

Available online at www.sciencedirect.com

$$
\texttt{science}(\underbrace{d}_{\texttt{DIRECT}},
$$

ADVANCES IN Mathematics

Advances in Mathematics 180 (2003) 64–86

http://www.elsevier.com/locate/aim

Independence of ℓ in Lafforgue's theorem

CheeWhye Chin¹

Department of Mathematics, Princeton University, Princeton, NJ 08544, USA Received 30 November 2001; accepted 24 June 2002

Communicated by Johan De Jong

Abstract

Let X be a smooth curve over a finite field of characteristic p, let $\ell \neq p$ be a prime number, and let $\mathscr L$ be an irreducible lisse $\overline{\mathbb Q}_\ell$ -sheaf on X whose determinant is of finite order. By a theorem of L. Lafforgue, for each prime number $\ell' \neq p$, there exists an irreducible lisse $\bar{\mathbb{Q}}_{\ell'}$ sheaf \mathscr{L}' on X which is compatible with \mathscr{L} , in the sense that at every closed point x of X, the characteristic polynomials of Frobenius at x for $\mathscr L$ and $\mathscr L'$ are equal. We prove an "independence of ℓ " assertion on the fields of definition of these irreducible ℓ' -adic sheaves \mathscr{L}' : namely, that there exists a number field F such that for any prime number $\ell' \neq p$, the $\bar{\mathbb{Q}}_{\ell'}$ sheaf \mathcal{L}' above is defined over the completion of F at one of its ℓ' -adic places. \odot 2003 Elsevier Science (USA). All rights reserved.

MSC: 14G10; 14F20; 14G13; 14G15

0. Introduction

In the recent spectacular work [\[L\]](#page-22-0), L. Lafforgue has proved the Langlands Correspondence and the Ramanujan–Petersson conjecture for GL_r over function fields. As a consequence, he has also established the following fundamental result concerning irreducible lisse ℓ -adic sheaves on curves over finite fields.

Theorem (L. Lafforgue [L, Théorème VII.6]). Let X be a smooth curve over a finite field of characteristic p. Let $\ell \neq p$ be a prime number, and let $\mathscr L$ be a lisse $\mathbb Q_\ell$ -sheaf on X , which is irreducible, of rank r, and whose determinant is of finite order.

E-mail address: cchin@math.princeton.edu, cheewhye@math.berkeley.edu.
¹Present address: Department of Mathematics, University of California, Berkeley, CA 94720, USA

(1) There exists a number field $E\subseteq\bar{\mathbb{Q}}$, such that for every closed point x of X, the polynomial

$$
\det(1 - T \operatorname{Frob}_x, \mathscr{L})
$$

has coefficients in E.

(2) Let x be a closed point of X, and let $\alpha \in \overline{\mathbb{Q}}_{\ell}$ be an eigenvalue of Frobenius at x acting on \mathscr{L} , i.e. $1/\alpha$ is a root of the polynomial

$$
\det(1 - T \operatorname{Frob}_x, \mathscr{L}).
$$

Then:

- (a) a is an algebraic number;
- (b) for every archimedean absolute value $|\cdot|$ of $E(\alpha)$, one has

$$
|\alpha|=1;
$$

(c) for every non-archimedean valuation λ of $E(\alpha)$ not lying over p, α is a λ -adic unit, i.e. one has

$$
\lambda(\alpha)=0;
$$

(d) for every non-archimedean valuation v of $E(\alpha)$ lying over p, one has

$$
\left|\frac{v(\alpha)}{v(\# \kappa(x))}\right| \leqslant \frac{(r-1)^2}{r}.
$$

(3) For any place λ' of E lying over a prime number $\ell' \neq p$, and for any algebraic closure $\bar{\mathbb{Q}}_{\ell'}$ of the completion $E_{\lambda'}$ of E at λ' , there exists a lisse $\overline{\mathbb{Q}}$ esheaf \mathscr{L}' on X, which is irreducible, of rank r, such that for every closed point x of X , one has

$$
\det(1 - T \operatorname{Frob}_x, \mathscr{L}') = \det(1 - T \operatorname{Frob}_x, \mathscr{L}) \quad \text{(equality in } E[T]).
$$

Moreover, the sheaf \mathcal{L}^{\prime} is defined over a finite extension of E_{λ} .

In part (3) of Lafforgue's theorem, it is not a priori clear that the number field E may be replaced by a finite extension (in $\overline{\mathbb{Q}}_{\ell}$) so that the various $\overline{\mathbb{Q}}_{\ell}$ -sheaves \mathscr{L}' form an (E, Λ) -compatible system in the sense of Katz (cf. [K, pp. 202–203, "The notion of (E, Λ) [-compatibility''\]](#page-22-0)), or equivalently, that they form an E-rational system of λ adic representations in the sense of Serre (cf. [\[Se, Sections 2.3 and 2.5\]\)](#page-22-0). The existence of a number field with this property may be interpreted as an "independence of ℓ " assertion on the fields of definition of these irreducible ℓ' -adic sheaves \mathscr{L}' . We shall prove that this is indeed the case.

Theorem. With the notation and hypotheses of Lafforgue's Theorem, the following assertion holds.

(3[']) There exists a finite extension F of E in $\bar{\mathbb{Q}}_\ell$ such that for any place λ' of the number field F lying over a prime number $\ell' \neq p$, there exists a lisse $F_{\lambda'}$ -sheaf \mathscr{L}' on X (i.e. a lisse $\bar{\mathbb{Q}}_{\ell}$ -sheaf defined over F_{ℓ}), which is absolutely irreducible, of rank r, such that for every closed point x of X , one has

 $\det(1 - T \operatorname{Frob}_x, \mathscr{L}') = \det(1 - T \operatorname{Frob}_x, \mathscr{L})$ (equality in $E[T]$).

According to a conjecture of Deligne (cf. [\[D, Conjecture \(1.2.10\)\]\)](#page-22-0), all four assertions (1) , (2) , (3) , $(3')$ should also hold in the general case when X is a normal variety of arbitrary dimension over a finite field. Our proof of assertion $(3')$ uses assertions (1) and (3) of Lafforgue's Theorem only as "black boxes"; so assertion $(3')$ will hold for higher-dimensional varieties *if* parts (1) and (3) of Lafforgue's Theorem hold for these varieties. To state this more precisely, we make assertions (1) and (3) into hypotheses, as follows:

Definition. Let \mathbb{F}_q be a finite field of characteristic p, and let $\ell \neq p$ be a prime number. Let Y be a normal variety over \mathbb{F}_q , and let \mathscr{F} be a lisse \mathbb{Q}_ℓ -sheaf on Y, which is irreducible, and whose determinant is of finite order. We shall say that $hypothesis$ (1) *holds for* (Y, \mathcal{F}) if:

(1) there exists a number field $E \subset \bar{\mathbb{Q}}_{\ell}$ such that for every closed point y of Y, the polynomial

$$
\det(1 - T \operatorname{Frob}_y, \mathscr{F})
$$

has coefficients in E .

When hypothesis (1) holds for (Y, \mathcal{F}) , we shall say that hypothesis (3) holds for (Y,\mathscr{F}) if:

(3) for any place λ' of E lying over a prime number $\ell' \neq p$, and for any algebraic closure $\bar{\mathbb{Q}}_{\ell'}$ of the completion $E_{\lambda'}$ of E at λ' , there exists a lisse $\bar{\mathbb{Q}}_{\ell'}$ -sheaf \mathscr{F}' on Y, which is irreducible, such that for every closed point y of Y , one has

$$
\det(1 - T \operatorname{Frob}_{y}, \mathscr{F}') = \det(1 - T \operatorname{Frob}_{y}, \mathscr{F}) \quad \text{(equality in } E[T]).
$$

With this definition, our goal is to prove:

Main Theorem. Let \mathbb{F}_q be a finite field of characteristic p, and let $\ell \neq p$ be a prime number. Let X be a normal variety over \mathbb{F}_q . Assume that:

for any normal variety Y over \mathbb{F}_q which is finite etale over X, and for any lisse \mathbb{Q}_ℓ sheaf $\mathcal F$ on Y, which is irreducible, and whose determinant is of finite order, hypotheses (1) and (3) hold for the pair (Y, \mathcal{F}) .

Let $\mathscr L$ be a lisse $\bar{\mathbb Q}_\ell$ -sheaf on X, which is irreducible, of rank r, and whose determinant is of finite order. Let $E\subset\bar{\mathbb{Q}}$ denote the number field given by hypothesis (1) applied to (X, \mathcal{L}) . Then:

(3') There exists a finite extension F of E in $\bar{\mathbb{Q}}_\ell$ such that for any place λ' of the number field F lying over a prime number $\ell'\neq p,$ there exists a lisse $F_{\lambda'}$ -sheaf ${\mathscr L}_{\lambda'}$ on X , which is absolutely irreducible, of rank r, such that for every closed point x of X , one has

 $\det(1 - T \text{Frob}_x, \mathcal{L}_{\lambda}) = \det(1 - T \text{Frob}_x, \mathcal{L})$ (equality in $E[T]$).

We shall prove this theorem by exploiting properties of the *monodromy groups* associated to these irreducible lisse sheaves. The proof begins in Section 4, after a discussion of the preliminary results we need: Propositions 1 and 2 of Section 1, Corollary 6 of Section 2, and Propositions 7 and 9 of Section 3.

1. Monodromy groups

In this section, we recall some basic properties of monodromy groups of lisse ℓ adic sheaves on varieties over a finite field; see [\[D, Sections 1.1 and 1.3\]](#page-22-0) for details.

Let X be a normal, geometrically connected variety over a finite field \mathbb{F}_q of characteristic p. Let $\bar{\eta} \rightarrow X$ be a geometric point of X, and let $\bar{\mathbb{F}}_q$ be the algebraic closure \mathbb{F}_q in $\kappa(\bar{\eta})$; we regard $\bar{\eta}$ also as a geometric point of $X \otimes_{\mathbb{F}_q} \bar{\mathbb{F}}_q$. The profinite groups $\pi_1(X,\bar{\eta})$ and $\pi_1(X\otimes_{\mathbb{F}_q}\bar{\mathbb{F}}_q,\bar{\eta})$ are respectively called the *arithmetic fundamental group* of X and the *geometric fundamental group* of X. They sit in a short exact sequence

$$
1 \to \pi_1(X \otimes_{\mathbb{F}_q} \overline{\mathbb{F}}_q, \overline{\eta}) \to \pi_1(X, \overline{\eta}) \stackrel{\text{deg}}{\to} \text{Gal}(\overline{\mathbb{F}}_q/\mathbb{F}_q) \to 1.
$$

The group Gal $(\bar{\mathbb{F}}_q/\mathbb{F}_q)$ has a canonical topological generator Frob $_{\mathbb{F}_q}$ called the geometric Frobenius, which is defined as the inverse of the arithmetic Frobenius automorphism $a \mapsto a^q$ of the field $\overline{\mathbb{F}}_a$. We have the canonical isomorphism

$$
\hat{\mathbb{Z}} \stackrel{\cong}{\to} \text{Gal}(\bar{\mathbb{F}}_q/\mathbb{F}_q), \quad \text{ sending } 1 \text{ to } \text{Frob}_{\mathbb{F}_q}.
$$

For a prime number $\ell \neq p$, the functor

{lisse
$$
\overline{\mathbb{Q}}_{\ell}
$$
-sheaves on X } \rightarrow {finite-dimensional continuous $\overline{\mathbb{Q}}_{\ell}$ -representations of $\pi_1(X, \overline{\eta})$ }
 $\mathscr{L} \mapsto \mathscr{L}_{\overline{\eta}}$

is an equivalence of categories; a similar statement holds with $X \otimes_{\mathbb{F}_q} \overline{\mathbb{F}}_q$ in place of X. Via this equivalence, standard notions associated to representations (e.g. irreducibility, semisimplicity, constituent, etc.) are also applicable to lisse sheaves.

Let Let be a lisse $\bar{\mathbb{Q}}_{\ell}$ -sheaf on X, corresponding to the continuous monodromy representation

$$
\pi_1(X,\bar{\eta})\!\to\! \mathrm{GL}(\mathscr{L}_{\bar{\eta}})
$$

of the arithmetic fundamental group of X . The *arithmetic monodromy group* $G_{arith}(\mathscr{L},\bar{\eta})$ of $\mathscr L$ is the Zariski closure of the image of $\pi_1(X,\bar{\eta})$ in $GL(\mathscr L_{\bar{\eta}})$. The inverse image $\mathscr{L} \otimes_{\mathbb{F}_q} \bar{\mathbb{F}}_q$ of \mathscr{L} on $X \otimes_{\mathbb{F}_q} \bar{\mathbb{F}}_q$ is a lisse $\bar{\mathbb{Q}}_\ell$ -sheaf on $X \otimes_{\mathbb{F}_q} \bar{\mathbb{F}}_q$, corresponding to the continuous monodromy representation

$$
\pi_1(X\otimes_{\mathbb{F}_q}\bar{\mathbb{F}}_q,\bar{\eta})\!\hookrightarrow\!\pi_1(X,\bar{\eta})\!\rightarrow\! \mathrm{GL}(\mathscr{L}_{\bar{\eta}})
$$

of the geometric fundamental group of X , obtained by restriction. The *geometric monodromy group* $G_{\text{geom}}(\mathcal{L}, \bar{\eta})$ of $\mathcal L$ is the Zariski closure of the image of $\pi_1(X \otimes_{\mathbb{F}_q} \bar{\mathbb{F}}_q, \bar{\eta})$ in $\mathrm{GL}(\mathscr{L}_{\bar{\eta}})$.

Both $G_{arith}(\mathcal{L}, \bar{\eta})$ and $G_{geom}(\mathcal{L}, \bar{\eta})$ are linear algebraic groups, and it is clear that $G_{\text{geom}}(\mathscr{L},\bar{\eta})$ is a closed normal subgroup of $G_{\text{arith}}(\mathscr{L},\bar{\eta})$. Both $G_{\text{arith}}(\mathscr{L},\bar{\eta})$ and $G_{\text{geom}}(\mathscr{L},\bar{\eta})$ are given with a faithful representation on $\mathscr{L}_{\bar{\eta}}$ corresponding to their realizations as subgroups of $GL(\mathcal{L}_n)$. Thus, if $\mathcal L$ is semisimple (as a representation of $\pi_1(X,\bar{\eta})$, and therefore as a representation of $\pi_1(X\otimes_{\mathbb{F}_q} \bar{\mathbb{F}}_q, \bar{\eta})$), then both $G_{arith}(\mathcal{L}, \bar{\eta})$ and $G_{geom}(\mathcal{L}, \bar{\eta})$ are (possibly non-connected) reductive algebraic groups.

Proposition 1. Let $\mathscr L$ be a lisse $\bar{\mathbb Q}_\ell$ -sheaf on X.

- (i) If $\mathscr L$ is semisimple, then $G_{\text{geom}}(\mathscr L,\bar\eta)$ is a (possibly non-connected) semisimple algebraic group.
- (ii) If $\mathscr L$ is irreducible, and its determinant is of finite order, then $G_{\text{arith}}(\mathscr L,\bar\eta)$ is a (possibly non-connected) semisimple algebraic group, containing $G_{\text{geom}}(\mathscr{L}, \bar{\eta})$ as a normal subgroup of finite index.

Assertion (i) is $[D, Corollaire (1.3.9)]$. For the proof of assertion (ii), we shall make use of the construction in [\[D, \(1.3.7\)\]](#page-22-0), which we summarize below.

Recall that the Weil group $W(\bar{\mathbb{F}}_q/\mathbb{F}_q)$ of \mathbb{F}_q is the subgroup of Gal $(\bar{\mathbb{F}}_q/\mathbb{F}_q)$ consisting of integer-powers of $Frob_{\mathbb{F}_q}$; it is considered as a topological group given with the discrete topology, and we have the canonical isomorphism

$$
\mathbb{Z} \stackrel{\cong}{\to} \mathbf{W}(\bar{\mathbb{F}}_q/\mathbb{F}_q), \quad \text{ sending } 1 \text{ to } \text{Frob}_{\mathbb{F}_q}.
$$

The Weil group $W(X,\bar{\eta})$ of X is the preimage of $W(\bar{\mathbb{F}}_q/\mathbb{F}_q)$ in $\pi_1(X,\bar{\eta})$ by the degree homomorphism $\pi_1(X,\bar{\eta}) \stackrel{\text{deg}}{\rightarrow} \text{Gal}(\bar{\mathbb{F}}_q/\mathbb{F}_q)$; it is considered as a topological group given with the product topology via the isomorphism

$$
\mathsf{W}(X, \bar{\eta}) \cong \pi_1(X \otimes_{\mathbb{F}_q} \bar{\mathbb{F}}_q, \bar{\eta}) \rtimes_{\mathrm{Gal}(\bar{\mathbb{F}}_q/\mathbb{F}_q)} \mathsf{W}(\bar{\mathbb{F}}_q/\mathbb{F}_q),
$$

where $\pi_1(X \otimes_{\mathbb{F}_q} \bar{\mathbb{F}}_q, \bar{\eta})$ retains its profinite topology, and is an open and closed subgroup of $W(X, \bar{\eta})$. These groups sit in the following diagram:

$$
\begin{array}{ccccccc}\n1 & \xrightarrow{\hspace{15mm}} & \pi_1(X \otimes_{\mathbb{F}_q} \overline{\mathbb{F}}_q, \bar{\eta}) & \xrightarrow{\hspace{15mm}} & W(X, \bar{\eta}) & \xrightarrow{\hspace{15mm}} & \mathbb{Z} \cong W(\overline{\mathbb{F}}_q/\mathbb{F}_q) & \xrightarrow{\hspace{15mm}} & 1 \\
 & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & & \\
1 & & & & & & &
$$

where the right two vertical arrows are inclusion homomorphisms with dense images. (Note that the topologies of $W(X, \bar{\eta})$ and $W(\bar{\mathbb{F}}_q/\mathbb{F}_q)$ are not the ones induced by the right two vertical arrows!)

Given a lisse $\bar{\mathbb{Q}}_r$ -sheaf \mathscr{L} on X, the *push-out construction* of [\[D, \(1.3.7\)\]](#page-22-0) produces an algebraic group $\mathbf{G}(\mathcal{L}, \bar{\eta})$, which is locally of finite type, but not quasi-compact; it is characterized by the fact that it sits in a diagram:

$$
\begin{array}{ccccccc}\n1 & \xrightarrow{\quad} & \pi_1(X \otimes_{\mathbb{F}_q} \overline{\mathbb{F}}_q, \bar{\eta}) & \xrightarrow{\quad} & W(X, \bar{\eta}) & \xrightarrow{\deg} & \mathbb{Z} \cong W(\overline{\mathbb{F}}_q/\mathbb{F}_q) & \xrightarrow{\quad} & 1 \\
& & & & & & & & & \\
1 & \xrightarrow{\quad} & G_{\text{geom}}(\mathscr{L}, \bar{\eta}) & \xrightarrow{\quad} & G(\mathscr{L}, \bar{\eta}) & \xrightarrow{\deg} & \mathbb{Z} \cong W(\overline{\mathbb{F}}_q/\mathbb{F}_q) & \xrightarrow{\quad} & 1 \\
& & & & & & & & \\
 & & & & & & & & \\
 & & & & & & & & & \\
 & & & & & & & & & \\
 & & & & & & & & & \\
 & & & & & & & & & \\
 & & & & & & & & & & \\
 & & & & & & & & & & \\
 & & & & & & & & & & & \\
 & & & & & & & & & & & \\
 & & & & & & & & & & & & \\
 & & & & & & & & & & & & & \\
 & & & & & & & & & & & & & \\
 & & & & & & & & & & & & & \\
 & & & & & & & & & & & & & \\
 &
$$

such that the composite of the two continuous homomorphisms

$$
W(X, \bar{\eta}) \to G(\mathcal{L}, \bar{\eta}) \to GL(\mathcal{L}_{\bar{\eta}})
$$

is equal to the continuous representation of $W(X, \bar{\eta})$ on $\mathscr{L}_{\bar{\eta}}$ obtained via restriction:

$$
W(X, \bar{\eta}) \hookrightarrow \pi_1(X, \bar{\eta}) \to GL(\mathscr{L}_{\bar{\eta}}).
$$

Proof of Proposition 1 (ii). From assertion (i), we already know that the group $G_{\text{geom}}(\mathcal{L}, \bar{\eta})$ is a semisimple closed normal subgroup of $G_{\text{arith}}(\mathcal{L}, \bar{\eta})$. Hence, to prove assertion (ii), it suffices for us to show that $G_{arith}(\mathscr{L}, \bar{\eta})$ contains $G_{geom}(\mathscr{L}, \bar{\eta})$ as a subgroup of finite index, for then both groups will have the same identity component, which is a connected semisimple algebraic group.

Since $W(X,\bar{\eta}) \hookrightarrow \pi_1(X,\bar{\eta})$ is an inclusion with dense image, $G_{arith}(\mathscr{L},\bar{\eta})$ can also be described as the Zariski closure of the image of $W(X,\bar{\eta})$ in $GL(\mathscr{L}_{\bar{\eta}})$; likewise, since $W(X, \bar{\eta}) \hookrightarrow G(\mathcal{L}, \bar{\eta})$ is an inclusion with dense image, $G_{arith}(\mathcal{L}, \bar{\eta})$ is also equal to the Zariski closure of the image of $\mathbf{G}(\mathscr{L}, \bar{\eta})$ in $\mathrm{GL}(\mathscr{L}_{\bar{\eta}})$. Let

$$
\rho: \mathbf{G}(\mathscr{L},\bar{\eta}) \rightarrow \mathrm{GL}(\mathscr{L}_{\bar{\eta}})
$$

denote the canonical homomorphism from $\mathbf{G}(\mathcal{L}, \bar{\eta})$ into $\mathrm{GL}(\mathcal{L}_{\bar{\eta}})$; then the composite map

$$
\mathrm{G}_{\mathrm{geom}}(\mathscr{L},\bar{\eta})\hookrightarrow \mathbf{G}(\mathscr{L},\bar{\eta})\stackrel{\rho}{\rightarrow} \mathrm{GL}(\mathscr{L}_{\bar{\eta}})
$$

is just the identity map on $G_{\text{geom}}(\mathcal{L}, \bar{\eta})$. We are thus reduced to showing that $\rho^{-1}(G_{\text{geom}}(\mathscr{L},\bar{\eta}))$ is a subgroup of $G(\mathscr{L},\bar{\eta})$ of finite index.

The fundamental fact we need about $\mathbf{G}(\mathcal{L}, \bar{\eta})$ is [\[D, Corollaire \(1.3.11\)\]](#page-22-0), which asserts that because $\mathscr L$ is irreducible (hence semisimple) by hypothesis, there exists some element q in the center of $G(\mathcal{L}, \bar{\eta})$ whose degree is >0 (i.e. q maps to a positive integer under $G(\mathscr{L}, \bar{\eta}) \stackrel{\text{deg}}{\rightarrow} \mathbb{Z} \cong W(\bar{\mathbb{F}}_q/\mathbb{F}_q)$). Therefore, $\rho(g)$ is an element of $GL(\mathscr{L}_{\bar{\eta}})$ which centralizes $\rho(G(\mathcal{L}, \bar{\eta}))$, and so it centralizes $G_{\text{arith}}(\mathcal{L}, \bar{\eta})$. Since \mathcal{L} is irreducible as a representation of $\pi_1(X,\bar{\eta})$ and hence as a representation of $G_{\text{arith}}(\mathcal{L}, \bar{\eta})$, it follows that $\rho(q)$ must be a scalar.

By hypothesis, the determinant of $\mathscr L$ is of finite order, which means that the onedimensional representation of $\pi_1(X,\bar{\eta})$ on the determinant det $(\mathscr{L}_{\bar{\eta}})$ of $\mathscr{L}_{\bar{\eta}}$ is given by a character of finite order, say d. The same is therefore true for $det(\mathcal{L}_{\bar{n}})$ as a representation of $W(X, \bar{\eta})$ and of $G(\mathcal{L}, \bar{\eta})$. From this it follows that, if $\mathcal L$ has rank r, then $\rho(g)$ is a scalar which is a root of unity of order dividing dr, and so $g^{dr} \in G(\mathcal{L}, \bar{\eta})$ lies in the kernel of ρ . Hence $\rho^{-1}(G_{\text{geom}}(\mathscr{L}, \bar{\eta}))$ contains deg⁻¹(deg(g^{dr})) in $\mathbf{G}(\mathscr{L}, \bar{\eta})$, which is of finite index in $\mathbf{G}(\mathcal{L}, \bar{\eta})$. \Box

Let $\mathscr L$ be a lisse $\bar{\mathbb Q}_\ell$ -sheaf $\mathscr L$ on X. Its arithmetic monodromy group $G_{\text{arith}}(\mathscr L,\bar\eta)$ contains the identity component $G_{\text{arith}}(\mathcal{L}, \bar{\eta})^0$ as an open normal subgroup; $G_{\text{arith}}(\mathcal{L}, \bar{\eta})^0$ is a connected algebraic group. The faithful representation

$$
G_{arith}(\mathcal{L},\bar{\eta})\!\hookrightarrow\! GL(\mathcal{L}_{\bar{\eta}})
$$

of $G_{arith}(\mathscr{L}, \bar{\eta})$, when restricted to the subgroup $G_{arith}(\mathscr{L}, \bar{\eta})^0$ of $G_{arith}(\mathscr{L}, \bar{\eta})$, gives a faithful representation

$$
\mathrm{G}_{\mathrm{arith}}(\mathscr{L},\bar{\eta})^0 \hookrightarrow \mathrm{G}_{\mathrm{arith}}(\mathscr{L},\bar{\eta}) \hookrightarrow \mathrm{GL}(\mathscr{L}_{\bar{\eta}})
$$

of $G_{arith}(\mathcal{L},\bar{\eta})^0$ on $\mathcal{L}_{\bar{\eta}}$. We say that the lisse sheaf $\mathcal L$ is *Lie-irreducible* if $\mathcal{L}_{\bar{\eta}}$ is irreducible as a representation of $G_{arith}(\mathscr{L}, \bar{\eta})^0$. It is clear that Lie-irreducibility implies irreducibility.

Proposition 2. Let \mathcal{L} be a lisse $\bar{\mathbb{Q}}$ -sheaf on X, which is Lie-irreducible, and whose determinant is of finite order. Then there exist $\alpha \in \bar{\mathbb{Q}}_\ell$ and a closed point x_0 of X, such

that α is an eigenvalue of multiplicity one of $Frob_{x_0}$ acting on \mathscr{L} ; i.e. $1/\alpha$ is a root of multiplicity one of the polynomial

$$
\det(1-T\operatorname{Frob}_{x_0},\mathscr{L}).
$$

Proof. First, we claim that it is a Zariski-open condition for an element of $G_{arith}(\mathcal{L}, \bar{\eta})$ to have an eigenvalue of multiplicity one on $\mathcal{L}_{\bar{\eta}}$; in other words, we claim that the set

$$
U := \{ g \in G_{\text{arith}}(\mathcal{L}, \bar{\eta}) : g \text{ acting on } \mathcal{L}_{\bar{\eta}} \text{ has an eigenvalue of}
$$

multiplicity one in $\bar{\mathbb{Q}}_{\ell} \}$

is a Zariski-open subset of $G_{arith}(\mathcal{L}, \bar{\eta})$. We show this as follows. For an element $g \in G_{arith}(\mathcal{L}, \bar{\eta})$, let ch $(g) \in \bar{\mathbb{Q}}_k[T]$ denote the characteristic polynomial of g; then the set U can also be described as

 $U = \{g \in G_{\text{arith}}(\mathscr{L}, \bar{\eta}) : ch(g) \in \bar{\mathbb{Q}}_{\ell} | T \}$ has a root of multiplicity one in $\bar{\mathbb{Q}}_{\ell} \}$.

Let r be the rank of $\mathcal{L}_{\bar{n}}$; then ch gives rise to a morphism of $\bar{\mathbb{Q}}_{\ell}$ -varieties

ch:
$$
G_{\text{arith}}(\mathscr{L}, \bar{\eta}) \to \bar{\mathbb{Q}}_{\ell}[T]^{\text{monic}}_{\text{deg } r}, \quad g \mapsto \text{ch}(g),
$$

where $\bar{\mathbb{Q}}_{\ell}[T]^{\text{monic}}_{\text{degr}}$ denotes the affine space of monic polynomials in T of degree r. For $g \in G_{\text{arith}}(\mathcal{L}, \bar{\eta})$, the polynomial ch (g) has a root of multiplicity one in $\bar{\mathbb{Q}}_{\ell}$ if and only if it does not divide the square $\ch(g)^2$ of its derivative $\ch(g)'$ in $\bar{\mathbb{Q}}_{\ell}[T]$. Thus it suffices for us to show that the set

$$
Z \coloneqq \{ f \in \bar{\mathbb{Q}}_{\ell}[T]^{\text{monic}}_{\deg r} : f \text{ divides } f^{'2} \text{ in } \bar{\mathbb{Q}}_{\ell}[T] \}
$$

is Zariski-closed in $\bar{\mathbb{Q}}_{\ell}[T]_{\text{deg }r}^{\text{monic}}$. But for $f \in \bar{\mathbb{Q}}_{\ell}[T]_{\text{deg }r}^{\text{monic}}$, the Euclidean division algorithm shows that the remainder of dividing f^2 by f is a polynomial of degree $\langle r \rangle$ whose coefficients are given by certain (universal) \mathbb{Z} -polynomial expressions in terms of the coefficients of f ; as the set Z above is precisely the zero-set of these polynomial expressions, it is Zariski-closed.

Next, we claim that the set U above is in fact Zariski-open and *non-empty* in $G_{arith}(\mathscr{L},\bar{\eta})$. Indeed, by part (ii) of Proposition 1, $G_{arith}(\mathscr{L},\bar{\eta})^0$ is a connected semisimple algebraic group; the representation $\mathscr{L}_{\bar{\eta}}$ of $G_{arith}(\mathscr{L},\bar{\eta})^0$ is irreducible by hypothesis, and so by the representation theory of connected semisimple algebraic groups, it is classified by its highest weight, which occurs with multiplicity one. Thus, a generic element of any maximal torus of $G_{arith}(\mathscr{L}, \bar{\eta})^0$ lies in U.

Finally, by Čebotarev's density theorem, there exist infinitely many closed points x of X whose Frobenius conjugacy classes $Frob_x \subset \pi_1(X, \bar{\eta})$ are mapped into U under the monodromy representation of $\pi_1(X,\bar{\eta})$ on $\mathscr{L}_{\bar{\eta}}$. Thus we can pick x_0 to be any one of these closed points of X, and pick $\alpha \in \mathbb{Q}_{\ell}$ to be an eigenvalue of multiplicity one of Frob_{x0} acting on \mathscr{L} . \square

Remark. In Proposition 2, it is not enough to just assume that the lisse \mathbb{Q}_ℓ -sheaf \mathscr{L} is irreducible; the assumption that it is *Lie-irreducible* is necessary. If $\mathscr L$ is irreducible but not Lie-irreducible, it may happen that every element of $G_{arith}(\mathcal{L}, \bar{\eta})$ acting on $\mathscr{L}_{\bar{n}}$ has repeated eigenvalues, which is to say that the set $U \subset G_{\text{arith}}(\mathscr{L}, \bar{\eta})$ in the proof of the proposition is empty. For a specific example, we may take $G_{arith}(\mathcal{L}, \bar{\eta})$ to be the finite symmetric group on 6 letters, and take $\mathcal{L}_{\bar{\eta}}$ to be the 16-dimensional irreducible representation of this finite group; such a situation can arise geometrically.

2. Dévissage of representations

Let k be an algebraically closed field of characteristic 0—such as $\overline{\mathbb{Q}}$. In this section, we consider (possibly non-connected) reductive groups over k and their finite-dimensional k-rational representations. If G is such a reductive group, any k rational representation of G is semisimple (a direct sum of irreducible representations), since k is of characteristic 0. By the quasi-compactness of G , a subgroup H of G is (Zariski-) open if and only if it is (Zariski-) closed of finite index, in which case H necessarily contains the identity component G^0 of G.

The following two results are proved in [\[I\]](#page-22-0) for representations of finite groups. The same proofs, with minor modifications, work for representations of reductive groups. We reproduce the (modified) arguments below for the sake of completeness.

Lemma 3 (I.M. Isaacs [\[I, Theorem 6.18\]](#page-22-0)). Let G be a reductive group, and let K and L be open normal subgroups of G, with $L \subseteq K$. Suppose that K/L is abelian, and that there does not exist a normal subgroup M of G with $L\subseteq M\subseteq K$. Let π be an irreducible representation of K whose isomorphism class is invariant under G -conjugation. Then one of the following holds:

- (i) $\text{Res}_{L}^{K}(\pi)$ is isomorphic to a direct sum $\sigma_1 \oplus \cdots \oplus \sigma_t$ of $t := [K : L]$ many irreducible representations $\sigma_1, ..., \sigma_t$ of L which are pairwise non-isomorphic;
- (ii) $\text{Res}_{L}^{K}(\pi)$ is an irreducible representation of L;
- (iii) $\text{Res}_{L}^{K}(\pi)$ is isomorphic to $\sigma^{\oplus e}$, where σ is an irreducible representation of L, and $e^{2} = [K : L].$

Proof. Since L is normal in K, the irreducible constituents of $\text{Res}_{L}^{K}(\pi)$ are Kconjugate to one another, and each of these constituents occurs in $\text{Res}_{L}^{K}(\pi)$ with the same multiplicity. Choose any irreducible constituent σ of $\operatorname{Res}_{L}^{K}(\pi)$, and let

$$
I = \{ g \in G : g \circ g \cong \sigma \text{ as representations of } L \}
$$

be the open subgroup of G (containing L) which stabilizes the isomorphism type of σ under G-conjugation. Since π is invariant under G-conjugation, every G-conjugate of σ is a constituent of Res $_{L}^{K}(\pi)$, and so every G-conjugate of σ is K-conjugate to σ . It follows that $[G : I] = [K : K \cap I]$, and hence $KI = G$. Since K/L is abelian, $K \cap I$ is normal in K; since K is normal in G, $K \cap I$ is normal in I. As $KI = G$, we see that $K \cap I$ is normal in G. From the hypothesis of the proposition, it follows that $K \cap I$ is either L or K .

Suppose $K \cap I = L$. Then there are $t = [K : L]$ many pairwise non-isomorphic irreducible constituents $\sigma = \sigma_1, \ldots, \sigma_t$ of $\text{Res}_L^K(\pi)$, and so we have

$$
\mathrm{Res}_L^K(\pi) \cong (\sigma_1 \oplus \cdots \oplus \sigma_t)^{\oplus e}
$$

for some multiplicity $e \ge 1$. The constituents σ_j of $\text{Res}_L^K(\pi)$ are K-conjugate to one another, and so they have the same rank as σ . Hence

$$
rk(\pi) = rk(Res^K_L(\pi)) = et \, rk(\sigma).
$$

But π is a constituent of Ind $_{L}^{K}(\sigma)$, so

$$
rk(\pi)\leqslant rk(\mathrm{Ind}_L^K(\sigma))=t\,rk(\sigma).
$$

Thus $e = 1$, and this is case (i).

Henceforth suppose $K \cap I = K$. Then σ is invariant under K-conjugation, so we have

$$
\mathrm{Res}_L^K(\pi)\!\cong\!\sigma^{\oplus e}
$$

for some multiplicity $e \ge 1$. Let χ_1, \ldots, χ_t be the distinct linear characters of the abelian group K/L . Then $\chi_1 \otimes \pi$, $\ldots, \chi_t \otimes \pi$ are irreducible representations of K, each having the same rank as π , and we have

$$
\operatorname{Res}_L^K(\chi_j \otimes \pi) \cong \sigma^{\oplus e} \quad \text{for each } j = 1, \dots, t.
$$

Suppose $\chi_1 \otimes \pi$, $\ldots, \chi_t \otimes \pi$ are pairwise non-isomorphic representations of K. Then we obtain an inclusion

$$
\bigoplus_{j=1}^t \left(\chi_j \otimes \pi\right)^{\oplus e} \subseteq \mathrm{Ind}_L^K(\sigma).
$$

Comparing ranks, we get

$$
et \operatorname{rk}(\pi) \leqslant \operatorname{rk}(\operatorname{Ind}_L^K(\sigma)) = t \operatorname{rk}(\sigma),
$$

and so

$$
e \operatorname{rk}(\pi) \leq \operatorname{rk}(\sigma).
$$

But

$$
e \operatorname{rk}(\sigma) = \operatorname{rk}(\operatorname{Res}_L^K(\pi)) = \operatorname{rk}(\pi).
$$

Thus $e = 1$, and this is case (ii).

In the remaining situation, at least two of the representations $\chi_1 \otimes \pi, \ldots, \chi_r \otimes \pi$ are isomorphic; this implies that $\pi \cong \gamma \otimes \pi$ for some non-trivial linear character γ of K/L . Let $M = \text{Ker}(\gamma)$; we have $L \subseteq M \subsetneq K$. First, consider the representation π , with tracefunction

$$
Tr \circ \pi : K \to k, \quad x \mapsto Tr(\pi(x)).
$$

On $K - M$, the linear character γ takes values different from 1; since $Tr \circ \pi =$ $Tr \circ (\chi \otimes \pi) = \chi \cdot (Tr \circ \pi)$, it follows that $Tr \circ \pi$ vanishes on $K - M$. Since the representation π is invariant under G-conjugation, it follows that $Tr \circ \pi$ vanishes on $K - gMg^{-1}$ for all $g \in G$. The normal subgroup $\bigcap_{g \in G} gMg^{-1}$ of G contains L and is properly contained in K, so it must be equal to L by hypothesis. Thus $Tr \circ \pi$ vanishes on $K - L$. Next, consider the representation $\text{Ind}_{L}^{K}(\text{Res}_{L}^{K}(\pi)) \cong \text{Ind}_{L}^{K}(1) \otimes \pi$, with its trace-function

$$
Tr \circ Ind_{L}^{K}(\text{Res}_{L}^{K}(\pi)) : K \to k, \quad x \mapsto Tr(\text{Ind}_{L}^{K}(1)(x)) Tr(\pi(x)).
$$

Since the trace-function of $\text{Ind}_{L}^{K}(1)$ is 0 on $K - L$ and is t on L, it follows that the trace-function of $\text{Ind}_{L}^{K}(\text{Res}_{L}^{K}(\pi))$ vanishes on $K - L$, and its values on L are t times those of Tr $\circ \pi$. Comparing the trace-functions of π and $\text{Ind}_{L}^{K}(\text{Res}_{L}^{K}(\pi))$, we see that

$$
\mathrm{Tr} \circ (\pi^{\oplus t}) = \mathrm{Tr} \circ \mathrm{Ind}_L^K(\mathrm{Res}_L^K(\pi)).
$$

By the trace comparison theorem of Bourbaki (cf. [\[B, Section 12, no. 1, Propositon](#page-22-0) [3\]\)](#page-22-0), this implies

$$
\pi^{\oplus t} \cong \mathrm{Ind}_{L}^{K}(\mathrm{Res}_{L}^{K}(\pi))
$$

as representations of K . Hence

$$
e^2 = \dim \operatorname{Hom}_{L}(\operatorname{Res}_{L}^{K}(\pi), \operatorname{Res}_{L}^{K}(\pi)) = \dim \operatorname{Hom}_{K}(\pi, \operatorname{Ind}_{L}^{K}(\operatorname{Res}_{L}^{K}(\pi))) = t = [K : L]
$$

and this is case (iii). \Box

Proposition 4 (I.M. Isaacs [\[I, Theorem 6.22\]](#page-22-0)). Let G be a reductive group, and let N be an open normal subgroup of G such that G/N is a nilpotent finite group. Let ρ be an irreducible representation of G . Then there exists an open subgroup H of G with $N \subseteq H \subseteq G$, and an irreducible representation σ of H, such that $\rho \cong \text{Ind}_{H}^{G}(\sigma)$, and such that $\mathrm{Res}_{N}^{H}(\sigma)$ is an irreducible representation of N.

Remark. The proposition holds in slightly greater generality: we need only to assume that G/N is a solvable finite group whose *chief factors* are of square-free orders; see [\[I\]](#page-22-0). This technical condition is automatically verified when G/N is nilpotent or supersolvable.

Proof of Proposition 4. The theorem is clear when $G = N$. We proceed by induction on $\#(G/N)$; hence assume that the theorem holds for any proper subgroup of G containing N. If $\text{Res}_{N}^{G}(\rho)$ is irreducible, then the theorem holds with $H = G$ and $\sigma = \rho$. Hence suppose $\text{Res}_{N}^{G}(\rho)$ is reducible.

Since G/N is finite, we can find an open normal subgroup K of G which is minimal for the conditions that $N \subseteq K$ and $\text{Res}_{K}^{G}(\rho)$ is irreducible. Then $N \subseteq K$ necessarily, and so we can find an open normal subgroup L of G which is maximal for the conditions that $N \subseteq L \subseteq K$. Since G/N is nilpotent, it follows that K/L is cyclic of prime order, say t.

The isomorphism class of the irreducible representation $\pi = \text{Res}_{K}^{G}(\rho)$ of K is invariant under G-conjugation, since π is the restriction of an irreducible representation ρ of G. Thus we may apply Lemma 3 to the representation π of K. By the choice of L and K, $Res_L^K(\pi)$ is not irreducible, so case (ii) cannot occur; since $t = [K : L]$ is a prime number, case (iii) cannot occur. Hence we are in case (i), and it follows that $\text{Res}_{L}^{G}(\rho)$ is isomorphic to a direct sum $\sigma_1 \oplus \cdots \oplus \sigma_t$ of t many irreducible representations $\sigma_1, \ldots, \sigma_t$ of L which are pairwise non-isomorphic.

Let

$$
I := \{ g \in G : \ \{g \in G_1 \} \text{ as representations of } L \}
$$

be the open subgroup of G (containing L) which stabilizes the isomorphism type of σ_1 under G-conjugation. Thus $[G : I] = t$ is > 1 , and $\rho \cong \text{Ind}_I^G(\rho')$ for some irreducible representation ρ' of I. Applying the induction hypothesis to I, we obtain an open subgroup H of I with $N \subseteq H \subseteq I$, and an irreducible representation σ of H, such that $\rho' \cong \text{Ind}_{H}^{I}(\sigma)$ and $\text{Res}_{N}^{H}(\sigma)$ is an irreducible representation of N. Then $\rho \cong \text{Ind}_{H}^{G}(\sigma)$, which completes the proof of the proposition. \Box

If G is a reductive group over k, we let $K(G)$ denote the Grothendieck group of the abelian category of finite-dimensional k -rational representations of G . It is clear that $K(G)$ as a Z-module is freely generated by the irreducible representations of G. The tensor product of representations gives rise to a commutative ring structure on $K(G)$, whose unit element is the class 1 of the trivial representation of G. If $H \subseteq G$ is an open subgroup, then induction of representations from H to G gives rise to a homomorphism of Z-modules

$$
Ind: K(H) {\rightarrow} K(G).
$$

The projection formula shows that the Ind-image of $K(H)$ in $K(G)$ is an ideal.

Recall that, for p a prime number, a finite group G is called p-elementary if it is isomorphic to a direct product $A \times B$, where A is a cyclic group of order prime to p. and B is a p-group. A finite group G is called *elementary* if it is p-elementary for some prime number p . It is clear that an elementary finite group is nilpotent.

Let G be a reductive group, and N be an open normal subgroup of G. We say that, for a prime number p, an open subgroup H of G is p-elementary modulo N if one has the inclusions $N \subseteq H \subseteq G$ and furthermore the finite quotient H/N is p-elementary; we say that H is elementary modulo N if it is p-elementary modulo N for some prime number p:

Proposition 5 (R. Brauer). Let G be a reductive group, and let N be an open normal subgroup of G. Then the $\n **Z**-homomorphism$

$$
\text{Ind} : \bigoplus_{\substack{H \subseteq G \\ \text{elemmod } N}} \mathcal{K}(H) \to \mathcal{K}(G)
$$

is surjective (the direct sum is over all subgroups H of G which are elementary modulo N).

Proof. Recall that Brauer's theorem on induced characters for finite groups (see [\[I, Theorem 8.4\]](#page-22-0) or [\[H, Theorem 34.2\]](#page-22-0) for instance) states that if G is a finite group, then the Z-homomorphism

$$
\text{Ind} \, : \, \bigoplus_{\substack{H \, \subseteq \, G \\ \text{elem.}}} \, \mathcal{K}(H) \! \to \! \mathcal{K}(G)
$$

is surjective; the key point is that the unit element 1 of $K(G)$ lies in the ideal generated by the Ind-images of $K(H)$ where H runs over all elementary subgroups of G: Therefore, the proposition follows from applying Brauer's theorem to the finite group G/N . \Box

Corollary 6. Let G be a reductive group, and let N be an open normal subgroup of G. Let ρ be a representation of G. Then there exist a finite list of pairs:

$$
(H_1,\sigma_1),\ldots,(H_s,\sigma_s),\qquad \qquad (*)
$$

where, for each $i = 1, \ldots, s$,

- (a) H_i is an open subgroup of G with $N \subseteq H_i \subseteq G$,
- (b) σ_i is an irreducible representation of H_i , and in fact,
- (c) $\text{Res}_{N}^{H_i}(\sigma_i)$ is an irreducible representation of N,

such that one has an isomorphism of representations of G of the form

$$
\rho \bigoplus \left(\bigoplus_{i=1}^t \mathrm{Ind}_{H_i}^G(\sigma_i) \right) \cong \left(\bigoplus_{j=t+1}^s \mathrm{Ind}_{H_j}^G(\sigma_j) \right) \tag{**}
$$

for some t with $1 \le t \le s$.

Remark. If one takes N to be the identity component G^0 of G, then property (c) asserts that each σ_i is Lie-irreducible. This is the situation which we shall encounter later in Section 4.

Proof of Corollary 6. Proposition 5 tells us that we can find a finite list of pairs as in $(*)$, such that an isomorphism of form $(**)$ holds, such that properties (a) and (b) are verified, and such that each H_i is elementary modulo N. Since each H_i/N is then a nilpotent finite group, Proposition 4 allows us to replace each H_i by a subgroup containing N and each σ_i by an irreducible representation of the corresponding subgroup, so that, furthermore, property (c) is also verified. This proves the corollary. \square

3. Descent of representations

Let Γ be a group, let k_0 be a field of characteristic zero, and let k be a field extension of k_0 . In this section, we prove two criteria (Propositions 7 and 9) for descending a k-representation of Γ to a k_0 -representation.

Proposition 7. Let ρ be a finite-dimensional k-representation of Γ , which is absolutely irreducible (i.e. irreducible over an algebraic closure of k). Assume:

- (i) ρ is defined over a finite Galois extension K of k_0 in k;
- (ii) for every $\gamma \in \Gamma$, the trace $Tr(\rho(\gamma))$ of γ with respect to ρ lies in k_0 ;
- (iii) there exists some $\alpha \in k_0$ and some $\gamma_0 \in \Gamma$ such that α is an eigenvalue of multiplicity one of γ_0 with respect to ρ .

Then ρ is defined over k_0 .

Proof. By (i), we may assume that ρ is given as a K-matrix representation of Γ :

$$
\rho: \Gamma \to \mathrm{GL}_r(K),
$$

and we let $\Sigma = \text{Gal}(K/k_0)$ be the finite Galois group. According to (iii), we may choose an eigenvector $v \in K^{\oplus r}$ of $\rho(\gamma_0)$ with eigenvalue α . By changing basis, we may assume that v is the first basis vectors of $K^{\oplus r}$; thus the matrix $\rho(\gamma_0)$

has the form

$$
\begin{pmatrix} \alpha & * & \dots & * \\ 0 & * & \dots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & * & \dots & * \end{pmatrix}.
$$

Each $\sigma \in \Sigma$ defines a K-representation

$$
\sigma\rho:\Gamma \stackrel{\rho}{\to} GL_r(K) \stackrel{GL_r(\sigma)}{\to} GL_r(K).
$$

Since $\alpha \in k_0$ is invariant under Σ , the matrices $\sigma \rho(\gamma_0)$ also have the same form as $\rho(\gamma_0)$ above; thus v is also an eigenvector with eigenvalue α of each $\sigma \rho(\gamma_0)$, $\sigma \in \Sigma$.

Assumption (ii) and the invariance of k_0 under Σ gives the equality in k_0 :

 $Tr(\sigma \rho(\gamma)) = Tr(\rho(\gamma))$ for any $\sigma \in \Sigma$, any $\gamma \in \Gamma$.

Therefore, by the trace comparison theorem of Bourbaki (cf. [\[B, Section 12, no. 1,](#page-22-0) [Proposition 3\]\)](#page-22-0), the K-representations $\sigma \rho$ of Γ , for various $\sigma \in \Sigma$, are all isomorphic over K to ρ . Choose such isomorphisms over K:

$$
a(\sigma): (\sigma \rho, K^{\oplus r}) \stackrel{\cong}{\rightarrow} (\rho, K^{\oplus r}), \quad \sigma \in \Sigma.
$$

Since ρ is absolutely irreducible by hypothesis, any automorphism of it must be a scalar in K. It follows that each $a(\sigma) \in GL_r(K)$ is determined up to a K-scalar multiple. For any $\sigma, \sigma' \in \Sigma$, the two different ways of expressing $\sigma' \sigma \rho$ in terms of ρ then gives

$$
a(\sigma'\sigma) = (\text{scalar in } K) \cdot a(\sigma') \cdot \sigma' a(\sigma).
$$

We shall now rigidify the situation. For each $\sigma \in \Sigma$, we have the equality

$$
a(\sigma) \cdot \sigma \rho(\gamma_0) = \rho(\gamma_0) \cdot a(\sigma),
$$

and the fact that $v \in K^{\oplus r}$ is an eigenvector of $\sigma \rho(\gamma_0)$ with eigenvalue α ; it follows that $a(\sigma)v \in K^{\oplus r}$ is an eigenvector of $\rho(\gamma_0)$ with eigenvalue α . Thanks to the multiplicity-one hypothesis (iii) on α , $a(\sigma)v$ is necessarily a K-scalar multiple of v itself. Since we are free to adjust $a(\sigma) \in GL_r(K)$ by any K-scalar multiple, we may and do assume that each $a(\sigma)$ maps v to itself. Thus the matrices $a(\sigma)$, for $\sigma \in \Sigma$, have the form

$$
\begin{pmatrix} 1 & * & \cdots & * \\ 0 & * & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & * & \cdots & * \end{pmatrix},
$$

and it follows that the matrices $\sigma' a(\sigma)$, for $\sigma, \sigma' \in \Sigma$, also have the same form above, which implies that each $\sigma' a(\sigma)$ also maps v to itself. Therefore, we now have

$$
a(\sigma'\sigma) = a(\sigma') \cdot \sigma' a(\sigma) \quad \text{for any } \sigma, \sigma' \in \Sigma.
$$

By Hilbert Theorem 90 for GL_r , there exists some $b \in GL_r(K)$ such that

$$
a(\sigma) = b \cdot \sigma b^{-1} \quad \text{for each } \sigma \in \Sigma.
$$

Using $b^{-1} \in GL_r(K)$ for a change of basis, we obtain the K-representation $\tilde{\rho} = b^{-1} \rho b$ defined by

$$
\tilde{\rho}: \Gamma \to \mathrm{GL}_r(K), \quad \gamma \mapsto b^{-1} \rho(\gamma) b,
$$

which is isomorphic over K to ρ . A straightforward computation now shows that the matrices

$$
\tilde{\rho}(\gamma) \in \mathrm{GL}_r(K) \quad \text{for } \gamma \in \Gamma,
$$

are all fixed under the action of the Galois group Σ ; in other words, $\sigma \tilde{\rho} = \tilde{\rho}$ for any $\sigma \in \Sigma$. Thus the representation $\tilde{\rho}$ factorizes as

$$
\Gamma \to \mathrm{GL}_r(k_0) \hookrightarrow \mathrm{GL}_r(K).
$$

So $\tilde{\rho}$ is defined over k_0 , and the same is therefore true for ρ . \Box

Lemma 8. Let M, N be k_0 -representations of Γ .

(i) The canonical homomorphism of k-vector spaces

$$
k \otimes_{k_0} \text{Hom}_{k_0}(\mathcal{M}, N) \to \text{Hom}_{k\Gamma}(k \otimes_{k_0} \mathcal{M}, k \otimes_{k_0} \mathcal{N})
$$

is injective; it is surjective if M is finitely generated as a left $k_0\Gamma$ -module. (ii) The canonical homomorphism of k-vector spaces

$$
k \otimes_{k_0} \mathrm{Ext}^1_{k_0} (M, N) \to \mathrm{Ext}^1_{k} (k \otimes_{k_0} M, k \otimes_{k_0} N)
$$

is injective if M is finitely generated as a left $k_0\Gamma$ -module.

Remark. (a) If M is finitely presented as a left $k_0\Gamma$ -module, the lemma follows from the well-known "change of rings" isomorphisms applied to $k_0 \Gamma \hookrightarrow k\Gamma$ (see [\[R,](#page-22-0) [Theorem 2.39\]](#page-22-0) for instance). Of course, if M is a finite-dimensional k_0 -representation of Γ , then it is automatically a finitely generated left $k_0\Gamma$ -module; however, it need not be finitely presented as a left $k_0 \Gamma$ -module.

(b) When Γ is a finite group, the group ring $k_0\Gamma$ is left-noetherian, so a finite-dimensional k_0 -representation M of Γ is finitely presented as a left $k_0 \Gamma$ -module, and the lemma follows from (a) above. But since we will use the lemma when Γ is a profinite group, and we could not identify a satisfactory reference for the corresponding result, we find it prudent to give a complete proof here.

(c) The proof below actually shows that the lemma holds in slightly greater generality: it suffices to assume that k_0 is any commutative ring, and that k is a k_0 algebra which is *free as a* k_0 *-module*.

Proof of Lemma 8. We first show that the canonical homomorphism

$$
k \otimes_{k_0} \text{Hom}_{k_0}(\Lambda, N) \rightarrow \text{Hom}_{k\Gamma}(k \otimes_{k_0} M, k \otimes_{k_0} N)
$$

$$
\alpha \otimes \phi \rightarrow (\beta \otimes m \mapsto \alpha \beta \otimes \phi(m))
$$

is injective. Choose a basis $\{e_i \in k : i \in I\}$ of k as a k_0 -vector space. Then the k_0I module $k \otimes_{k_0} N$ is the direct sum of the $k_0 \Gamma$ -submodules $e_i \otimes N$:

$$
k \otimes_{k_0} N \cong \bigoplus_{i \in I} e_i \otimes N;
$$

likewise, the k_0 -vector space $k \otimes_{k_0} \text{Hom}_{k_0}(\mathcal{M}, N)$ is the direct sum of the corresponding k_0 -subspaces $e_i \otimes \text{Hom}_{k_0}(\mathcal{M}, N)$:

$$
k \otimes_{k_0} \text{Hom}_{k_0}(\Lambda, N) \cong \bigoplus_{i \in I} e_i \otimes \text{Hom}_{k_0}(\Lambda, N).
$$

Any $\phi \in k \otimes_{k_0} \text{Hom}_{k_0}(\mathcal{M}, N)$ is therefore equal to a sum

$$
\phi = \sum_{i \in I} e_i \otimes \phi_i
$$

for some uniquely determined $\phi_i \in \text{Hom}_{k_0\Gamma}(M,N), i \in I$, all but finitely of which are the zero-map. Suppose ϕ lies in the kernel of the canonical homomorphism. Then for any $m \in M$, one has

$$
\sum_{i\in I} e_i \otimes \phi_i(m) = 0 \quad \text{in} \quad k \otimes_{k_0} N \cong \bigoplus_{i\in I} e_i \otimes N,
$$

so $\phi_i(m) = 0$ in N for each $i \in I$. It follows that $\phi = 0$, which is what we want.

If M is finite free as a left $k_0\Gamma$ -module, then it follows from the functorial properties of Hom and \otimes that the canonical homomorphism is an isomorphism. In general, if M is finitely generated as a left $k_0 \Gamma$ -module, let

$$
0 \to K \to F \to M \to 0
$$

be a short exact sequence of left $k_0\Gamma$ -modules with F finite free. Then

$$
0 \to \text{Hom}_{k_0\Gamma}(M,N) \to \text{Hom}_{k_0\Gamma}(F,N) \to \text{Hom}_{k_0\Gamma}(K,N)
$$

is an exact sequence of k_0 -vector spaces. From this and the fact that k is flat over k_0 , we obtain the following commutative diagram with exact columns:

where the middle horizontal arrow is an isomorphism and the bottom horizontal arrow is injective, by what we have already shown. A diagram chase shows that the top horizontal arrow is surjective. This proves part (i).

For part (ii), we write down the next terms in the above commutative diagram:

$$
k \otimes_{k_0} \text{Hom}_{k_0\Gamma}(F, N) \xrightarrow{\cong} \text{Hom}_{k\Gamma}(k \otimes_{k_0} F, k \otimes_{k_0} N)
$$
\n
$$
\downarrow \qquad \qquad \downarrow
$$
\n
$$
k \otimes_{k_0} \text{Hom}_{k_0\Gamma}(K, N) \xrightarrow{\qquad \qquad} \text{Hom}_{k\Gamma}(k \otimes_{k_0} K, k \otimes_{k_0} N)
$$
\n
$$
\downarrow \qquad \qquad \downarrow
$$
\n
$$
k \otimes_{k_0} \text{Ext}_{k_0\Gamma}^1(M, N) \xrightarrow{\qquad \qquad} \text{Ext}_{k\Gamma}^1(k \otimes_{k_0} M, k \otimes_{k_0} N)
$$
\n
$$
\downarrow
$$
\n
$$
0
$$

By part (i), the top horizontal arrow is an isomorphism and the middle horizontal arrow is injective. A diagram chase shows that the bottom horizontal arrow is injective. This proves part (ii). \Box

Proposition 9 (E. Noether–M. Deuring). Let ρ , τ and π be semisimple finitedimensional k-representations of Γ such that

$$
\rho \oplus \tau \cong \pi.
$$

Suppose τ and π are defined over k_0 . Then ρ is also defined over k_0 .

Proof. Our argument here is adapted from that given for representations of finite groups (see [\[H, Theorem 37.6\]](#page-22-0) for instance). The proposition is clear when $\tau = 0$. We proceed by induction on the rank rk(τ) of τ ; hence assume that rk(τ) \geq 1. By hypothesis, there exist k_0 -representations τ_0 , π_0 of Γ such that

$$
\tau \leq k \otimes_{k_0} \tau_0, \quad \pi \leq k \otimes_{k_0} \pi_0.
$$

For any finite-dimensional k_0 -representations M, N of Γ , we have the canonical inclusion:

$$
\mathrm{Ext}^1_{k_0\Gamma}(M,N)\hookrightarrow k\otimes_{k_0}\mathrm{Ext}^1_{k_0\Gamma}(M,N)\underset{\mathrm{Lemma}~8}{\hookrightarrow}\mathrm{Ext}^1_{k\Gamma}(k\otimes_{k_0}M,k\otimes_{k_0}M);
$$

this fact and the hypothesis that τ , π are semisimple as k-representations of Γ imply that τ_0 , π_0 are semisimple as k_0 -representations of Γ .

Let $\sigma_0 \subseteq \tau_0$ be an irreducible constituent of the k_0 -representation τ_0 of Γ . Then

$$
k \otimes_{k_0} \text{Hom}_{k_0}(\sigma_0, \pi_0) \overset{\cong}{\rightarrow} \text{Hom}_{k\Gamma}(\sigma, \pi) \cong \text{Hom}_{k\Gamma}(\sigma, \rho \oplus \tau)
$$

contains

$$
\mathrm{Hom}_{k\Gamma}(\sigma,\tau) \underset{\mathrm{Lemma} \ 8}{\cong} k \otimes_{k_0} \mathrm{Hom}_{k_0\Gamma}(\sigma_0,\tau_0) \neq 0,
$$

whence Hom_{ko} $(\sigma_0, \pi_0) \neq 0$. Thus σ_0 is also an irreducible constituent of the k₀representation π_0 of Γ . Therefore,

$$
\tau_0 \cong \tau'_0 \oplus \sigma_0, \quad \pi_0 \cong \pi'_0 \oplus \sigma_0
$$

for some semisimple k_0 -representations τ'_0 and π'_0 of Γ . Letting

$$
\tau' := k \otimes_{k_0} \tau'_0, \quad \pi' := k \otimes_{k_0} \pi'_0, \quad \sigma := k \otimes_{k_0} \sigma_0,
$$

we obtain an isomorphism

$$
\rho\oplus\tau'\oplus\sigma\!\cong\!\pi'\oplus\sigma
$$

of semisimple k-representations of Γ , and hence an equality of their k-valued trace functions:

$$
Tr(\rho(g)) + Tr(\tau'(g)) + Tr(\sigma(g)) = Tr(\pi'(g)) + Tr(\sigma(g)) \text{ for every } g \in \Gamma.
$$

Applying the trace comparison theorem of Bourbaki (cf. [\[B, Section 12, no. 1,](#page-22-0) [Proposition 3\]\)](#page-22-0) to the equality

$$
Tr(\rho(g)) + Tr(\tau'(g)) = Tr(\pi'(g)) \text{ for every } g \in \Gamma,
$$

we obtain an isomorphism

 $\rho \oplus \tau' \cong \pi'$

of semisimple k-representations of Γ . Since $rk(\tau') < rk(\tau)$, our induction hypothesis shows that ρ is defined over k_0 . \Box

4. Proof of main theorem

We shall now prove the main theorem stated in the introduction.

Thus, let \mathbb{F}_q be a finite field of characteristic p, let $\ell \neq p$ be a prime number, let X be a normal variety over \mathbb{F}_q , and let $\mathscr L$ be a lisse $\bar{\mathbb Q}_\ell$ -sheaf on X, which is irreducible, and whose determinant is of finite order. Let $E \subset \bar{\mathbb{Q}}_{\ell}$ denote the number field given by hypothesis (1) applied to (X, \mathcal{L}) ; thus for every closed point x of X, the polynomial

$$
\det(1 - T \operatorname{Frob}_x, \mathscr{L})
$$

has coefficients in E. We may replace the finite field \mathbb{F}_q by its algebraic closure in the function field $\kappa(X)$ of X, and hence assume that X is geometrically connected over \mathbb{F}_q ; this allows us to use the results in Section 1. Let $\bar{\eta} \rightarrow X$ be a geometric point of X, and set

$$
\Gamma := \pi_1(X, \bar{\eta}), \quad G := \mathrm{G}_{\mathrm{arith}}(\mathscr{L}, \bar{\eta}).
$$

Let

$$
\rho_{\mathscr{L}}:\Gamma\!\to\!{\rm GL}({\mathscr{L}}_{\bar\eta})
$$

denote the monodromy $\bar{\mathbb{Q}}_{\ell}$ -representation of Γ corresponding to \mathscr{L} , and let

$$
\rho: G \hookrightarrow \mathrm{GL}(\mathscr{L}_{\bar{\eta}})
$$

denote the faithful representation of $G_{arith}(\mathcal{L}, \bar{\eta})$ on $\mathcal{L}_{\bar{\eta}}$.

By Proposition 1 (ii), G is a (possibly non-connected) semisimple algebraic group. We apply Corollary 6 to the representation ρ of G, with $N = G^0 = G_{\text{arith}}(\mathscr{L}, \bar{\eta})^0$, to obtain a finite list of pairs as in $(*)$, satisfying properties (a)–(c) listed there, such that an isomorphism of representations of G of the form $(**)$ holds.

Consider any pair (H_i, σ_i) in $(*)$. By property (a), the identity component H_i^0 of H_i is a connected semisimple algebraic group (in fact it is $G_{\text{arith}}(\mathcal{L}, \bar{\eta})^0$), which is therefore equal to its own commutator subgroup; hence the one-dimensional representation det(σ_i) of H_i , given by the determinant of σ_i , factors through H_i/H_i^0 , and so is given by a character of H_i of finite order. This and properties (b) and (c) show that each σ_i is a Lie-irreducible representation of H_i , and its determinant is of finite order.

Set

$$
\Gamma_i := (\rho_{\mathscr{L}})^{-1}(H_i) \subseteq \Gamma.
$$

Then Γ_i is an open subgroup of Γ , corresponding to a finite etale cover $X_i \to X$ of X by a connected variety X_i pointed by the geometric point $\bar{\eta}$; we identify Γ_i with the arithmetic fundamental group $\pi_1(X_i, \bar{\eta})$ of X_i . If V_i is the representation space of σ_i , then the composite homomorphism

$$
\sigma_{\mathcal{F}_i}: \Gamma_i \stackrel{\rho_{\mathcal{L}}}{\rightarrow} H_i \stackrel{\sigma_i}{\rightarrow} GL(V_i)
$$

is a $\bar{\mathbb{Q}}_\ell$ -representation of Γ_i which corresponds to a lisse $\bar{\mathbb{Q}}_\ell$ -sheaf \mathscr{F}_i on the variety X_i . It follows from the corresponding properties of σ_i that \mathcal{F}_i is Lie-irreducible, and its determinant is of finite order. By hypothesis (1) applied to (X_i, \mathcal{F}_i) , there is a number field $E_i \subset \bar{\mathbb{Q}}_\ell$ such that for every closed point x of X_i , the polynomial

$$
\det(1 - T \operatorname{Frob}_x, \mathscr{F}_i)
$$

has coefficients in E_i ; and by Proposition 2, there is some $\alpha_i \in \overline{\mathbb{Q}}_\ell$ and some closed point $x_0^{(i)}$ of X_i such that α_i is an eigenvalue of multiplicity one of Frob_{$x_0^{(i)}$} acting on \mathcal{F}_i . It follows that α_i is algebraic over the number field E_i . Let

$$
\rho_{\mathscr{L}_i} \coloneqq \mathrm{Ind}_{\Gamma_i}^{\Gamma}(\sigma_{\mathscr{F}_i})
$$

be the $\overline{\mathbb{Q}}_{\ell}$ -representation of Γ induced from $\sigma_{\mathscr{F}_i}$, and let

$$
F
$$
 := composite of $E_1(\alpha_1), \ldots, E_s(\alpha_s)$ and E in $\overline{\mathbb{Q}}_{\ell}$.

It is clear that F is a finite extension of E in $\bar{\mathbb{Q}}_{\ell}$. The isomorphism $(**)$ implies that for any closed point x of X , one has

$$
Tr(\rho_{\mathscr{L}}(Frob_x)) + \sum_{i=1}^{t} Tr(\rho_{\mathscr{L}_i}(Frob_x))
$$

=
$$
\sum_{j=t+1}^{s} Tr(\rho_{\mathscr{L}_j}(Frob_x))
$$
 (equality in $F \subset \bar{\mathbb{Q}}_{\ell}$). \t\t(**)

We shall now show that the number field F satisfies the conclusion of assertion $(3')$.

To that end, pick a place λ' of F lying over a prime number $\ell' \neq p$, and choose an algebraic closure $\bar{\mathbb{Q}}_{\ell'}$ of $F_{\ell'}$. By hypothesis (3) applied to (X,\mathscr{L}) and each (X_i, \mathcal{F}_i) , there exist irreducible lisse $\bar{\mathbb{Q}}_{\ell}$ -sheaves \mathcal{L}' on X and \mathcal{F}'_i on X_i , which are *compatible with* $\mathscr L$ and $\mathscr F_i$, respectively; i.e. for each closed point x of X, one has

$$
\det(1 - T \operatorname{Frob}_x, \mathcal{L}') = \det(1 - T \operatorname{Frob}_x, \mathcal{L}) \quad \text{(equality in } F[T]), \tag{1}
$$

and for each $i = 1, ..., s$ and each closed point x of X_i , one has

$$
\det(1 - T \operatorname{Frob}_x, \mathscr{F}'_i) = \det(1 - T \operatorname{Frob}_x, \mathscr{F}_i) \quad \text{(equality in } F[T]). \tag{2}
$$

It follows that \mathscr{L}' has the same rank as \mathscr{L} (and each \mathscr{F}'_i has the same rank as \mathscr{F}_i). It also follows from these compatibility relations that

$$
\alpha_i \in F \subset F_{\lambda'} \subset \bar{\mathbb{Q}}_{\ell'}
$$
 is an eigenvalue of multiplicity one of $\text{Frob}_{x_0^{(i)}}$ acting on \mathcal{F}'_i . (3)

Let $\rho_{\mathscr{L}}$ denote the irreducible monodromy $\bar{\mathbb{Q}}_{\ell}$ -representation of Γ corresponding to \mathscr{L}' , and let $\sigma_{\mathscr{F}'_i}$ denote the irreducible monodromy $\bar{\mathbb{Q}}_{\ell'}$ -representation of Γ_i corresponding to \mathscr{F}'_i . Let

$$
\rho_{\mathscr{L}'_i} := \mathrm{Ind}_{\varGamma_i}^{\varGamma}(\sigma_{\mathscr{F}'_i})
$$

be the $\bar{\mathbb{Q}}_{\ell}$ -representation of Γ induced from $\sigma_{\mathscr{F}'_i}$. From (1) and (2), we deduce that for each closed point x of X , one has

$$
Tr(\rho_{\mathscr{L}}(Frob_x)) = Tr(\rho_{\mathscr{L}}(Frob_x)) \quad \text{(equality in } F), \tag{4}
$$

and for each $i = 1, ..., s$ and each closed point x of X_i , one has

$$
Tr(\sigma_{\mathscr{F}'_i}(Frob_x)) = Tr(\sigma_{\mathscr{F}_i}(Frob_x)) \quad \text{(equality in } F), \tag{5}
$$

whence for each $i = 1, ..., s$ and each closed point x of X, one has

$$
Tr(\rho_{\mathscr{L}'_i}(Frob_x)) = Tr(\rho_{\mathscr{L}_i}(Frob_x))
$$
 (equality in *F*). (6)

Combining equalities (4) and (6) with $(***)$, we see that for any closed point x of X; one has

$$
Tr(\rho_{\mathscr{L}'}(Frob_x)) + \sum_{i=1}^{t} Tr(\rho_{\mathscr{L}'_i}(Frob_x))
$$

=
$$
\sum_{j=t+1}^{s} Tr(\rho_{\mathscr{L}'_j}(Frob_x))
$$
 (equality in $F \subset \bar{\mathbb{Q}}_{\ell'}$). \t(**)

By Čebotarev's density theorem, this equality of traces, as an equality in $\bar{\mathbb{Q}}_{\ell'}$, holds for every element of Γ . Therefore, by the trace comparison theorem of Bourbaki (cf. [\[B, Section 12, no. 1, Proposition 3\]](#page-22-0)), we obtain an isomorphism of semisimple $\bar{\mathbb{Q}}_{\ell}$. representations of Γ :

$$
\rho_{\mathscr{L}'} \oplus \left(\bigoplus_{i=1}^{t} \rho_{\mathscr{L}'_i} \right) \cong \left(\bigoplus_{j=t+1}^{s} \rho_{\mathscr{L}'_j} \right). \tag{7}
$$

Consider the (absolutely) irreducible $\bar{\mathbb{Q}}_{\ell}$ -representation $\sigma_{\mathscr{F}'_i}$ of Γ_i . We wish to apply Proposition 7 to this representation; so let us check that the hypotheses there are verified.

- (i) By the definition of lisse \bar{Q}_{ℓ} -sheaves (cf. [D, (1.1.1)]—alternatively, apply [KSa, Remark 9.0.7]), the $\bar{\mathbb{Q}}_{\ell'}$ -representation $\sigma_{\mathscr{F}_i'}$ is defined over a finite extension of \mathbb{Q}_{ℓ} , which we may of course assume to be finite Galois over F_{ℓ} .
- (ii) From (5), we see that for every closed point x of X_i , the trace $\text{Tr}(\sigma_{\mathscr{F}'_i}(\text{Frob}_x))$ of Frob_x $\subset \Gamma_i$ with respect to $\sigma_{\mathscr{F}'_i}$ lies in $F_{\lambda'}$; so it follows from Cebotarev's density theorem that the trace $\text{Tr}(\sigma_{\mathscr{F}'_i}(\gamma))$ of every element $\gamma \in \Gamma_i$ with respect to $\sigma_{\mathscr{F}'_i}$ lies in F_{ν} .
- (iii) Finally, from (3), we know that $\alpha_i \in F_{\lambda}$ is an eigenvalue of multiplicity one of Frob_{$x_0^{(i)} \subset \Gamma_i$ with respect to $\sigma_{\mathscr{F}_i}$.} $⁰$ </sup>

Hence Proposition 7 shows that $\sigma_{\mathscr{F}'_i}$ is defined over $F_{\lambda'}$. Then each $\rho_{\mathscr{L}'_i}$, being induced from $\sigma_{\mathscr{F}'_i}$, is also defined over $F_{\lambda'}$. Therefore, in (7), the two representations in parentheses are defined over F_{λ} . Proposition 9 now shows that $\rho_{\mathscr{L}}$ is also defined over $F_{\lambda'}$, and hence the lisse $\bar{\mathbb{Q}}_{\ell'}$ -sheaf \mathcal{L}' is defined over $F_{\lambda'}$; in other words, there exists a lisse $F_{\lambda'}$ -sheaf $\mathscr{L}_{\lambda'}$ on X such that $\mathscr{L}' \cong \mathscr{L}_{\lambda'} \otimes_{F_{\lambda'}} \bar{\mathbb{Q}}_{\lambda'}$. The asserted properties of \mathscr{L}_{λ} follow from this isomorphism and (1).

This completes the proof of our main theorem.

Acknowledgments

I am grateful to P. Deligne, J. de Jong and especially N. Katz for many fruitful conversations, from which I have learned much of the material presented here.

References

- [B] N. Bourbaki, Alge`bre. Chapitre 8: Modules et anneaux semi-simples, Hermann, Paris, 1958.
- [D] P. Deligne, La conjecture de Weil II, Inst. Hautes Études Sci. Publ. Math. 52 (1980) 137–252.
- [H] B. Huppert, Character theory of finite groups, de Gruyter, Berlin, 1998.
- [I] I.M. Isaacs, Character theory of finite groups (Corrected reprint of the 1976 original, Academic Press, New York), Dover, New York, 1994.
- [K] N.M. Katz, Wild ramification and some problems of "independence of ℓ ", Amer. J. Math. 105 (1) (1983) 201–227.
- [KSa] N.M. Katz, P. Sarnak, Random matrices, Frobenius eigenvalues, and monodromy, Amer. Math. Soc, Providence, RI, 1999.
- [L] L. Lafforgue, Chtoucas de Drinfeld et correspondance de Langlands, Invent. Math. 147 (1) (2002) 1–241.
- [R] I. Reiner, Maximal orders, Academic Press, London, 1975.
- [Se] J.-P. Serre, Abelian ℓ -adic representations and elliptic curves, Revised reprint of the 1968 original, A K Peters, Wellesley, MA, 1998.