Results: Cartilage cultured in the presence of blood showed a decrease of proteoglycan synthesis rate of 70%, an increase of proteoglycan release of 100%, and a decrease of proteoglycan content of 15% after 16 days of culture (all p < 0.05). This blood-induced damage of the cartilage matrix was limited by IL-4 in a clear dose-dependent way. Addition of 100 ng/ml IL-4 during blood-exposure reduced the proteoglycan synthesis rate with only 45%, and decreased the proteoglycan release with 30% compared to control (all p < 0.05). Moreover, proteoglycan content was normalized. The combination of IL-4 and IL-10 was clearly more protective against damage caused by blood. This was especially evident for the proteoglycan synthesis which was completely normalized. Furthermore, treatment with a combination of the two cytokines was significantly better than the effect of IL-4 and IL-10 alone (p < 0.05).

Conclusions: Besides IL-10, as shown previously, also IL-4 protects against blood-induced cartilage damage. The combination of these two cytokines is clearly the most protective. In addition to the direct effects on cartilage, both cytokines are synergistic in inhibition of inflammation. As such, this justifies further evaluation of the combination of IL-4 and IL-10 in prevention and treatment of blood-induced joint damage.

220

BRADYKININ, THROUGH B2 RECEPTORS, ACTIVATES THE RELEASE OF THE CYTOKINE INTERLEUKIN 6, THE CHEMOKINE INTERLEUKIN 8, AND THE METALLOPROTEINASE 3 IN HUMAN KNEE CHONDROCYTES

S. Meini, P. Cucchi, F. Bellucci, C. Catalani, S. Giuliani, C.A. Maggi
Menarini Ricerche S.p.A., Florence, Italy

Purpose: Bradykinin (BK, H-Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg-OH) is a proinflammatory and algogenic peptide: it releases inflammatory mediators and sensitizes sensory afferents through the activation of B2 receptors expressed on the membrane of several cell types, including synoviocytes and chondrocytes. Aim of the current investigation was to investigate if BK and B2 receptor can participate into mechanisms which are involved into osteoarthritis (OA) degenerative events, and to evaluate the possibility to prevent them through B2 receptor blockade, using the highly selective and potent B2 receptor antagonist MEN16132 (m.w. 873.16).

Methods: Human chondrocytes (Lonza, CC-2550) were cultured in F12/DMEM 1:1 added with CGM Singlequots (Lonza, CC-4409) and Gln 2 mM and used up to fifth passage. Experiments were performed with cells at confluence plated onto 24-well plates. Cells were incubated at the indicated concentration of BK in F12 medium supplemented with foetal bovine serum (1%), penicillin (50 μg/ml), streptomycin (50 μg/ml), amphotericin B (0.75 μg/ml), Gln (2 mM), and captopril (1 μM). At the end of the experiments, supernatants were collected and stored at -80°C and used for the dosage of interleukin 6 (IL-6), interleukin 8 (ILB), and metalloproteinase 3 (MMP3). IL-6, IL-8, and MMP3 contents in the supernatant were assayed by commercially available enzyme immunoassay kits (Promonk PK-EL-61606, PK-EL-61806, and Biosource KAC1541). Data are expressed as mean ± s.e.m. or 95% confidence limits in parentheses of 3 to 5 experiments, each in triplicate.

Results: Time-course experiments (2 - 96 h) indicated that BK (1 μM) induced a release of IL-6, IL-8, and MMP3 which increased over the time, stably peaked after 24 h of incubation, and remained constant up to 96 h. The maximal production of IL-6, IL-8, and MMP3 induced by BK (24 h incubation) was 557±39 pg/ml, 1267±169 pg/ml, and 5.52±0.73 ng/ml, respectively and was resembling that by the pleiotropic cytokine TNFα (0.1 ng/ml)181±350 pg/ml, 1778±198 pg/ml, and 1.96±0.2 ng/ml, respectively. Concentration-response curves to BK (0.1 nm - 1 μM, 24 h) indicated EC50 values of 10 nM (5.4-18.6) for the release of IL-6, 0.7 nM (3.7-32.5) for the release of IL-8, and 9.1 nM (1.1-7.6) for MMP3 secretion. This effect provoked by BK (100 nM, submaximal concentration) was concentration-dependently prevented by the pretreatment of HCCK (30 min) with the selective B2 receptor antagonist MEN16132, and IC50 values were 1.7 nM (1.0-2.8) to inhibit IL-6 production, 2.2 nM (0.7-7.1) for IL-8, and 0.7 nM (0.3-1.4) for inhibition of MMP3 secretion.

Conclusions: These findings disclose novel actions of BK that imply its possible involvement in generating degenerative events, and indicate B2 receptor blockade as a potential therapy in OA pathology.

222

SUPEROXIDE DISMUTASE 2 DOWNREGULATION AND MITOCHONDRIA RESPIRATION IN OSTEOARTHRITIS

C. Gabrieldes1, J.L. Scott1, R.W. Taylor2, D.A. Young1
1Musculoskeletal Res. Group, Inst. of Cellular Med., Newcastle Univ., Newcastle Upon Tyne, United Kingdom; 2Inst. for Ageing and Hlt., Newcastle Univ., Newcastle Upon Tyne, United Kingdom

Purpose: Oxidative phosphorylation takes place at the mitochondrial respiratory chain and is the major source for the production of ATP. A by-product of this respiration are reactive oxygen species (ROS). ROS are involved in signalling processes but when at high levels contribute to oxidative damage. The major ROS include superoxide (O2-•) and hydrogen peroxide (H2O2). The mRNA and protein levels of the major inhibitor of superoxides in the mitochondria, superoxide dismutase 2 (SOD2), have been shown to be downregulated in osteoarthritic compared to healthy joint cartilage.

This study characterises the effects of reduced levels of SOD2 on chondro-
cyte mitochondria as well as the effect on signalling pathways leading to altered collagenase expression.

Methods: RNA interference was used to characterise whether the reduction of SOD2 levels affects matrix metalloproteinase (MMP)-1 and MMP-13 gene expression along with superoxide levels produced by the mitochondria in human articular chondrocytes (HAC). For the MMP-1 and MMP-13 expression of cells cultured for 3 days after extraction from the cartilage and analysed for respiratory activity using the Oroboros Oxygen-2k respirometry system.

Results: SOD2 depletion by RNA interference led to a significant decrease in basal MMP-1 mRNA expression and a significant reduction in the level of MMP-1 and MMP-induction following IL-1 stimulation. SOD2 depletion by RNA interference also led to a significant increase in mitochondrial superoxide levels. In terms of respiratory capacity, OA chondrocytes have on average 65% higher respiratory chain capacity than NOF chondrocytes. However, al- though OA chondrocytes have a more active respiratory chain, it appears less efficient (25%) to that of HAC from NOF patients.

Conclusions: Depletion of SOD2 in OA chondrocytes leads to a significant decrease in the expression levels of the collagenases MMP-1 and MMP13, indicating that the decrease of SOD2 expression in OA cartilage may represent a chondroprotective mechanism. However, this depletion leads to a significant increase of mitochondrial superoxide levels. Combined with the decreased levels of unutilised protons and electrons in the respiratory chain, these effects can potentially alter the mitochondrial membrane potential of the cells causing cellular dysfunction.

223

GLATIRAMER ACETATE (GA), A PEPTIDE IMMUNOMODULATORY DRUG, INHIBITS INFLAMMATORY MEDIATORS, MMP-13 ACTIVITY AND COLLAGEN DEGRADATION IN OA CARTILAGE

NYU Hosp. for Joint Diseases, New York, NY

Purpose: Glatiramer acetate (GA), the generic name for Copaxone, is an immunomodulatory agent used in the treatment of multiple sclerosis, which has been shown to induce interleukin-1 receptor antagonist (IL-1Ra) production in macrophages and microglial cells. In osteoarthritis, the production of inflammatory mediators, particularly IL-1 by chondrocytes, may be important in the pathogenesis and progression of OA. We therefore tested the effects of GA on the catabolic activities of chondrocytes in OA cartilage explants cultures.

Methods: Cartilage slices were obtained from the knees of patients with advanced OA and undergoing knee replacement surgery. Non-arthritic knee cartilages were obtained from autopsy patients within 24h (NDRI, Philadelphia). Matrix metalloproteinases proMMP-13 ELISA kits were from R&D Systems, (Minneapolis, MN). Predesigned TagMan PCR primers were purchased from Applied Biosystems (CA).

Results: We have previously shown that OA cartilage explant cultures spontaneously release inflammatory mediators such as nitric oxide, Prostaglandin E2 (PGE2), interleukins including IL-1beta and matrix metalloproteinases (MMPs). In this study we evaluated the chondroprotective property of GA in monolayer cultures of primary OA chondrocytes and cartilage explant cultures. GA (5-100ug/ml) treatment dose dependently increased transcription (QPCR) and production (ELISA) of sIL-1Ra (p < 0.001) and prostaglandins. Inhibition of MMP-13 secretion (200+90.5 to 78.5+15.1ng/ml; p < 0.001) and inhibition of spontaneous and IL-1 induced proMMP-13 secretion (200+90.5 to 78.5+15.1ng/ml; p < 0.001). These effects indicate that GA may have potential for disease modifying properties in OA and should be evaluated in vivo animal studies.

Conclusion: Glatiramer acetate is a complex heterogeneous mixture of polypeptides that exhibits “chondroprotective” properties in OA cartilage, inhibiting the production of inflammatory mediators as well as MMP-13 expression/activation. The data suggest that these effects may be due to upregulation of IL-1Ra. Based on these studies, we propose that GA may have potential for disease modifying properties in OA and should be evaluated in vivo animal studies.

224

ADIPONECTIN AND LEPTIN EXHIBIT DIFFERENT PATTERN OF PRODUCTION IN CARTILAGE FROM PATIENTS WITH OSTEOARTHRITIS

P.-J. Francin, C. Guillaume, P. Gegout-Pottie, P. Netter, D. Mainain, N. Prese

UMR 7561 CNRS-Nancy Univ., Vandoeuvre les Nancy, France

Purpose: Based on the association between obesity and osteoarthritis (OA), increasing studies aimed to determine the contribution of adipokines in OA. As adiponectin and leptin may exhibit opposite inflammatory effects and display different patterns of distribution between the joint and the circulating compartment, we compared the production of both adipokines in cartilage from human OA-affected joints in relation with the grade of cartilage destruction and with the Body Mass Index (BMI) of the patients.

Methods: The production of leptin and adiponectin was determined by ELISA in conditioned media from cultured full-depth cartilage biopsies obtained from patients with OA. The severity of OA cartilage lesion was then evaluated after histological analysis of each specimen and was graded using the Mankin score.

Results: The results indicated that the production of adiponectin in OA cartilage are quite different from that of leptin. A positive association has been found between the BMI of the patients and the production level of leptin while the synthesis of adiponectin did not change with the BMI. In addition, a grade-dependent increase in the production level of leptin was shown for non obese patients (BMI<30kg/m2). The synthesis of leptin strongly increased in obese patients (BMI>30kg/m2) between the low and the moderate OA grades, but did not change anymore for the most severe OA grade. The adiponectin production was slightly elevated in cartilage samples with moderate or advanced OA compared to specimens with low histological OA score, but the difference did reach statistical significance. Conclusion. These findings indicated that leptin and adiponectin exhibit different pattern of production in OA cartilage. The leptin level is strongly associated with both the grade of cartilage destruction and the BMI of the patients. Conversely, the production of adiponectin is slightly up-regulated in damaged cartilage independently of the OA score and the BMI of the patients.

225

WNT3A MODULATES CHONDROCYTE PHENOTYPE THROUGH ACTIVATION OF BOTH CANONICAL AND NON-CANONICAL PATHWAYS

G. Nalesso1, P. Achan2, C. Pitazlis1, F. Dell’Accio1

1Ctr. for Experimental Med. and Rheumatology, William Harvey Res. Inst., Barts and the London Sch. of Med. and Dentistry, London, United Kingdom; 2Dept. of Orthopaedics, Barts and the Royal London Hosp., London, United Kingdom

Purpose: Injury to the articular cartilage results in the activation of Wnt signalling which may represent a homeostatic mechanism. Indeed disruption of Wnt signalling results in osteoarthritis both in humans and experimental models. Wnt ligands are traditionally categorized based on their capacity to activate either the β-catenin-dependent canonical pathway or any of the non canonical pathways including the Ca2+ (Calmodulin-dependent kinase II (CaMKII)-dependent) or the PKA-dependent pathways, the planar cell polarity pathway and the Wnt/ROR-mediated pathway. The clear-cut separation between canonical and non-canonical Wnts has been recently challenged and therefore the purpose of the study was to investigate through which pathway Wnt3a modulates the cartilage phenotype and regulates cartilage homeostasis in human articular chondrocytes.

Methods: Primary adult human articular chondrocytes were isolated from preserved areas of the cartilage of patients undergoing knee arthroplasty for osteoarthritis. Detection of protein and protein phosphorylation upon Wnt3a stimulation was evaluated by western blotting. Intracellular calcium mobilization was detected by cellular accumulation of FURA-4 dye. The activation of the canonical pathway upon Wnt3a stimulation was evaluated.