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a b s t r a c t

IfG is a connected graphwith vertex setV , then the eccentric connectivity index ofG, ξ C (G),
is defined as

∑
v∈V deg(v) ec(v) where deg(v) is the degree of a vertex v and ec(v) is its

eccentricity. We obtain an exact lower bound on ξ C (G) in terms of order, and show that
this bound is sharp. An asymptotically sharp upper bound is also derived. In addition, for
trees of given order, when the diameter is also prescribed, precise upper and lower bounds
are provided.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

A critical step in pharmaceutical drug design continues to be the identification and optimization of compounds in a
rapid and cost effective way. An important tool in this work is the prediction of physico-chemical, pharmacological and
toxicological properties of a compound directly from its molecular structure. This analysis is known as the study of the
quantitative structure–activity relationship (QSAR). In chemistry, a molecular graph represents the topology of a molecule,
by considering how the atoms are connected. This can be modelled by a graph, where the points represent the atoms,
and the edges symbolize the covalent bonds. Relevant properties of these graph models are then studied, giving rise to
numerical graph invariants. The parameters derived from this graph-theoretic model of a chemical structure are being used
not only in QSAR studies pertaining to molecular design and pharmaceutical drug design, but also in the environmental
hazard assessment of chemicals.

Many such graph invariant ‘topological indices’ have been studied. The first, and most well-known parameter, the
Wiener index, was introduced in the late 1940s in an attempt to analyze the chemical properties of paraffins (alkanes) [21].
This is a distance-based index, whose mathematical properties and chemical applications have been widely researched.
Numerous other indices have been defined, andmore recently, indices such as the eccentric distance sum, and the adjacency-
cum-distance-based eccentric connectivity index have been considered [6,7,9,13,12,11,14,17,16,15,18,19]. These topological
models have been shown to give a high degree of predictability of pharmaceutical properties, and may provide leads for
the development of safe and potent anti-HIV compounds. Refinements of some of these indices have also been considered.
For instance, the augmented eccentric connectivity index [1,2,8] and the superaugmented eccentric connectivity index [5] have
been found to be useful indicators in chemical research.

We propose to investigate some mathematical properties of the eccentric connectivity index. The maximum value of
the Wiener index, for a graph of given order and diameter, has not been established, but for other parameters, such as the
degree distance [3,10], Gutman index and the edge-Wiener index [4,20], the maximum has been essentially established. In
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Fig. 1. Graphs B9,4 , L9,4 , V11,6 .

this paper we will consider the same problem, and establish bounds, both upper and lower, for the eccentric connectivity
index.

2. Definitions and some examples

Consider a simple connected graph G, and let V (G) and E(G) denote its vertex and edge sets, respectively. |V (G)| = n(G)
is called the order of G. The distance between u and v in V (G), dG(u, v), is the length of a shortest u − v path in G. The
eccentricity, ecG(u) of a vertex u ∈ V (G) is the maximum distance between u and any other vertex in G. The diameter of G, d,
is defined as themaximumvalue of the eccentricities of the vertices ofG. Similarly, the radius ofG is defined as theminimum
value of the eccentricities of the vertices of G. A central vertex of G is any vertex whose eccentricity is equal to the radius of
G. Finally, the degree of a vertex w ∈ V (G), degG(w) is the number of edges incident to w. If no ambiguity is possible, the
subscript Gmay be omitted.
We define the eccentric connectivity ξ C (G) of G as

ξ C (G) =

−
v∈V (G)

ec(v) deg(v).

For special classes of graphs we have the following useful values for our parameter.
ξ C (Kn) = n(n − 1) (for n ≥ 2);
ξ C (Ka,b) = 4 a b (for a, b ≠ 1)

and the index reaches its maximum for Ka,b when a = b = n/2.
For the star, cycle and path of order n,

ξ C (Sn) = ξ C (K1,n−1) = 3(n − 1) (for n ≥ 3);

ξ C (Cn) =


n2 for n even
n(n − 1) for n odd;

ξ C (Pn) =


1
2
(3n2

− 6n + 4) for n even

3
2
(n − 1)2 for n odd.

Finally, we calculate the eccentric connectivity index for three other classes of graphs which will be important in our
theorems. The broom graph Bn,d consists of a path Pd, together with (n − d) end vertices all adjacent to the same end vertex
of Pd. The lollipop graph Ln,d is obtained from a complete graph Kn−d and a path Pd, by joining one of the end vertices of Pd
to all the vertices of Kn−d. The volcano graph Vn,d is the graph obtained from a path Pd+1 and a set S of n − d − 1 vertices, by
joining each vertex in S to a central vertex of Pd+1. See Fig. 1.

Straightforward calculations show that

ξ C (Bn,d) =

2dn − n − d2/2 − d + 1 for d even
1
2
(3 − 2d − d2 − 2n + 4dn) for d odd;

ξ C (Ln,d) =


1
2
(2 − 2d + d2 + 2d3 − 2n + 2dn − 4d2n + 2dn2) for d even

1
2
(3 − 2d + d2 + 2d3 − 2n + 2dn − 4d2n + 2dn2) for d odd;

ξ C (Vn,d) =


nd + n + d2/2 − 2d − 1 for d even

nd + 2n + d2/2 − 3d − 3/2 for d odd.

3. Results

Theorem 1. Let G = (V , E) be a connected graph of order n, n ≥ 4. Then

ξ C (G) ≥ 3(n − 1),

and the bound is tight.
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Proof. Let A = {v ∈ V | deg(v) = n − 1}, B = {v ∈ V | n − 2 ≥ deg(v) ≥ 2} and C = {v ∈ V | deg(v) = 1}. Then letting
|A| = a, |B| = b and |C | = c , we obtain

a + b + c = n. (1)

Since deg(v) ≤ n − 2 for every vertex v in B ∪ C , it is easy to see that, for n ≥ 4,

ec(v) ≥ 2 for all v ∈ B ∪ C . (2)

Case 1: A ≠ ∅; i.e., a ≥ 1. Then (1) and (2) in conjunction with n > 3, give

ξ C (G) =

−
v∈A

ec(v) deg(v) +

−
v∈B∪C

ec(v) deg(v)

≥

−
v∈A

1 · (n − 1) +

−
v∈B∪C

2 · 1

= a(n − 1) + 2(b + c)
= 2n + a(n − 3)
≥ 2n + n − 3,

as claimed.
Case 2: A = ∅; i.e., a = 0. It can be seen that ec(v) ≥ 3 for all v ∈ C . This, together with (1) and (2) yields

ξ C (G) =

−
v∈B

ec(v) deg(v) +

−
v∈C

ec(v) deg(v)

≥

−
v∈B

2 · 2 +

−
v∈C

3 · 1

= 4b + 3c
= 3n + b,

and the bound is established. The bound is attained by the star graph. �

Theorem 2. Let G be a connected graph of order n and diameter d. Then

ξ C (G) ≤ d(n − d)2 + O(n2),

and this bound is best possible.

Proof. For a vertex v of G, define D(v) = ec(v) deg(u). Thus

ξ C (G) =

−
v∈V (G)

D(v).

Let P = u0, u1, . . . , ud be a diametral path, and let M ⊆ V be the set of the remaining vertices which are not on P . Call
m = |M|.

Claim 1.
∑

x∈V (P) D(x) ≤ O(n2).

Write d = 3q+ r for r ∈ {0, 1, 2}, and partition the vertices of P as V (P) = V0 ∪ V1 ∪ V2, where V0, V1 and V2 are defined
as follows: For the case when r = 0 we set

V0 = {u0, u3, u6, . . . , u3q}

V1 = {u1, u4, u7, . . . , u3q−2}

V2 = {u2, u5, u8, . . . , u3q−1}

and so for this case, |V1| = |V2| = |V0| − 1. Similarly, for r = 1 or 2, all the vertices of P can be consecutively assigned to
one of the three classes V0, V1, V2.

Let x, y ∈ Vi, for some i = 0, 1, 2. Since the distance between x and y along P is at least 3, and P is a diametral path,
we have that N[x] ∩ N[y] = ∅, where N[v] is the closed neighbourhood of v in G. Thus

∑
x∈Vi

deg(x) ≤ n − |Vi|, for each
i = 0, 1, 2. Now−

x∈V (P)

D(x) =

−
x∈V0

D(x) +

−
x∈V1

D(x) +

−
x∈V2

D(x)

≤

−
x∈V0

d deg(x) +

−
x∈V1

d deg(x) +

−
x∈V2

d deg(x)
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Fig. 2. Tree T in the proof of Theorem 3.

= d

−
x∈V0

deg(x) +

−
x∈V1

deg(x) +

−
x∈V2

deg(x)


≤ d(n − |V0| + n − |V1| + n − |V2|)

= d(3n − d − 1)
= O(n2).

This argument holds for r = 0, 1 and 2, and thus the claim is proven.

Claim 2. D(v) ≤ d(n − d) + O(n) for all v ∈ M.

Since P is a diametral path, v ∈ M is adjacent to at most 3 vertices of P . Hence, deg(v) ≤ n − d + 1 and so

D(v) ≤ d(n − d + 1) ≤ d(n − d) + O(n),

as required.
Finally, combining Claims 1 and 2 we obtain

ξ c(G) =

−
v∈M

D(v) +

−
x∈P

D(x) ≤ m{d(n − d) + O(n)} + O(n2)

= (n − d − 1)d(n − d) + O(n2)

= d(n − d)2 + O(n2)

which completes the proof.
This bound is sharp, since the lollipop graph attains this upper value. In fact, it can be verified that

ξ C (Ln,d) = d(d − n)2 + O(n2).

�

A simple maximization of the bound in Theorem 2 results in a maximum eccentricity value at d = n/3, and hence we have

Corollary 1. Let G be a connected graph of order n. Then

ξ C (G) ≤
4
27

n3
+ O(n2),

and the bound is sharp.

Again, the lollipop graph, Ln,n/3 shows that this bound is best possible.

Theorem 3. Let T be a tree of order n, n ≥ 2. Then

ξ C (T ) ≤ ξ C (Pn) =


1
2
(3n2

− 6n + 4) for n even

3
2
(n − 1)2 for n odd.

(3)

Proof (By Reverse Induction on the Diameter d of T ). Firstly, if d = n − 1, then T = Pn and the theorem is true. The same is
true when n = 2 or 3. Call ε the number of end vertices of T : clearly ε ≥ 3, if T is not a path.

So, assume that n ≥ 4, d ≤ n − 2 and that (3) holds if d = k + 1, for 2 ≤ k ≤ n − 2.
Now, consider a tree T with diameter d = k.
Let P : x0, x1, . . . , xc, . . . , xd be a diametral path in T , where xc is a central vertex of T . Observe that for each vertex w in

V (T ), ec(w) ∈ {d(w, x0), d(w, xd)}.
Let B0 and Bd be the branches at xc containing, respectively, x0 and xd. Also, let y be an end vertex of T , where y ∉ {x0, xd}.

Say, without loss of generality, that y is not in Bd, and let v y ∈ E(T ). See Fig. 2.
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Define T ′
= (T − {v y}) ∪ {y x0}. Then d(T ′) = k + 1 and |V (T ′)| = n, so by the induction hypothesis

ξ C (T ′) ≤ ξ C (Pn). (4)

For z ∈ V (T ) − {y, v, x0}, we have ecT ′(z) ≥ ecT (z) (and certainly, ecT ′(z) > ecT (z) if z is in Bd.) Furthermore,
degT ′(v) = degT (v) − 1, degT ′(x0) = degT (x0) + 1, and ecT ′(y) = d + 1 ≥ ecT (y) + 1. Thus,

ξ C (T ′) − ξ C (T ) > ecT (v)(degT (v) − 1) + (ecT (x0)) · 2 + (ecT (y) + 1) · 1 − {ecT (v) degT (v) + d · 1 + ecT (y) · 1}
= d − ecT (v) + 1
≥ 1.

Combining this inequality with (4), we conclude that ξ C (T ) < ξ C (T ′) ≤ ξ C (Pn). and the proof is complete. �

Theorem 4. If T is a tree of order n and diameter d, then ξ C (T ) ≤ ξ C (Bn,d).

Proof. Let P : x0, x1, . . . , xd be a diametral path in T .
If T = Bn,d, then there is nothing to be proved; so assume that there exists an end vertex v of T , v ≠ x0, such that v is

adjacent to a vertex u, where u ≠ xd−1. (It is possible that u lies on P .) Denote by {v1, v2, . . . , vk} the set of end vertices
which are adjacent to u; and vi ≠ x0 for i = 1, 2, . . . , k. Let deg(u) = r + k, for some r ≥ 1.

Form another tree, T ′, by replacing the k edges u vi with xd−1 vi for i = 1, 2, . . . , k. Note that T ′ has the same order and
diameter as T .

We show that T ′ has a larger eccentric connectivity index than T .

ξ C (T ) =

k−
i=1

ecT (vi) degT (vi) + ecT (u) degT (u) + (d − 1) degT (xd−1) + N

≤ k · (d)(1) + ecT (u)(r + k) + (d − 1) degT (xd−1) + N,

where N =
∑

x∈V (T )−{v1,v2,...,vk,u,xd−1}
ecT (x) degT (x).

In comparison,

ξ C (T ′) = k · (d)(1) + ecT (u) r + (d − 1)(k + degT (xd−1)) + N.

So, since ec(u) ≤ d − 1,

ξ C (T ′) − ξ C (T ) ≥ −k ecT (u) + k(d − 1) ≥ 0.

Continue this procedure, forming new trees, until all the end vertices in V (T ) − {x0} are adjacent to xd−1. Thus, a broom
Bn,d is obtained, of order n and diameter d, with the property that ξ C (Bn,d) ≥ ξ C (T ). �

Theorem 5. If T is a tree of order n ≥ 3 and diameter d, then

ξ C (T ) ≥ ξ C (Vn,d). (5)

Proof. The statement (5) holds if n = 3 or 4, and if d = n−1. Let us assume that there exists a tree T with ξ C (T ) < ξ C (Vn,d),
where d is the diameter of T and, of such counterexamples to (5), choose T to have the smallest possible order, n.

Let P : x0, x1, . . . , xd be a diametral path in T .
Suppose there exists an end vertex x in V (T ) − V (P) adjacent to a vertex y, and let T ′

= T − x. Then, since n(T ′) < n(T )
we have

ξ C (T ′) ≥ ξ C (Vn−1,d) while ξ C (T ) < ξ C (Vn,d).

Hence ξ C (T ) − ξ C (T ′) < ξ C (Vn,d) − ξ C (Vn−1,d) ≤


d + 1 for d even

d + 2 for d odd.

However, ξ C (T ) − ξ C (T ′) ≥ ec(x) · 1 + ec(y) · 1
≥ (⌈d/2⌉ + 1) + ⌈d/2⌉

≥


d + 1 for d even
d + 2 for d odd.

This is a contradiction, and the proof is complete. �
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