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We consider a simple extension of the Standard Model Higgs inflation with one new real scalar field
which preserves unitarity up to the Planck scale. The new scalar field (called sigma) completes in the
ultraviolet the theory of Higgs inflation by linearizing the Higgs kinetic term in the Einstein frame, just
as the non-linear sigma model is unitarized into its linear version. The unitarity cutoff of the effective
theory, obtained by integrating out the sigma field, varies with the background value of the Higgs field.
In our setup, both the Higgs field and the sigma field participate in the inflationary dynamics, following
the flat direction of the potential. We obtain the same slow-roll parameters and spectral index as in the
original Higgs inflation but we find that the Hubble rate during inflation depends not only on the Higgs
self-coupling, but also on the unknown couplings of the sigma field.

© 2010 Elsevier B.V. Open access under CC BY license.
1. Introduction

Inflation is believed to be the phenomenon that determined
the necessary initial conditions for the cosmological evolution of
our universe. Although there is mounting observational evidence
in favor of inflation, the nature of the inflaton is still a mystery
and a compelling link with an established particle theory is still
missing. An interesting proposal that aims at filling this gap be-
tween cosmology and particle physics is the idea that the Standard
Model Higgs boson could play the role of the inflaton [1] (see also
Refs. [2–6]). This appears to be possible if a Higgs bilinear term
is coupled to the scalar curvature with an unusually large con-
stant ξ of the order of 104. At first sight, this scenario suffers
from a potential problem. Because of the large coupling constant ξ ,
the theory violates unitarity at the energy M P /ξ . This energy is
comparable to the inflationary Hubble rate and is parametrically
smaller than the scale of the Higgs field during inflation, which
is as low as M P /

√
ξ . The violation of unitarity [7,8] at the scale

M P /ξ occurs in the theory expanded around the vacuum in which
the Higgs field takes a small value, of the order of the electroweak
scale. But, as emphasized in Ref. [9] (see also Ref. [10]), this re-
sult does not necessarily spoil the self-consistency of the Higgs
inflationary scenario. The energy cutoff, dictated by unitarity ar-
guments, is field dependent. While being equal to M P /ξ at small
field value, the energy cutoff grows as the Higgs background field
is increased. Thus, the region of the scalar potential relevant during
the inflationary epoch could be within the domain of calculability.
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Nonetheless, there are reasons to be concerned with the unitar-
ity issue of the theory. First of all, the cutoff associated with the
would-be Goldstone bosons in the Higgs doublet is lower than the
one read from the potential of the Higgs boson. In unitary gauge,
the problem becomes manifest in the gauge sector and it has been
shown [9] that the cutoff during inflation is given by M P /

√
ξ ,

which is parametrically close to the energy scales involved during
inflation. Moreover, if we assume that the Higgs theory is eventu-
ally embedded into a more complete scheme that can be reliably
extrapolated all the way up to the Planck mass, we will necessarily
find new particles or new dynamics appearing at the scale M P /ξ .
It is quite reasonable to expect that the new degrees of freedom
with mass of the order of M P /ξ will affect the Higgs potential
at these scales and modify its form for values of the Higgs field
relevant for inflation, of the order of M P /

√
ξ . If this is the case,

any assessment about the viability of Higgs inflation will require
knowledge of the physics responsible for unitarization at the scale
M P /ξ .

In this Letter we will address the issue of unitarization of Higgs
inflation. We will present a simple extension of the model, with
only one new scalar field, that allows to raise the unitarity cutoff
up to the Planck mass. The inflationary process, which can then
be reliably computed, occurs in a fashion analogous to the orig-
inal Higgs model. The procedure for unitarization that we follow
is very similar to the one that is used to promote the non-linear
sigma model into its linear version. The new scalar field that we
introduced, called σ , plays the role of nearly linearizing the non-
renormalizable Higgs interactions, as explained in Section 2.

The Letter is organized as follows. First, we sketch the proce-
dure for unitarizing Higgs inflation and provide a simple model
that implements this scheme with one scalar field. Then we dis-
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cuss the dynamics of the σ field both in the vacuum and during
the inflationary regime. In Section 3 we calculate the slow-roll pa-
rameters in our model and compare them to the original Higgs
inflation. To prove unitarity of our model in Section 4 we con-
sider the gauge-Higgs interactions and the Yukawa couplings and
study their impact. Finally, some conclusions are drawn. There are
two appendices dealing with the formalism for multi-field infla-
tion and the details of the calculation of the slow-roll parameters
in our model.

2. The model

In this section, we first explain the procedure for unitarizing
Higgs inflation with a new real-scalar field. Then we consider a
simple model realizing this scheme with general renormalizable
interactions and non-minimal couplings to gravity for the Higgs
doublet and the new scalar field. Next we discuss the vacuum
structure and the inflationary dynamics along the flat direction in
our model.

2.1. The procedure for unitarizing Higgs inflation

The original model of Higgs inflation is based on the Jordan-
frame Lagrangian [1]

L J√−g J
= 1

2

(
M2

P + 2ξ0 H† H
)

R − |DμH|2 − λ

(
H† H − v2

2

)2

,

(1)

where ξ0 is the non-minimal coupling of the Higgs doublet. The
Einstein-frame Lagrangian is obtained after the Weyl rescaling
g J
μν = f g E

μν with f = (1 + 2ξ0 H† H/M2
P )−1,

L E√−gE
= 1

2
M2

P R − |DμH|2
1 + 2ξ0 H† H/M2

P

− 3ξ2
0

M2
P

∂μ(H† H)∂μ(H† H)

(1 + 2ξ0 H† H/M2
P )2

− λ(H† H − v2

2 )2

(1 + 2ξ0 H† H/M2
P )2

.

(2)

This form of the Lagrangian clearly exhibits the unitarity problem
in Higgs inflation, which originates from the first term in the sec-
ond line of Eq. (2). The non-renormalizable dimension-6 operator
involving four Higgs fields and two derivatives is suppressed by
the mass scale M P /ξ0, which plays the role of the energy cutoff at
small field value.

A procedure for unitarization is suggested by the analogy be-
tween the Einstein-frame kinetic term for the Higgs and the non-
linear sigma model, which is more transparent in the real repre-
sentation with HT = 1√

2
(φ1, φ2, φ3, φ4),

Lkin = − 1

2(1 + ξ0 �φ2/M2
P )

(
δi j + 6ξ2

0 φiφ j/M2
P

1 + ξ0 �φ2/M2
P

)
∂μφi∂

μφ j (3)

with �φ2 ≡ ∑
i φ

2
i . Just as a non-linear sigma model can be com-

pleted in the ultraviolet by the presence of a sigma field, we
introduce a real-scalar sigma field satisfying the constraint σ 2 =
Λ2 + �φ2, with Λ2 ≡ M2

P /ξ0, and rewrite the Higgs kinetic term in
the form

Lkin = −1

2

(
Λ

σ

)2[
(∂μφi)

2 + 6ξ0(∂μσ )2]
− κ(x)F

(
σ 2 − Λ2 − �φ2). (4)
Here κ(x) is the Lagrange multiplier and F is an arbitrary function
satisfying F (0) = 0. The Higgs kinetic term does not yet correspond
to a flat metric of the target space, but rather it looks similar to
the metric of Euclidean AdS5 space with AdS radius 1/Λ. However,
as suggested by the constraint for the sigma field, it is possible
to complete the theory into a linear sigma-model type, in which
the sigma field vev is dynamically determined to be (Λ2 + �φ2)1/2

by the full potential. This effectively corresponds to replacing the
Lagrange-multiplier term by an appropriate scalar potential whose
minimum lies at the field value σ 2 = Λ2 + �φ2. Then, after the field
redefinition σ = Λexp[χ/(

√
6M P )], we find that the canonically-

normalized field χ has only Planck-suppressed non-renormalizable
interactions. This allows to raise the unitarity cutoff up to M P .

In Ref. [11] it was claimed that Higgs inflation could be uni-
tarized by introducing additional non-renormalizable operators in
the Jordan frame with their coefficients carefully chosen to can-
cel exactly the dangerous interactions causing the loss of unitarity.
We believe that a dynamical solution is necessary to solve the
problem. In the next section we will propose a simple model that
implements our procedure for unitarization, completing Higgs in-
flation in the ultraviolet.

2.2. Higgs inflation with the sigma field

Our model, which extends the original Higgs inflation by adding
to the SM Higgs doublet H a real scalar σ̄ , is based on the Jordan-
frame Lagrangian

L J√−g J
= 1

2

(
M̄2 + ξ σ̄ 2 + 2ζ H† H

)
R − 1

2
(∂μσ̄ )2 − |DμH|2

−1

4
κ
(
σ̄ 2 − Λ̄2 − 2αH† H

)2 − λ

(
H† H − v2

2

)2

. (5)

Here M̄ , Λ̄, and v are parameters with dimension of mass. We
assume that the electroweak scale v is much smaller than the
other masses involved in the Lagrangian (v � M̄, Λ̄). This assump-
tion, technically unnatural, is just an expression of the hierarchy
problem, which cannot be addressed in the SM using conventional
symmetry arguments. Since we are working in the context of the
SM, we must accept this assumption without a known justification.
In Eq. (5), the parameters ξ , ζ are the non-minimal couplings of
the sigma field and the Higgs doublet to the scalar curvature. As
described later, inflation requires a large coupling ξ , of the order
of 104. On the other hand, we will take ζ of order unity, in order
to avoid the reappearance of the unitarity problem in the Higgs
sector. It is technically unnatural to set ζ = 0, because ζ can be
generated by loop effects, but it is possible to keep it significantly
smaller than ξ . We assume that this is the case. Finally κ,α,λ are
dimensionless coupling constants. The Lagrangian (5) contains the
most general renormalizable terms compatible with the Z2 sym-
metry under which σ̄ transforms as σ̄ → −σ̄ .

It is useful to choose the unitary gauge for the Higgs doublet,
HT = 1√

2
(0, φ), and introduce the field variable σ with the defini-

tion σ 2 = σ̄ 2 + M2 with M2 ≡ M̄2/ξ . With this transformation, the
above Lagrangian can be rewritten in a form in which the role of
the Planck mass is expressed only in terms of fields,

L J√−g J
= 1

2

(
ξσ 2 + ζφ2)R − σ 2

2(σ 2 − M2)
(∂μσ )2

− 1

2
(∂μφ)2 − V J (6)

where

V J = 1
κ
(
σ 2 − Λ2 − αφ2)2 + λ (

φ2 − v2)2
(7)
4 4
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and Λ2 ≡ M2 + Λ̄2. Thus, the Planck mass is traded off for the
non-canonical kinetic term for the new sigma field in Jordan frame.
Since the minimization of the potential sets 〈σ 〉 = Λ (up to negli-
gible corrections of order v2), the field σ determines the effective
Planck mass. So, we need to choose

Λ = M P√
ξ

. (8)

We can now rewrite the Lagrangian in the Einstein frame by
performing a Weyl rescaling of the metric, g J

μν = f g E
μν with f =

M2
P /(ξσ 2 + ζφ2),

L E√−gE
= 1

2
M2

P R − M2
P

2(ξσ 2 + ζφ2)

×
[(

σ 2

σ 2 − M2
+ 6ξ2σ 2

ξσ 2 + ζφ2

)
(∂μσ )2

+
(

1 + 6ζ 2φ2

ξσ 2 + ζφ2

)
(∂μφ)2

+ 3ξζ

2(ξσ 2 + ζφ2)
∂μσ 2∂μφ2

]
− V E , (9)

V E = M4
P

4(ξσ 2 + ζφ2)2

[
κ
(
σ 2 − Λ2 − αφ2)2 + λ

(
φ2 − v2)2]

.

(10)

Note that the field σ is such that σ 2 > M2, because of its defini-
tion in terms of σ̄ , and thus the sign of the kinetic term for σ is
well defined and no ghost-like instabilities exist.

In the limit ζ = 0 and M = 0 the Lagrangian in Eq. (9) exhibits
a form similar to the one in Eq. (4), suggested by the sigma-model
discussion, apart from the coefficient of the sigma-field kinetic
term which is (1 + 6ξ) instead of 6ξ . In our case, the scalar po-
tential V E contains the term playing the role of the Langrange
multiplier in setting the constraint σ 2 = Λ2 +αφ2. The limit M = 0
corresponds to the case of induced gravity [12]. In the limit α = 0
the theory has strong similarities with the model proposed in
Ref. [13].

2.3. Dynamics with the sigma field

Let us now study the structure of the theory in the Einstein
frame. The vacuum of the model lies at

〈φ〉2 = v2, 〈σ 〉2 = Λ2 + αv2. (11)

For v � Λ and for large ξ , the kinetic mixing between σ and φ in
Eq. (9) becomes negligible and the fields χ = √

6M P ln(σ /Λ) and
φ are approximately canonically normalized. The mass of χ can
then be read off from the potential in Eq. (10), with the result

mχ 

√

κ

3

M P

ξ
. (12)

As expected, the mass of the new degree of freedom described
by the field σ turns out to be of the order of M P /ξ , the en-
ergy scale at which the original Higgs model violates unitarity.
Below the scale M P /ξ we can integrate out the field σ and ob-
tain an effective theory, which corresponds to the original Higgs
inflation model. Up to some higher-dimensional terms suppressed
by M P /

√
ξ , the effective theory is described by the Lagrangian (2)

with ξ0 = αξ + ζ . Above the scale M P /ξ , the sigma field cures
the unitarity breakdown of the original Higgs inflation, as is eas-
ily understood by replacing σ in the Lagrangian of Eq. (9) with
its expression in terms of the χ field, σ = Λexp(χ/

√
6M P ). All
the non-renormalizable interactions are suppressed by the Planck
mass.

Let us now consider the theory for large values of the Higgs
background. For |σ |, |φ| � Λ, the Einstein-frame potential (10) be-
comes approximately a function of only the ratio between φ and
σ . It is then convenient to rewrite the Lagrangian (9) in terms of
the field φ̃ = Λφ/σ and obtain

L E√−gE
= 1

2
M2

P R − 1

2(1 + ζ φ̃2/M2
P )

×
{[

Λ2σ 2

σ 2 − M2
+ (1 + 6ζ )φ̃2 + 6M2

P

](
∂μσ

σ

)2

+ 1 + ζ(1 + 6ζ )φ̃2/M2
P

1 + ζ φ̃2/M2
P

(∂μφ̃)2

+ (1 + 6ζ )
∂μσ

σ
∂μφ̃2

}
− V E . (13)

At the leading order, the potential for φ̃ is

V E 
 Λ4

4(1 + ζ φ̃2/M2
P )2

[(
λ + κα2)( φ̃

Λ

)4

− 2κα

(
φ̃

Λ

)2

+ κ

]
,

(14)

whose minimum is at φ̃ 

√

κα
λ+κα2 Λ for ζ

ξ
� 1. Once φ̃ is frozen

at its minimum value, the potential presents a flat direction along
the field component orthogonal to φ̃. From Eq. (13) we find that,
during inflation, the fields φ̃ and χ = √

6M P ln(σ /Λ) are approxi-
mately canonically normalized and their kinetic mixing is negligi-
ble. The scalar potential for χ is obtained by keeping higher orders
in Λ2 in Eq. (10) and by freezing φ̃ into its minimum. Ignoring
terms proportional to ζ/ξ , we then find

V E 
 V inf
(
1 − 2e

− 2χ√
6M P

)
, V inf ≡ Λ4

4

(
λκ

λ + κα2

)
. (15)

The potential V E along the χ direction is exponentially flat, in per-
fect analogy with the original Higgs inflation.

Note that the mass of the heavy mode φ̃ during inflation is
equal to mφ̃ 
 √

2κα Λ, which is of the order of M P /
√

ξ . There-
fore, the mass of the heavy mode, which is about M P /ξ in the vac-
uum, is raised to M P /

√
ξ when the fields obtain large background

values. In the original Higgs inflation, although new dynamics has
to appear at the mass scale M P /ξ to cure the unitarity problem,
during inflation the energy cutoff is higher, and is equal to about
M P /

√
ξ . Thus, our model gives an explicit realization of the mech-

anism advocated in Ref. [9]. In our model, the inclusion of the field
σ allows for full control of the theory up to the Planck scale.

3. Slow-roll inflation

As discussed in the previous section, our Higgs inflation model
with the sigma field is reduced to a single field inflation along
the flat direction. In this section, we show that the flat direction
indeed drives inflation by explicitly computing the slow-roll pa-
rameters. In Appendices A and B, we perform the calculation using
the general formalism for multi-field inflation and we show that, in
our case, the single-field approximation is adequate. We are inter-
ested in the case in which the non-minimal coupling of the Higgs
doublet is much smaller than the one of the sigma field.

The ε slow-roll parameter, see Eq. (B.10), for |σ | � Λ is given
by

ε 
 4
(

Λ
)4

. (16)

3 σ
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The differential number of e-foldings, see Eq. (A.11), is dN 

− ∂σ V E

2εV E
for ∂V E

∂φ̃
= 0 along the flat direction, so the total number

of e-foldings is given by

N 
 −
σ f∫

σi

1

2εV E

∂V E

∂σ
dσ 
 3

4

(
σ 2

i

Λ2
− σ 2

f

Λ2

)
. (17)

Here we take σ 2
f = (2/

√
3)Λ2, corresponding to the field value at

which ε = 1 and the dynamics exit the slow-roll regime.
The η parameter is given by the minimum between the two

expressions η1 and η2, corresponding to the two independent field
directions. For |σ | � Λ, from Eqs. (B.19) and (B.20), we obtain

η1 
 −4

3

(
Λ

σ

)2

, (18)

η2 
 8ξα

(
1 + κ

λ
α2

)
. (19)

Consequently, we find that the mass of the heavy field orthogonal
to the flat direction is m2

2 
 η2 V inf/M2
P 
 2καΛ2, in agreement

with the result in the previous section. On the other hand, the
η parameter for inflaton is given by η = η1, so the inflaton mass
is m2

1 
 η1 H2. Combining Eqs. (16), (17), and (18), we obtain the
slow-roll parameters in terms of the number of e-foldings as

ε 
 3

(2N + √
3 )2

, η 
 − 2

2N + √
3
. (20)

Since d ln k = dN for an approximately constant Hubble parame-
ter during inflation, using Eq. (A.14) and ∂σ ε 
 (∂σ ln V E )(−2ε+η)

we obtain the spectral index

ns 
 1 + 2η − 6ε 
 1 − 2(4N + 9 + 2
√

3 )

(2N + √
3 )2

. (21)

The combined WMAP 7-year data with Baryon Acoustic Oscilla-
tions and Type Ia supernovae [14] show that the spectral index is
ns = 0.963 ± 0.012 (68% CL). For N 
 60, we obtain ε 
 2.0 × 10−4

and η 
 −1.6 × 10−2, leading to the spectral index ns 
 0.966 and
ratio of the tensor to scalar perturbations, r = 12.4ε 
 2.4 × 10−3,
both compatible with observations. All these results for the slow-
roll parameters, number of e-foldings, and spectral index are iden-
tical to those of the original Higgs inflation.

The COBE normalization of the power spectrum constrains the
inflation parameters

V 1/4

ε1/4

 6.7 × 1016 GeV. (22)

For the vacuum energy during inflation V inf in Eq. (15), the COBE
normalization (22) leads to

ξ

√
λ + κα2

κλ

 5 × 104. (23)

This determines the scale Λ to be about 1016 GeV. This result sug-
gests the interesting possibility that the vev of the singlet field
σ could be responsible for the scale of the right-handed neutrino
masses.

The constraint on the non-minimal coupling ξ of the sigma
field depends on all the dimensionless parameters of our model.
On the other hand, in the original Higgs inflation, the COBE nor-
malization gives ξ0/

√
λ 
 5 × 104. Here ξ0 is the non-minimal

coupling of the Higgs doublet, which is related to the parameters
of our model by ξ0 = αξ , considering the effective theory with σ
integrated out. Therefore the constraint on ξ coincides with the
one of the original Higgs inflation only when κα2 � λ. In gen-
eral, however, it depends on the values of the various unknown
coupling constants and cannot be simply related to the observable
Higgs quartic coupling.

There is another important difference between the Higgs in-
flation and our model. In our case, at the end of inflation the
field configuration will be at φ/σ 


√
κα

λ+κα2 as discussed below

Eq. (14). Therefore the inflaton is a combination of the Higgs and
sigma fields with a mixing angle determined by the values of the
various coupling constants. This mixing angle suppresses the de-
cay of the inflaton, because only the Higgs is directly coupled to
the SM particles. Thus, the reheating temperature in our case is
smaller than the one in Higgs inflation, which is estimated to be
about 1013 GeV [3].

Moreover, it has been observed in Ref. [5] that, in Higgs infla-
tion, the loop corrections to the Higgs self-coupling are important
for determining the spectral index with a precision measurable by
PLANCK. In our case, see Eq. (9), the Higgs kinetic term is close
to a canonical form, independently of the background field val-
ues and so, it would be sufficient to consider the SM running of
the Higgs self-coupling. However, the dependence on the running
effect coming from the sigma field interactions prevents us from
making a simple testable prediction.

4. Gauge and fermion interactions

The analysis of the scalar potential performed in Section 2.3
has shown that no unitarity violation occurs below the Planck
scale, independently of the background scalar field values. How-
ever, the choice of the unitary gauge hides part of the problem.
The interactions of the would-be Goldstone bosons could introduce
unitarity violations at a lower cutoff scale. This is actually happen-
ing in the case of the original Higgs inflation [7,9]. In the unitary
gauge, the extra degrees of freedom contained in the Higgs dou-
blet are gauged away by a local gauge transformation and their
information is encoded in the gauge-Higgs interactions. It is there-
fore important to analyze also the gauge and Yukawa couplings of
the Higgs in order to check the absence of any unitarity violation.
In this section, we consider the power counting both in the true
vacuum and in the inflationary background for gauge-Higgs inter-
actions as well as Yukawa couplings and compare it to the original
Higgs inflation. We again neglect contributions coming from the
non-minimal coupling of the Higgs doublet with respect to the σ
coupling.

4.1. Field fluctuations around the vacuum

• Gauge interactions
The gauge kinetic terms are conformally invariant under the
Weyl rescaling of the metric. So, the Higgs interactions with
two gauge bosons in unitary gauge are given by

Lgauge√−gE
= −1

2
f g2φ2 Aμ Aμ 
 −1

2

(
Λ

σ

)2

g2φ2 Aμ Aμ. (24)

Expanding around the vacuum σ = Λ+χ/
√

6ξ and φ = v +h,
the above gauge interaction becomes

Lgauge√−gE

 −1

2

(
1 − 2χ√

6M P

)
g2 v2

(
1 + h

v

)2

Aμ Aμ. (25)

Therefore, the Higgs-gauge interactions are identical to the SM
and there is no unitarity violation, while the coupling of the
sigma field to the gauge sector is suppressed by the Planck
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scale. This result is a direct consequence of the fact that the
physical Higgs is not rescaled, contrary to the original Higgs
inflation. In the original model, because of the correction to
the Higgs kinetic term in the Einstein frame, the gauge-Higgs
interactions are modified as compared to the SM: − 1

2 g2 v2(1+
2a h

v + b h2

v2 )Aμ Aμ with a = 1 − 3v2

Λ2
H I

and b = 1 − 12v2

Λ2
H I

where

ΛH I = M P
ξ0

. So, the unitarity cutoff of the original Higgs infla-
tion must be identified with ΛH I .

• Fermion interactions
Let us consider the fermion kinetic terms in the Einstein frame

Lfermion√−gE
= f 3/2ψ̄ iγ μ∂μψ 


(
Λ2

σ 2

)3/2

ψ̄ iγ μ∂μψ. (26)

We can make the kinetic terms canonical by rescaling the
fermions: ψ ′ = ( Λ2

〈σ 2〉 )
3/4ψ . The Yukawa couplings become

LYukawa√−gE
= f 2λψφψ̄RψL + h.c.



(

Λ

σ

)2(
Λ2

〈σ 2〉
)−3/2

λψφψ̄ ′
Rψ ′

L + h.c. (27)

Then, applying the same expansions of the scalar fields around
the vacuum as for the gauge interactions, the Yukawa cou-
plings become

LYukawa√−gE



(
1 − 4χ√

6M P

)
λψ(v + h)ψ̄ ′

Rψ ′
L + h.c. (28)

Again, the Yukawa couplings to the physical Higgs are the
same as in the SM. On the other hand, in the original Higgs in-
flation, there was a dimension-6 operator, λψ

h3

Λ2
H I

ψ̄ ′
Rψ ′

L , which

is suppressed by ΛH I .

4.2. Field fluctuations during inflation

During inflation, the fields reside at large values, |σ | � Λ and
φ2 
 κα

λ+κα2 σ 2. We can expand the scalar fields around the infla-
tionary background as follows,

σ 
 σ0

(
1 + 1√

6ξΛ
χ

)
, φ 
 φ0 + σ0

Λ
h (29)

where σ0, φ0 are the background field values during inflation
and χ , h are perturbations having canonical kinetic terms.

• Gauge interactions
From Eq. (24), the gauge interactions become

Lgauge√−gE

 −1

2
g2 V 2

(
1 − 2χ√

6M P

)(
1 + h

V

)2

Aμ Aμ (30)

where V ≡ Λφ0/σ0. Thus, the Higgs-gauge interactions are of
the standard form with the Higgs vev being replaced by V ,
so there is no unitarity violation in the gauge sector. Because
of the large scalar values during inflation, the gauge boson

mass is increased and saturates at mA 
 gV 
 gΛ
√

κα
λ+κα2 .

However, even during inflation, there is no unitarity viola-
tion below the Planck scale as in the vacuum case. In the
original Higgs inflation, the gauge interactions are given by
− 1

2 g2 V 2
H I (1 + h√

6M P
)2 Aμ Aμ with V H I = M P√

ξ0
. Thus, due to the

suppressed Higgs couplings, unitarity is broken at V H I .
• Fermion interactions
From Eq. (27), the Yukawa interactions become

LYukawa√−gE



(
1 − 4χ√

6M P

)
λψ(V + h)ψ̄ ′

Rψ ′
L + h.c. (31)

Thus, we find that the fermions have large masses but there
is no unitarity violation below the Planck scale. The Yukawa
couplings during inflation are not suppressed as compared to
the SM ones, unlike the original Higgs inflation in which the
Yukawa interactions are given by λψ V H I (1 + h√

6M P
)ψ̄ ′

Rψ ′
L .

5. Conclusions

The idea that the Higgs boson could play the role of the infla-
ton is very intriguing. A scalar theory with quartic interaction in
the potential and large non-minimal coupling ξ to the curvature
can support inflation. However, the inflationary dynamics occurs
at such large values of the scalar field that the identification of
the inflaton with the Higgs boson remains suspicious, in view of
the existence of the intermediate scale M P /ξ at which the the-
ory around its true vacuum violates unitarity. If we insist that the
theory can be extended up to the Planck mass, it is quite plausi-
ble that the necessary new physics occurring at the scale M P /ξ

will modify the Higgs potential in the regime relevant for infla-
tion. Any conclusion about the viability of Higgs inflation will then
require knowledge of the new dynamics that unitarizes the theory.

We have considered a simple model, with one additional scalar
field σ , which cures the unitarity violation at the intermediate
scale and allows for an extrapolation of the theory up to M P . The
procedure we followed to construct the model is reminiscent of
the unitarization of the non-linear sigma model into its linear ver-
sion.

In our model, the σ field has a mass of order M P /ξ and the ef-
fective theory below this scale essentially corresponds to the orig-
inal model of Higgs inflation [1], namely the SM with a large non-
minimal coupling between the Higgs and the curvature. The analy-
sis of our model in the regime above M P /ξ shows that the theory
can support inflation in a way completely analogous to the case of
the original Higgs inflation. The predictions for the slow-roll pa-
rameters and the spectral index are identical in both theories. It
is interesting that, in our model, the mass of the heavy mode in-
creases with the field background. Being equal to M P /ξ around the
true vacuum, the mass of the new state is about M P /

√
ξ during in-

flation, giving an explicit realization of the mechanism advocated
in Ref. [9], for which the scale of unitarity violation is raised at
large background field. In spite of the similarities with the original
Higgs inflation, the σ field plays a crucial role. Besides unitariz-
ing the theory, σ directly participates in the inflationary dynamics.
Its role is also reflected in the fact that the relation between ξ

and the inflationary scale does not only depend on the measurable
Higgs quartic coupling, but also on unknown coupling constants
determining the σ interactions. The reheating temperature in our
model can be smaller than in the original Higgs inflation.
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Appendix A. Multiple-field inflation

We review here the general formulas for slow-roll parameters
and spectral index in inflation models with multiple scalars [15].
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The Einstein-frame action with multi-scalars is

S E = 1

2

∫
d4x

√−gE
[
M2

P R − G I J ∂μϕ I∂μϕ J − 2V (ϕ)
]
. (A.1)

Taking the metric ds2 = −dt2 +a2(t)δi j dxi dx j , and time-dependent
scalars ϕ I , the Einstein equation and the equation of motion of the
scalars are(

ȧ

a

)2

= 1

6M2
P

(
G I J ϕ̇

I ϕ̇ J + 2V
)
, (A.2)

ä

a
= − 2

3M2
P

(
G I J ϕ̇

I ϕ̇ J − V
)
, (A.3)

ϕ̈ I + 3Hϕ̇ I + Γ I
J K ϕ̇ J ϕ̇K + G I J V , J = 0. (A.4)

The ε slow-roll parameter for multi-field inflation is defined as

ε = − Ḣ

H2
= 1

2M2
P H2

G I J ϕ̇
I ϕ̇ J . (A.5)

For ϕ̈ I + Γ I
J K ϕ̇ J ϕ̇K � G I J V , J , we can rewrite the above slow-roll

parameter as

ε 
 M2
P

2V 2
G I J V ,I V , J . (A.6)

The counterpart of the η slow-roll parameter in multi-field in-
flation is defined as η = minaηa where ηa are eigenvalues of the
matrix NI

J ,

NI
J = M2

P
G J K V ;K I

V
(A.7)

where V ;I J ≡ ∂I∂ J V − Γ K
I J ∂K V .

The number of e-foldings is defined as

dN = H dt = − 1

εH
dH = − 1

εH

∂ H

∂ϕ I
dϕ I . (A.8)

From the Einstein equations, we obtain

Ḣ = − 1

2M2
P

G I J ϕ̇
I ϕ̇ J . (A.9)

Thus, since Ḣ = ∂ H
∂ϕ I ϕ̇

I , we get

∂ H

∂ϕ I
= − 1

2M2
P

G I J ϕ̇
J . (A.10)

Then, for ϕ̈ I + Γ I
J K ϕ̇ J ϕ̇K � G I J V , J , we get 1

H
∂ H
∂ϕ I 
 V ,I

6H2 M2
P


 V ,I
2V .

Therefore, we obtain the following approximate expression for N

N 
 −
ϕ I

f∫
ϕ I

i

V ,I

2εV
dϕ I . (A.11)

The power spectrum for the multi-field inflation is given by

P (k) = V

75π2M2
P

G I J ∂N

∂ϕ I

∂N

∂ϕ J
. (A.12)

Using the approximate formula,

∂N

∂ϕ I
= − 1

εH

∂ H

∂ϕ I

 − V ,I

6M2
P H2ε

, (A.13)

and Eq. (A.6), we get the power spectrum as for the single-field
inflation,
P (k) 
 V

150π2M4
P ε

. (A.14)

Finally, the spectral index is

ns = 1 + ∂ ln P (k)

∂ ln k
. (A.15)

Appendix B. Calculation of slow-roll parameters

We apply the general formulas for multi-field inflation to cal-
culate the inflationary observables in our model. We consider the
case in which the non-minimal coupling of the Higgs doublet ζ is
much smaller than ξ .

Working in the Einstein frame, we first minimize the scalar
potential with two fields. For convenience in the following discus-
sions, we enumerate the terms of the scalar potential (10) with
ζ = 0 as follows,

V E = V 0

[
1 + a

(
φ

σ

)4

− 2b

(
φ

σ

)2

+ 2
m2

σ

σ 2
+ 2m2

φ

φ2

σ 4
+ c

σ 4

]
.

(B.1)

Compared to the scalar potential (10), we have chosen the pa-
rameters as V 0 = 1

4 κΛ2, a = α2 + λ
κ , b = α, m2

φ = αΛ2 − λ
κ v2,

m2
σ = −Λ2 and c = Λ4 + λ

κ v4. Then, at the minimum of the to-
tal potential, we can determine the Planck scale with a nonzero σ
vev and the electroweak scale with a nonzero Higgs vev.

From Eq. (B.1), for ∂V E
∂φ

= ∂V E
∂σ = 0, we obtain the minimization

conditions

σ 2 = a

b
φ2 + m2

φ

b
, (B.2)

φ2 = − 1

m2
φ

(
m2

σ σ 2 + c
)
. (B.3)

For m2
φ = m2

σ = c = 0, we find that there is a flat direction along

σ 2 = a
b φ2.

For the Einstein-frame action (9), from the formula (A.6), we
get the ε parameter for the two-fleld inflation as

ε 
 M2
P

2V 2
E

(
σ

Λ

)2[
σ 2 − M2

σ 2 + 6ξ(σ 2 − M2)

(
∂V E

∂σ

)2

+
(

∂V E

∂φ

)2]
.

(B.4)

The contribution coming from the σ derivative is suppressed by a
large non-minimal coupling. So it is reasonable to take the inflaton
direction to be along the line with ∂V E

∂φ
= 0, which is equal to σ 2 =

a
b φ2 + m2

φ

b . This inflaton direction corresponds to the flat direction
in the limit of vanishing dimensionful parameters. For the inflaton
direction, we simplify the potential and its derivatives,

V E = V 0

a

[
a − b2 + 2

σ 2

(
bm2

φ + am2
σ

) + 1

σ 4

(
ac − m4

φ

)]
, (B.5)

∂V E

∂σ
= 4V 0

aσ

[
− 1

σ 2

(
bm2

φ + am2
σ

) + 1

σ 4

(
m4

φ − ac
)]

, (B.6)

∂2 V E

∂φ2
= 8V 0

aφ2

(
b − m2

φ

σ 2

)2

, (B.7)

∂2 V E

∂σ 2
= 8V 0

aσ 2

[
b2 + 3

2σ 2

(
bm2

φ + am2
σ

) + 5

2σ 4

(
ac − m4

φ

)]
, (B.8)

∂2 V E = 8V 0
(

−b2 + b
m2

φ

2

)
. (B.9)
∂σ∂φ aφσ σ
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Then, from Eq. (B.4), using Eqs. (B.5) and (B.6), the ε parameter
becomes

ε 
 4V 2
0

3a2 V 2
Eσ

4

[
bm2

φ + am2
σ + 1

σ 2

(
ac − m4

φ

)]2

. (B.10)

In order to compute the η parameter for the scalar kinetic
terms given in Eq. (9), we first consider the non-zero components
of the Christoffel symbol

Γ σ
φφ = σ 2 − M2

σ 2 + 6ξ(σ 2 − M2)

1

σ
, Γ

φ
φσ = − 1

σ
= Γ σ

σσ . (B.11)

Then, the matrix elements of NI
J in Eq. (A.7) are

Nφ
φ = M2

P

V E

(
σ

Λ

)2(
∂2
φ V E − σ 2 − M2

σ 2 + 6ξ(σ 2 − M2)

1

σ
∂σ V E

)
,

(B.12)

Nσ
σ = M2

P

V E

(
σ

Λ

)2
σ 2 − M2

σ 2 + 6ξ(σ 2 − M2)

(
∂2
σ V E + 1

σ
∂σ V E

)
,

(B.13)

Nφ
σ = M2

P

V E

(
σ

Λ

)2
σ 2 − M2

σ 2 + 6ξ(σ 2 − M2)

(
∂φ∂σ V E + 1

σ
∂φ V E

)
,

(B.14)

Nσ
φ = M2

P

V E

(
σ

Λ

)2(
∂σ ∂φ V E + 1

σ
∂φ V E

)
. (B.15)

For the inflaton direction with large non-minimal coupling satisfy-
ing 6ξ � σ 2

σ 2−M2 , from Eqs. (B.12)–(B.15) we obtain

Nφ
φ 
 ξσ 2

V E
∂2
φ V E , (B.16)

Nσ
σ 
 σ 2

6V E

(
∂2
σ V E + 1

σ
∂σ V E

)
, (B.17)

Nφ
σ 
 σ 2

6V E
∂σ ∂φ V E ,

Nσ
φ 
 ξσ 2

V E
∂σ ∂φ V E . (B.18)
Therefore, plugging Eqs. (B.5)–(B.9) in the above, we obtain the
eigenvalues η1, η2 of the matrix NI

J as

η1 
 4V 0

3aσ 2 V E

(
bm2

φ + am2
σ

)(
1 − m2

φ

bσ 2

)2

, (B.19)

η2 
 8ξ V 0

aV E

(
b − m2

φ

σ 2

)2(
σ

φ

)2

. (B.20)
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