomorphism of representations of G of the form () holds.

Consider any pair (H;,0;) in (). By property (a), the identity component H? of
H; is a connected semisimple algebraic group (in fact it is Garith(g’,ﬁ)o), which is
therefore equal to its own commutator subgroup; hence the one-dimensional
representation det(a;) of H;, given by the determinant of ;, factors through H;/H?,
and so is given by a character of H; of finite order. This and properties (b) and (c)
show that each o; is a Lie-irreducible representation of H;, and its determinant is of
finite order.
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Set
Ii=(py)  (H)<T.

Then I'; is an open subgroup of I, corresponding to a finite etale cover X;—» X of X
by a connected variety X; pointed by the geometric point 77; we identify I'; with the
arithmetic fundamental group n; (X7, ) of X;. If V; is the representation space of a;,
then the composite homomorphism

o7 :T:' 5 H 3 GL(V))
is a Q,-representation of I'; which corresponds to a lisse @Q,-sheaf Z; on the
variety X;. It follows from the corresponding properties of ¢; that Z; is
Lie-irreducible, and its determinant is of finite order. By hypothesis (1) applied
to (X;, Z;), there is a number field E;=Q, such that for every closed point x
of X;, the polynomial

det(1 — T Frob,, #;)

has coefficients in E;; and by Proposition 2, there is some o;€ @, and some closed
point x(()’) of X; such that ; is an eigenvalue of multiplicity one of Frob  acting on
-0

Z ;. It follows that o; is algebraic over the number field E;.
Let

p&”[ = Ind;l(a/@j)
be the @,-representation of I" induced from o, and let
F = composite of Ej(a;), ..., Es(o) and E in Q,.

It is clear that F is a finite extension of E in @,. The isomorphism (* ) implies that
for any closed point x of X, one has

Tr(pﬂ’(FrObx)) + i Tr(pf,-(FrObx))
i=1

S

= Z Tr(pg,(Froby)) (equality in FcQy). (%% %)
j=t+1

We shall now show that the number field F satisfies the conclusion of assertion (3').

To that end, pick a place A’ of F lying over a prime number /’ #p, and choose
an algebraic closure @, of F,. By hypothesis (3) applied to (X,%) and
each (X;, 7;), there exist irreducible lisse Q,-sheaves ¢’ on X and F' on X;,
which are compatible with ¥ and & ;, respectively; i.e. for each closed point x of X,
one has

det(1 — T Frob,, ¢') = det(1 — T Frob,, #) (equality in F[T]), (1)
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and for each i =1, ..., s and each closed point x of X;, one has
det(1 — T Frob,, #') = det(1 — T Froby, #;) (equality in F[T]). (2)

It follows that %’ has the same rank as . (and each # has the same rank as 7). It
also follows from these compatibility relations that

weFcFy,cQ, is an eigenvalue of multiplicity one of Frob ) acting on T
-0
(3)

Let p 4 denote the irreducible monodromy Q. -representation of I' corresponding
to &', and let oz denote the irreducible monodromy @ -representation of I';
corresponding to # . Let

Py = Indﬁ(ay;)

be the @, -representation of I" induced from oz From (1) and (2), we deduce that
for each closed point x of X, one has

Tr(p g (Froby)) = Tr(p »(Froby)) (equality in F), (4)
and for each i =1, ..., s and each closed point x of X;, one has

Tr(o 4 (Froby)) = Tr(o7,(Froby)) (equality in F), (5)
whence for each i = 1, ..., s and each closed point x of X, one has

Tr(p 4 (Froby)) = Tr(p 4, (Froby)) (equality in F). (6)

Combining equalities (4) and (6) with (= * *), we see that for any closed point x of X,
one has

t
Tr(p o (Froby)) + Z Tr(p 4 (Froby))
i=1

= Z Tr(pfjr_(Frobx)) (equality in FcQ,). CEEY)

j=r+l

By Cebotarev’s density theorem, this equality of traces, as an equality in @, holds
for every element of I'. Therefore, by the trace comparison theorem of Bourbaki (cf.
[B, Section 12, no. 1, Proposition 3]), we obtain an isomorphism of semisimple @, -
representations of I

Py @D (@ P:/;> = (@ pft’})' (7)
i=1

j=t+1
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Consider the (absolutely) irreducible Q,-representation oz of I'l. We wish to

apply Proposition 7 to this representation; so let us check that the hypotheses there
are verified.

(i) By the definition of lisse @, -sheaves (cf. [D, (1.1.1)]—alternatively, apply [KSa,
Remark 9.0.7]), the @, -representation o 1s defined over a finite extension of
Q,, which we may of course assume to be finite Galois over F.

(i) From (5), we see that for every closed point x of X;, the trace Tr(c # (Froby)) of
Froby =I'; with respect to 6 7 lies in Fy; so it follows from Cebotarev’s density
theorem that the trace Tr(c 4 (7)) of every element y e I'; with respect to oz lies
in Fy.

(iii) Finally, from (3), we know that o;€ F; is an eigenvalue of multiplicity one of
Frobxg,-) <I'; with respect to 0.5

Hence Proposition 7 shows that o is defined over Fy. Then each p 70 being
induced from oz, 1s also defined over Fj. Therefore, in (7), the two representations
in parentheses are defined over F; . Proposition 9 now shows that p , is also defined
over Fy, and hence the lisse Q,-sheaf ¥’ is defined over F; in other words, there
exists a lisse Fy-sheaf %, on X such that ¥' >, ® FZ,(IZD//. The asserted properties
of &£, follow from this isomorphism and (1).

This completes the proof of our main theorem.

Acknowledgments

I am grateful to P. Deligne, J. de Jong and especially N. Katz for many fruitful
conversations, from which I have learned much of the material presented here.

References

[B] N. Bourbaki, Algebre. Chapitre 8: Modules et anneaux semi-simples, Hermann, Paris, 1958.

[D] P. Deligne, La conjecture de Weil II, Inst. Hautes Etudes Sci. Publ. Math. 52 (1980) 137-252.

[H] B. Huppert, Character theory of finite groups, de Gruyter, Berlin, 1998.

1 I.M. Isaacs, Character theory of finite groups (Corrected reprint of the 1976 original, Academic
Press, New York), Dover, New York, 1994.

K] N.M. Katz, Wild ramification and some problems of “‘independence of /”’, Amer. J. Math. 105 (1)
(1983) 201-227.

[KSa] N.M. Katz, P. Sarnak, Random matrices, Frobenius eigenvalues, and monodromy, Amer. Math.
Soc, Providence, RI, 1999.

[L] L. Lafforgue, Chtoucas de Drinfeld et correspondance de Langlands, Invent. Math. 147 (1)
(2002) 1-241.

[R] 1. Reiner, Maximal orders, Academic Press, London, 1975.

[Se] J.-P. Serre, Abelian /-adic representations and elliptic curves, Revised reprint of the 1968 original,

A K Peters, Wellesley, MA, 1998.



	Independence of ell in Lafforgue’s theorem
	Introduction
	L. Lafforgue [L, ThÕorÒme VII.6]
	Monodromy groups
	DÕvissage of representations
	I.M. Isaacs [I, Theorem 6.18]
	I.M. Isaacs [I, Theorem 6.22]
	R. Brauer
	Descent of representations
	E. Noether-M. Deuring
	Proof of main theorem
	Acknowledgements
	References


