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Antihypertensive response to prolonged tempol in the sponta-
neously hypertensive rat.

Introduction. Tempol is a permeant nitroxide superoxide
dismutase (SOD) mimetic that lowers mean arterial pressure
(MAP) in spontaneously hypertensive rats (SHRs). We inves-
tigated the hypothesis that the antihypertensive response en-
tails a negative salt balance, blunting of plasma renin activity
(PRA), endothelin-1 (ET-1), or catecholamines or correction
of oxidative stress as indexed by 8-isoprostane prostaglandin
F2a (PGF2a) (8-Iso).

Methods. Groups (N = 6 to 8) of SHRs were infused for 2
weeks with vehicle or tempol (200 nmol/kg/min) or given tempol
(2 mmol/L) in drinking water.

Results. Tempol infusion reduced the MAP of anesthetized
SHRs (150 ± 5 vs. 126 ± 6 mm Hg) (P < 0.005). Oral tempol
did not change the heart rate but reduced the MAP of con-
scious SHRs (−23 ± 6 mm Hg) (P < 0.01) but not Wistar-Kyoto
(WKY) rats. Tempol infusion increased the PRA (2.2 ± 0.2
vs. 5.0 ± 0.9 ng/mL/hour) (P < 0.005), did not change excre-
tion of nitric oxide (NO) [NO2 + NO3 (NOx)], ET-1, or cate-
cholamines but reduced excretion of 8-Iso (13.2 ± 1.4 vs. 9.6 ±
0.9 ng/24 hours; P < 0.01). Cumulative Na+ balance and gain
in body weight were unaltered by tempol infusion. Tempol pre-
vented a rise in MAP with high salt intake.

Conclusion. Tempol corrects hypertension without a com-
pensatory sympathoadrenal activation or salt retention. The
response is independent of nitric oxide, endothelin, or cate-
cholamines and occurs despite increased PRA. It is accompa-
nied by a reduction in oxidative stress and is maintained during
increased salt intake.

Oxidative stress implies an increased production, or de-
creased metabolism, of reactive oxygen species (ROS).
Superoxide anion (O2

−) can be metabolized by super-

Key words: reactive oxygen species, isoprostane, salt balance, plasma
renin activity, endothelin, catecholamines, hypertension.

Received for publication October 6, 2004
and in revised form December 20, 2004, and January 13, 2005
Accepted for publication January 28, 2005

C© 2005 by the International Society of Nephrology

oxide dismutase (SOD) to hydrogen peroxide (H2O2).
Further reactions convert H2O2 to other ROS, such as
hydroxyl radical or, following metabolism by catalase or
glutathione peroxidase, to water and O2. Cell permeant
forms of SOD, or the permeant SOD mimetic nitroxide
tempol, can lower blood pressure in hypertensive models
that are accompanied by oxidative stress [1–6].

There is evidence of enhanced O2
− in the blood ves-

sels of humans with essential hypertension [7] and in
blood vessels and kidneys of the spontaneously hyperten-
sive rat (SHR) [1] and many other hypertensive models,
such as the angiotensin II (Ang II)-infused rat [8, 9] or
mouse [10], the two-kidney, one-clip Goldblatt hyperten-
sive rat [2], the deoxycorticosterone acetate (DOCA)-
salt [11, 12], or the Dahl salt-sensitive rat [13]. ROS can
activate pressor systems, such as the renin-angiotensin
[14], endothelin-1 (ET-1) [15], and sympathetic nervous
system (SNS) [16–19] and enhance renal NaCl reabsorp-
tion [20, 21]. Tempol or antioxidant vitamins can lower
indices of oxidative stress, blood pressure and/or reduce
vascular resistance in many of these models [2–4, 10, 12,
22]. However, it is presently unclear whether these anti-
hypertensive responses occur in conscious rats, or entail
enhanced renal salt excretion or correction of pressor
systems.

The SHR model shares major features of human essen-
tial hypertension. There is a gradual rise in blood pressure
without a remarkable increase in plasma renin activity
(PRA), endothelin, catecholamines, or changes in nitric
oxide generation, as indexed by nitric oxide (NO) [NO2
+ NO3 (NOx)] excretion. SHRs have mild salt sensitiv-
ity and enhanced oxidative stress. The blood pressure of
the SHR when measured under anesthesia is reduced af-
ter 2 weeks of addition of tempol to the drinking water
[4]. Therefore, this model was selected to evaluate the
mechanism of the antihypertensive response

The present study investigates the hypothesis that the
antihypertensive response to a prolonged administra-
tion of tempol in the SHR entails negative salt balance,
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blunting of PRA, ET-1, or catecholamines or correc-
tion of oxidative stress, as indexed by the excretion of
8-isoprostane prostaglandin F2a (PGF2a) (8-Iso).

METHODS

Animal preparation

Studies were approved by the Georgetown University
Animal Care and Use Committee and were performed
according to the Guide for the Care and Use of Labora-
tory Animals (NIH publication No. 93-23, revised 1985)
and the Guidelines of the Animal Welfare Act.

Experiments were performed on male SHRs weigh-
ing 210 to 300 g. Rats (N = 6 to 8 in each group) were
maintained on a standard rat chow (Na+ content 0.3 g/
100 g−1) (Ralston Purina, Inc., St. Louis, MO, USA) for
8 to 10 days before being randomly assigned to differ-
ent study protocols for dose-response studies. Osmotic
minipumps (Alzet Model 2002) (Duret Corporation, Cu-
pertino, CA, USA) containing tempol or vehicle (0.154
mol/L NaCl) were placed for subcutaneous infusion on
day 1 in the nape of the neck under isoflurane (0.5%
to 2%) anesthesia. Tempol was infused at 20, 67, and
200 nmol/kg/min. For subsequent studies, the effective
blood pressure–lowering dose of 200 nmol/kg/min was
selected, or tempol was added to the drinking water
(2 mmol/L) [3].

Metabolism cage and studies under anesthesia

Rats were housed in individual cages under conditions
of constant temperature and humidity. They were ex-
posed to 12-hour cycles of light and dark. They had unre-
stricted water intake. On the last day of study, rats were
placed in clean, individual metabolism cages. A 24-hour
urine was collected into containers with streptomycin
(2000 IU), penicillin G (2000 IU), and amphotericin B
(5 lg) to prevent microbial overgrowth. The urine was
centrifuged, separated from the sediments and stored at
−70◦C until analyzed. Urine was analyzed for volume,
creatinine, 8-Iso, NOx, ET-1, and catecholamines. Other
groups of SHRs were anesthetized and prepared for mea-
surement of mean arterial pressure (MAP) followed by
blood sampling.

Telemetric measurements of blood pressure
and heart rate

Groups of SHRs or Wistar-Kyoto (WKY) rats were
anesthetized with 1% to 2% isoflurane. An incision was
made in the abdomen for insertion of an aortic cannula
connected to a pressure transducer. Rats were housed in
individual cages and allowed to recover for 7 to 9 days.
Thereafter, telemetric measurements of MAP and heart
rate were undertaken for 1 day (basal), after which they
were randomly allocated to receive vehicle or tempol
(2 mmol/L) in drinking water for 12 days during the

recording of MAP and heart rate. The drinking water with
tempol was replaced daily since tempol is light-sensitive.
The data were divided into mean values for each 24-hour
period and for the 12-hour dark (awake) and 12-hour
light (asleep) periods.

Salt balance studies

Rats were accommodated to metabolism cages for
1 week while they were fed an artificial casein-based
low Na+ diet containing 0.03 g/100/Na+ (Teklad, Inc.,
Madison, WI, USA). They received 0.077 mol/L NaCl
to drink. This allowed precise measurement of Na+ in-
take and output and provided a daily Na+ intake of 0.6
mmol Na+/100 g body weight which is equivalent to a
laboratory normal salt intake. At the beginning of this
study, rats were weighed, anesthetized, and mini-pumps
were inserted containing vehicle or tempol (200 nmol/
kg/min). Every second day, urine was collected, the rats
were weighed, the feces collected, and the cage flushed
with distilled water. The food and water containers were
weighed to assess the quantities consumed.

Protocols

Series I compared the dose-response relationship for
MAP and heart rate (recorded under anesthesia) in SHRs
infused with tempol or vehicle. Four groups (N = 8) of
SHRs received vehicle (0.154 mol/L NaCl) or tempol (20,
67, or 200 nmol/kg/min).

After 12 days, rats were anesthetized with thiobarbi-
tal (Inactin 100 mg/kg). The MAP was recorded after
60 minutes for stabilization [3].

Series II assessed the effect of an antihypertensive
dose of tempol on PRA and plasma norepinephrine, and
the excretion of ET-1, NOx, 8-Iso, and catecholamines.
Groups (N = 6) of SHR received a vehicle tempol
(200 nmol/kg/min) for 12 days. Following a 24-hour urine
collection, blood was collected by decapitation without
anesthesia for PRA and norepiniephrine [23].

Series III assessed the changes in MAP and heart rate
in conscious SHRs equipped with telemeters and given
tempol (2 mmol/L) (N = 10) or vehicle (N = 7) in the
drinking water. Similar studies were conducted on groups
of normotensive WKY rats given tempol (N = 7).

Series IV assessed the effects of tempol on Na+ bal-
ance. Groups (N = 6) of SHRs were accommodated to
the artificial diet, the 0.077 mol/L NaCl drinking water
and to metabolism cages over 5 days. Thereafter, they
were equipped with osmotic minipumps to deliver tem-
pol (200 nmol/kg/min) or vehicle (0.154 mol/L NaCl) and
studied over 12 days.

Series V compared the MAP of SHRs during infu-
sion of tempol (200 nmol/kg/min) or vehicle at two levels
of Na+ intake (0.6 and 1.6 mmol·100g/24 hours). Rats
were fed the diets for 14 days, following which they were
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anesthetized with Inactin and the MAP recorded as in
series I.

Chemical methods

The methods used for measurement of PRA [23], ET-1
[24], 8-Iso [4], and catecholamines in blood and urine [25]
have been published. For balance studies, samples of the
drinking water, aliquots of urine, and cage washings and
feces digested in concentrated nitric acid were assayed for
Na+ in a flame photometer [23]. Samples of plasma and
urine were analyzed for creatinine in a creatinine analyzer
[2] (Beckman, Brea, CA, USA). NOx was assayed by
chemiluminescence (Model 270B) (Sievers, Inc., Denver,
CO, USA).

Calculation of results

Cumulative Na+ balance was analyzed from the intakes
of Na+ from the drinking water and the food, and the
measured output in the urine, feces, and cage washings.
Cumulative balance was corrected for changes in body
weight assuming a total body Na+ of 70 mmol/kg.

Statistical methods

The data are presented as mean ± SEM. Results were
analyzed by analysis of variance (ANOVA) and, where
appropriate, a post hoc Dunnett’s test was applied to
assess differences between groups. Significance was as-
sumed at P < 0.05.

RESULTS

In series I, there was a significant reduction in MAP
(measured under anesthesia) of SHRs infused with tem-
pol at 200 nmol/kg/min (Fig. 1), compared to vehicle.

In series II, there were no significant changes in 24-
hour urine volume (vehicle 13 ± 2 mL/24 hours vs. tempol
15 ± 2 mL/24 hours) or creatinine clearance (vehi-
cle 1.5 ± 0.2 mL/min vs. tempol 1.7 ± 0.2 mL/min).
The mean values of PRA following guillotine of con-
scious rats and of 24-hour excretion of ET-1, NOx, and
8-Iso are shown in Figure 2. Tempol infused at 200
nmol/kg/min doubled the PRA but did not change the
excretion of ET-1 or NOx. Tempol reduced the excre-
tion of 8-Iso significantly by 32%. Tempol did not change
the 24-hour excretion of catecholamines of conscious
rats (Fig. 3) nor the plasma norepinephrine measured
following decapitation (Fig. 4). We conclude that the an-
tihypertensive action of tempol cannot be ascribed to a
decrease in PRA, ET-1, or catecholamines, or to an in-
crease in nitric oxide generation, but is accompanied by
a reduction in oxidative stress.

In series III, the mean value for MAP measured tele-
metrically before tempol averaged 144 ± 3 mm Hg for
SHRs and 104 ± 4 mm Hg for WKY rats (P < 0.001).

20 67 200
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Fig. 1. Mean ± SEM values for mean arterial pressure (MAP) of anes-
thetized spontaneously hypertensive rats (SHRs) on day 12 of infusions
of vehicle (Veh) or tempol. ∗∗∗P < 0.005, compared to vehicle.

The corresponding values for heart rate were 328 ± 8
min−1 and 349 ± 6 min−1. The mean MAP by day and
night during oral tempol in conscious SHRs are shown in
Figure 5. It is apparent that tempol reduced MAP while
awake or asleep by the first day. There were no changes
in heart rate. The changes in 24-hour MAP in the groups
of WKY rats and SHRs are shown in Figure 6. There
was no significant effect of vehicle in SHRs nor of tempol
in WKY rats. SHRs given tempol had significant falls in
MAP. There were no changes in heart rate in any group
(data not shown). The reduction in MAP in SHRs given
tempol was similar when assessed by telemetry in con-
scious rats (−23 mm Hg) or under anesthesia (−24 mm
Hg) (Fig. 1), but there was more variability in the response
of the conscious SHRs. Although the addition of tempol
to the drinking water of SHRs reduced their MAP (147
± 4 to 128 ± 8 mm Hg), it remained significantly (P <

0.001) above that of vehicle-treated WKY rats (105 ± 5
mm Hg). We conclude that oral tempol reduces, but does
not normalize, the MAP during the first day. This is main-
tained during the day and night over 2 weeks without a
change in heart rate and is specific for the hypertensive
SHRs.

In series IV, there were cumulative changes in body
weight and Na+ balance of conscious SHRs during in-
fusion of tempol (200 nmol/kg/min) (N = 6) or vehicle
(N = 6) are shown in Figure 7. Tempol did not modify
the normal weight gain. Both groups had a modest, and
strictly comparable, increase in Na+ balance over 12 days.
We conclude that the antihypertensive action of tempol
is not due to primary natriuretic mechanisms nor is there
a compensatory Na+ retention.
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Fig. 2. Mean ± SEM values for plasma renin activity (PRA) (A), 24-hour excretion of endothelin-1 (ET-1) (B), nitric oxide metabolites (C), and
8-isoprostanes prostaglandin F2a (PGF2a) (Iso-8) (D) on day 12 of spontaneously hypertensive rats (SHRs) infused with vehicle (Veh) (N = 8) or
tempol (T) (200 nmol/kg/min) (N = 8).
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Fig. 3. Mean ± SEM values for catecholamine excretion of norepinephrine (A), epinephrine (B), dopamine (C), and 3,4-dihydroxyphenylacetic
acid (DOPAC) (D) of conscious spontaneously hypertensive rats (SHRs) infused with vehicle (Veh) or tempol (T) (200 nmol/kg/min). There were
no significant differences.

In series V, the MAP of SHRs was studied under anes-
thesia after adaptation to two levels of Na+ intake (Fig. 8).
SHRs infused with vehicle had a modest increase in MAP
with Na+ intake [26], whereas those infused with tempol
had a lower MAP at both levels of Na+ intake and no in-
crease in MAP with high Na+. We conclude that tempol
infusion reduces MAP independent of modest changes in
salt intake.

DISCUSSION

The main findings are that tempol reduces about 50%
of the elevated MAP of the SHRs whether given by in-
fusion or orally, whereas it does not change the MAP of
conscious normotensive WKY rats. The fall in MAP is
accompanied by a 31% reduction in the excretion of 8-
Iso, which was used as an index of oxidative stress. This
is consistent with the finding that the SHR is a model of
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Fig. 4. Mean ± SEM values for plasma norepinephrine in sponta-
neously hypertensive rats (SHRs) infused with vehicle (Veh) or tempol
(T) (200 nmol/kg/min).

systemic [4, 27] and renal tubular [1, 28] oxidative stress
accompanied by enhanced expression of the p47phox

component of nicotinamide dinucleotide phosphate
(NADPH) oxidase in the kidney. The antihypertensive
response is not accompanied by a change in the heart
rate or catecholamines suggesting that the effects of pro-
longed tempol are not due to interruption of sympathoa-
drenal mechanisms. Tempol does not change endothelin
excretion and doubles PRA. Tempol does not change the
Na+ balance and reduces MAP comparably at normal
and high levels of salt intake.

An effective antihypertensive dose of tempol increased
the PRA which implies that inhibition of renin release
does not contribute to the fall in MAP. The increase in
PRA with tempol may be a response to the fall in MAP
rather than to correction of oxidative stress since O2

−

stimulates renin release from the juxtaglomerular appa-
ratus [14] and can increases angiotensin-converting en-
zyme (ACE) activity in the aorta [29]. Remarkably, de-
spite a doubling of PRA and a fall in MAP, tempol did not

induce salt retention. This is reminiscent of the effects of
Ang II receptor blockers. It is consistent with the effects
of tempol to prevent the Ang II slow pressor response in
mice [10] and rats [9].

ROS can stimulate pre-pro-ET-1 expression and ET-1
release in vascular smooth muscle cells [26]. However,
a dose of tempol that corrected oxidative stress did not
change ET-1 excretion in the SHRs.

Tempol given acutely to anesthetized normotensive
[18] or DOCA-salt hypertensive rats [11, 17] reduces
renal nerve activity by a nitric oxide–independent ac-
tion that can be dissociated from SOD activity in the
aorta [11]. Local application of tempol reduces the ac-
tivity of renal sympathetic nerves by activating voltage-
gated potassium channels [30]. SOD itself reduces blood
pressure, heart rate, and sympathetic nerve activity when
given into the rostral ventrolateral medulla of anes-
thetized pigs with oxidative stress [16]. Transfection of
SOD into this brain region prevents the central hyper-
tensinogenic actions of Ang II [19]. Therefore, it was
important to assess any role of the SNS without con-
founding effects of anesthesia and acute falls in blood
pressure. Prolonged infusions of tempol apparently did
not inhibit the SNS of the conscious SHRs since there
were no changes in heart rate during the day or night,
nor any changes in 24-hour excretion of catecholamines
in conscious SHRs after 12 days of tempol administra-
tion. Indeed, the fall in MAP without a reactive increase
in heart rate indicates that the baroreflex is reset by tem-
pol at a lower level of blood pressure. This apparent reset-
ting was evident on the first day of tempol where the MAP
fell by 12 to 17 mm Hg without a change in heart rate in
conscious, unrestrained SHRs. These effects of chronic
tempol are quite distinct from the acute responses that
clearly inhibit the SNS and slow the heart rate.

Tempol reduces the renal vascular resistance of the
Ang II–infused mouse [10] and the SHRs [3], and
reduces the renal vascular resistance and peripheral
vascular resistance of the Ang II–infused rat [22]. Re-
nal afferent arterioles from rabbits infused with Ang II
have enhanced oxidative stress and enhanced contrac-
tions to Ang II, ET-1, and thromboxane that are corrected
by tempol [31]. The effects of tempol to reduce vascu-
lar resistance have been related to interruption of oxida-
tive metabolism of 20-hydroxyeicosatetranoic acid [32].
Thus, correction of enhanced vasoconstrictor responsive-
ness, rather than correction of enhanced vasoconstrictor
release, may underlie the reduction in renal vascular re-
sistance and/or peripheral vascular resistance that con-
tribute to the antihypertensive effects of tempol.

Although an antihypertensive dose of tempol did not
reduce the PRA, or the excretion of ET-1 or cate-
cholamines, this does not necessarily imply that these sys-
tems were unaffected by tempol. First, small changes in
plasma levels or rates of excretion may not have been
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lines) or 12 hours of light (open symbols and broken lines) before and during 12 days of additional tempol (2 mmol/L) to the drinking water of
conscious spontaneously hypertensive rats (SHRs). ∗P < 0.05, significance of difference from before.
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Fig. 6. Mean ± SEM changes in 24-hour
mean arterial pressure (MAP) from baseline
in groups of conscious Wistar-Kyoto (WKY)
rats (open circles and broken lines) or spon-
taneously hypertensive rats (SHRs) (closed
diamonds and broken lines) given tempol (2
mmol/L) in drinking water or SHRs given ve-
hicle (solid squares and continuous lines). ∗P
< 0.05; ∗∗P < 0.01, significance of difference
from vehicle.

detected with our model. Moreover, excretion of ET-1
may not reflect release of ET-1 in blood vessels. There-
fore, we can not exclude false negative results with this
protocol. Second, tempol may have changed these sys-
tems during the initial day in which blood pressure was re-
duced, but they may have returned toward normal when
they were assessed after 12 to 13 days. Third, we have
shown that tempol infusions in rats and mice prevent
the rise in blood pressure during prolonged Ang II in-
fusion [10, 33]. Moreover, addition of tempol to the bath

of isolated perfused renal afferent arterioles from Ang II–
infused rabbits prevents an enhanced reactivity to Ang II,
ET-1, and the thromboxane prostanoid receptor mimetic,
U-46,619 [31, 34] Therefore, a component of the antihy-
pertensive response to tempol could entail a decreased
response to Ang II, ET-1, or thromboxane prostanoid re-
ceptor activation without necessitating any changes in the
agonist levels for these systems.

Prior studies have shown that the short-term antihy-
pertensive response to tempol in the SHR depends on
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nitric oxide synthase (NOS) [3]. Local microperfusion
of tempol can correct the impaired function of neuronal
NOS (nNOS) in the juxtaglomerular apparatus of the
SHR [1, 28]. Similarly, isolated renal afferent arterioles
from rabbits undergoing a slow pressor response to Ang
II have oxidative stress and an impaired vasoconstrictor
response to blockade of endothelial NOS (eNOS) that is
corrected by addition of tempol to the bath [31]. Thus,
the fall in blood pressure with tempol could represent
a restoration of nitric oxide signaling in the blood ves-
sels and juxtaglomerular apparatus even in the absence
of an increase in NOx excretion. One consequence of
enhanced nitric oxide bioactivity in blood vessels would
be a reduced vasoconstrictor responsiveness and tubu-
loglomerular feedback–induced constriction of renal af-
ferent arterioles, as shown in other studies [28, 31]. An
enhanced nitric oxide biocactivity in the renal tubules
might contribute to natriuresis and negative salt balance.
Therefore, salt balance was the focus of the second part
of this study.

Inhibition of NOS can lead to salt-sensitive hyperten-
sion [35]. While the maintained NOx excretion with tem-
pol in rats on a zero NOx intake implies that the net
generation of nitric oxide is unchanged [36], any reduc-

tion in O2
− with tempol may prolong the half-life and

bioactivity of nitric oxide without changing the excretion
of nitric oxide metabolites. Addition of tempol to iso-
lated, perfused cortical thick-ascending limbs of the loop
of Henle inhibits net Cl− absorption by facilitating the
inhibition of luminal Na+ entry by nitric oxide [20]. In
contrast, tempol enhances Na+ and fluid excretion in the
Ang II–infused dog despite blockade of NOS [21]. These
studies have identified renal tubular effects of tempol that
are mediated by nitric oxide and natriuretic actions of
tempol that are independent of nitric oxide. These could
contribute to its antihypertensive actions. Nevertheless,
in the present series, tempol did not perturb Na+ balance
over two weeks despite a fall in blood pressure. There-
fore, the antihypertensive action cannot be ascribed to
natriuresis. As in previous studies [26], the SHR had a
modest salt sensitivity, as indicated by a significant in-
crease in MAP during a threefold increase in Na+ intake.
Remarkably, tempol was even more effective in lowering
the MAP at the higher levels of Na+ intake. Thus, the
antihypertensive action of tempol is not accompanied by
loss of salt, yet it does apparently entail correction of salt
sensitivity and enhances the ability of the SHR to accom-
modate to a higher level of salt intake without a rise in
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blood pressure. This is consistent with the findings that
Dahl salt-sensitive rats have significant oxidative stress
and a reduction in blood pressure with tempol [13].

CONCLUSION

Prolonged tempol administration reduces blood pres-
sure, oxidative stress, and indices of renal or cardio-
vascular inflammation or damage in models of high
renin [2], Ang II–dependent [9, 10, 37], low-renin, salt-
dependent hypertension [11, 32, 38–44], and chronic
renal insufficiency [45–47]. Tempol can correct insulin
resistance [48], endothelial dysfunction [31, 43, 49],
activation of mitogen-activated protein kinases [40],
enhanced NADPH oxidase activity [37, 39, 50], and
profibrotic effects of the renin-angiotensin-aldosterone
system [51] and restore normal renal oxygenation [37] in
some of these models. Our findings show that the antihy-
pertensive response occurs within the first day of tempol
in conscious SHRs. Oral and infused tempol appear sim-
ilarly effective. In this study, tempol corrected circa 50%
of the increase in MAP of conscious SHRs above val-
ues of WKY rats. Therefore, prolonged oral tempol did
not normalize blood pressure in the SHR model, in con-
trast to acute intravenous tempol [52]. The fall in MAP
does not induce a reactive increase in Na+ retention or
reflex tachycardia. Unlike other antihypertensive agents,
tempol is fully effective during a high salt intake. These
results establish tempol as a prototype of a new class of
adjunctive antihypertensive agents with a special range
of potentially beneficial actions, but presently it has not
been administered to humans.
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