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Abstract 
In this work a micromagnetic model is presented for ferromagnetic nanoparticles where the surface is 
treated as a single effective layer and not as a separate shell. The model consists of two coupled Partial 
Differential Equations (PDE), one for the magnetization vector of the bulk volume and the second for 
the outer nodes. The strength of the coupling depends on the effective width of the layer. Simulations 
were made by means of the Finite Element Method (FEM). For a comparison FEM for core/shell type 
and atomistic Monte Carlo simulations were also performed. Our results show that , the field where 
reversal takes place, varies as , where  is the particle’s radius, with the anisotropy strength for 
any anisotropy direction. Moreover the computational cost of the effective layer model is lower than 
the core shell one, thus can be easily extended to larger particles where dipolar interactions should also 
be taken into account.  
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1 Introduction 
The low temperature magnetic properties of magnetic nanoparticles as the size decreases are 

governed by surface effects [1].  

Surface effects on magnetic nanoparticles have already been studied by means of atomistic 

Monte Carlo (MC) [1] and continuum micromagnetic approach using core-shell type morphology [2]. 

Here a micromagnetic model is presented for ferromagnetic nanoparticles where the surface is treated 

as an effective artificial layer. The model consists of two coupled magnetization vectors for the 
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volume and the boundary respectively. The evolution of each of these vectors is described by a partial 

differential equation (PDE) under the influence of an effective magnetic field, arising from the 

exchange interactions, the magnetic anisotropy, the Zeeman and dipolar energy [3]. The two vectors 

interchange fluxes, based on the ratio / xa , where a  is the effective width of the surface layer, and 

x  is the exchange length. 

In atomistic Monte Carlo methods, due to their nature, surface effects can be directly studied by 

examining the magnetic behavior at each lattice points. In the micromagnetic approach, due to 

continuity requirements, the change in magnetic parameters must be well defined in terms of 

geometric parameters. Thus, in order to investigate the surface contribution, the valid approach is to 

construct a core/shell type particle with different properties and demand continuity of the 

magnetization vector on the interface. We must notice that this requirement is valid in the case of 

surface effects, and not along the interface between two different materials, where their magnetic 

moments may be considerably different, as in the case of a bi-magnetic core/shell nanoparticle. 

In the absence of dipolar interactions and at low temperatures, the application of an external 

field may lead only to coherent reversal processes. Thus, it is expected that the surface layer, in the 

case of a spherical particle, will not have drastic variations with respect to the radial direction. The 

purpose of this work is to present a micromagnetic model where the surface shell is simulated by a set 

of Partial Differential Equations (PDE) only for the outer nodes of the nanoparticle, without adding 

any shell structure surrounding the bulk volume. In these PDE a parameter a  is introduced to describe 

the effective width of the surface layer. In order to investigate the validity of the model, FEM 

simulations for core/shell type nanoparticles were also performed. Moreover the computational 

performance of these two models is traced in order to investigate the advantage of the presented 

model. For a more compressive study MC simulations were also performed. 

2 Modeling   
Simulations were made for a spherical particle by varying its size (i.e. it’s radius R), and the width 

of the surface layer (i.e. by varying a ). The exchange coupling is assumed be the same in both 

volume and surface. The anisotropy is different for the core and the surface layer in size and type. The 

variation of the anisotropy can be attributed to the broken symmetry of the surface region. In sections 

2.1, 2.2 and 2.3 the FEM core/shell model, the FEM effective layer model and the Monte Carlo 

core/surface model are presented respectively. 

A new approach for including surface contributions... N. Ntallis

1113



 

 

2.1 Finite Element Method (core/shell model) 
In a continuum approach the evolution of the magnetization vector M  is described by an equation 

of the form [3] 

2

1
,

s

d

dt M
eff

M
M M H  

where  is a relaxation time of the system, effH  is an effective magnetic field and sM  the 

saturation magnetization. The main contributions to the effective field arise from exchange 

interactions, anisotropy, dipolar and Zeeman energy. For an isotropic and homogeneous material, the 

exchange field is written as 2 2
ex xH M , where 22 /  x o sA M  is the exchange length and A  

is the exchange stiffness. The field for uniaxial anisotropy of constant  is written as 

22 / .ˆ ˆ
k sH M k kM  The PDE are solved by means of a finite element method with the mean 

element size smaller than Bloch wall width /x , where  is the hardness parameter defined 

as 2 22 / sM . In the core/shell morphology the core of the particle is surrounded by a shell of 

finite width and different properties with respect to the core ones. As already mentioned, the exchange 

constant is assumed to be constant in the whole particle, but the surface atoms, are subject to different 

forces arising from the reduced number of neighbors leading to an implicit reduction of x  through 

the reduction of  because the latter depends on the number of neighbors. Consequently, by assuming 

an isotropic and homogenous distribution of atoms on the surface the mean value of the number of 

neighbors over the whole surface drops to half. Thus for the exchange length on the surface

/ 2xI x  is used. The surface anisotropy can be directly introduced by changing its magnitude 

and direction. Thus the equations to be solved are  

2 2
2
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s

d

dt M

M
M M H M  

for the core and 

2 2
2

1
xI

s

d

dt M
I

I I I I
M

M M H M  

for the shell. 

In the above equations H and IH  represent the components of the effective field, in the core and 

surface respectively, not including the exchange. The continuity of the magnetization vector at the 

interface requirement leads to the equation   
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2 2 ˆ 0x xI ni iM M  

For the anisotropy terms we define two different anisotropy constants VK  for the volume and SK  

for the surface. So the set of PDE needs to be solved with varying coefficients in space. This method 

becomes very expensive when the volume to surface ratio becomes large. In that case in order to reach 

an acceptable accuracy a very fine discretization is needed, enlarging computational cost. 

2.2 Finite Element Method (effective layer model) 
In order to reduce the computational cost and enable the simulation of larger particles, we have 

developed a new model were we treat the surface as an effective layer. In this approach a new set of 

PDEs is solved only for the surface nodes, introducing an effective width parameter a . The model 

assumes that the magnetization does not vary drastically along the direction normal to the particle’s 

surface, which is generally true, when the surface extends in a small number of unit cells. This number 

depends on the wall width . The surface layer width must be smaller than  in order to block the 

formation of a domain wall. Under these assumptions the equations to be solved are,  

2 2
2

1
x

s

d

dt M

M
M M H M  

for the volume and 

2
2 2

2

1 x
xI T

s

d

dt a nM
I

M M
M M H M  

for the surface nodes. The index I  has been omitted to emphasize the fact that in this model there 

are not two different volumes, but two different equations for different nodes. 

2
T  represents the tangent Laplacian on the boundary. The last term arises from the splitting of the 

complete Laplacian to a tangent and a normal part to the surface and it represents the flux interchange 

between the core and the surface layer of the particle. 

2.3 Monte Carlo (core/surface model) 
Atomistic MC simulations with the implementation of the Metropolis algorithm were performed 

for spherical nanoparticles interacting with Heisenberg exchange interactions as described in ref. [1]. 

The nanoparticles have total radius up to 40 lattice spacings and surface thickness of 2 lattice spacings, 

at 0.01T J . The core is assumed to have uniaxial anisotropy along the z-axis, while the surface layer 

has different type and strength of anisotropy. 
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3 Results 
In all of the simulations the particle is initially at the saturated state, and the hysteresis loop is 

calculated by reducing the external field until negative saturation is reached. Then the opposite 

procedure is followed. As mentioned in section 2.2 the validity of the effective layer model is 

constrained by the width of the surface layer. Thus, is really important to compare the two 

micromagnetic models for small particles. So the first goal of this work is to investigate the range of 

the surface layer width where the proposed model leads to reliable results. For this purpose, simulation 

based on the effective layer model (section 2.2) and the core-shell model (section 2.1), were performed 

for a spherical particle having uniaxial anisotropy and constant size . The variable of these 

simulations was the width of the surface layer. Two cases were studied, one with surface anisotropy 

2
00.05s sK M  and the second with surface anisotropy 2

00.25s sK M . In both cases the core 

anisotropy is 2
00.1V sK M . Figure 1 shows calculated hysteresis loops by the two methods .The 

reversal mode for the selected particle size is coherent rotation for all the values of the width of the 

surface layer studied. Figure 2 shows the variation of the  field with respect to the width of the 

surface layer for the FEM models measured by the ratio . As it can be seen from figures 2a, 2b 

both models tend to values close to the anisotropy field of the core 02 /V sK M  for small values of 

the width of the surface layer and to values close to the anisotropy field of the surface layer  

02 /s sK M  for large values of as expected from ref. [1] but with different trends. The convergence of 

the two methods to the same values (fig. 2) and the same reversal properties (fig. 1) is a strong 

indication that both methods lead to the same results when the width of the surface layer is smaller 

than  independently of the anisotropy constant of the surface layer. 
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                                              a                                                                            b 

Figure 1. Hysteresis loops for / 1xR .The external field and anisotropy are assumed to be  at the z 

direction. Both surface (shell) and core have uniaxial anisotropy, with  a) 20.1V sK M  and 

20.05S sK M  .b) 20.1V sK M and 20.25S sK M . 

 
 

 
          a                                              b 

Figure 2 sH  vs / xa  for / 1xR . Both surface(shell) and core have uniaxial anisotropy, with a) 

20.1V sK M  and 20.05S sK M  .b) 20.25S sK M , and 20.25S sK M . 

 

Choosing the value  for the width of the surface layer, simulations were performed by 

varying the size of the particle in order to investigate the surface contribution to the reversal process. 

Figure 3 shows the variation of sH  field with respect to / xR  for the two models for  
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(Fig. 3a) and  (Fig. 3b). The change of the monotonous behavior close to 3.5 x  in both 

cases indicates the change of the reversal mechanism from coherent rotation to incoherent curling [4]. 

Generally the two methods are in good agreement, for the whole size range we studied. 

 

 
a)                                                                                 b) 

Figure 3. sH  vs / xR  for / 0.1xa . Both surface (shell) and core have uniaxial anisotropy, with 

a 20.1V sK M  20.05S sK M , b) 20.1V sK M  20.25S sK M  

 

Finally Monte Carlo simulations were also performed, up to the estimated limit of coherent 

rotation reversal (Fig. 4). In figure 4c surface anisotropy direction is normal to the particle's surface. 

Due to the fact that the micromagnetic models are continuum ones whereas the MC is clearly atomistic 

there is no direct bridging between their associated characteristic lengths in our models. Thus figure 4 

is presented with two length scales, one of  for the continuum models, and  representing the 

diameter of the particle in lattice spacings used in MC methods. All methods indicate dependence 

analogous to 1/ R , for the sH  field, where R  is the radius of the particle [1]. Atomic structure effects 

are not directly taken into account in continuum approximation, but only as a mean value approach by 

changing the exchange length, in contrast to atomistic MC where structure effects are directly taken 

into account. Decreasing the size of the particle uncompensated surface spins arise [1] and clearly 

affect the reversal process. In the case of higher surface anisotropy convergence with MC is reached 

for small radii indicating the fact the higher anisotropy constant may wipe out the effect of 

uncompensated spins. 
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                                                  a)                                                                                    b) 

 
            c) 

Figure 4. sH  vs / xR  for / 0.1xa a) 20.1V sK M  and 20.05S sK M , b) 

20.1V sK M  and 20.25S sK M , surface (shell) and core have uniaxial anisotropy along the z-

axis . c) 20.1V sK M  and 20.1S sK M . Core has uniaxial anisotropy along the z-axis and 

surface (shell) has radial anisotropy direction. DMC represents the diameter of the particle, in lattice 

spacings, for MC simulations. 
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Fig.5 Computational time vs particle' size for the two continuum models. 

 

4 Conclusions 
In this work a continuous micromagnetic model for ferromagnetic particles that takes into 

account surface contributions is presented. Simulations based on this model lead to proper results for 

the magnetization behavior with respect to the core/shell type morphology and the atomistic MC 

method, when the surface layer width is smaller than or close to the one tenth of x .Treating the 

surface only by the surface nodes of the core and not as volume nodes of a separate shell leads to a 

managed increment of computational cost making our method capable for simulations especially at 

large particles where dipolar  interactions have to be taken into account (fig. 5).  
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