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a b s t r a c t

Intranasal instillation of virus in a liquid suspension (IN) is the most frequently employed method to
inoculate small mammalian models with influenza virus, but does not reflect a natural route of exposure.
In contrast, inoculation via aerosol inhalation (AR) more closely resembles human exposure to influenza
virus. Studies in mice have yielded conflicting results regarding virulence induced by virus inoculated by
these routes, and have not controlled for potential strain-specific differences, or examined contemporary
influenza viruses and avian viruses with pandemic potential. We used a whole-body AR inoculation
method to compare infectivity and disease progression of a highly pathogenic H5N1, a low pathogenic
H7N9, and a 2009 H1N1 virus with traditional IN inoculation in the mouse model. Generally comparable
levels of morbidity and mortality were observed with all viruses examined using either inoculation
route, indicating that both IN and AR delivery are appropriate for murine studies investigating influenza
virus pathogenicity.

Published by Elsevier Inc.

Introduction

The use of small mammalian models is critical for the study of
both influenza virus pathogenicity and the assessment of inter-
ventions to mitigate disease severity. While numerous laboratory
species have been established to characterize the pandemic
potential of influenza viruses, including the ferret, guinea pig,
and non-human primate, mice remain the most prevalent model
due to their relatively lost cost, ease of handling, and wide array of
available reagents (Belser et al., 2009). Intranasal instillation with a
liquid inoculum (IN) remains a standard method of virus inocula-
tion in all laboratory species. However, previous work has shown
that the route and volume of virus administered to mice, or the
anesthetic used during inoculation, can greatly influence the
resulting morbidity and mortality following infection, especially
when studying highly pathogenic avian influenza (HPAI) viruses
(Belser and Tumpey, 2013; Knight et al., 1983; Miller et al., 2013).
As inhalation of virus-containing aerosols represents a more natural
route of human exposure compared with liquid instillation, several
aerosol inhalation (AR) methods for inoculation with influenza virus
have been established (Gustin et al., 2012; Schulman and Kilbourne,
1963; Snyder et al., 1986). These studies have revealed that aerosol

inhalation can lead to a productive virus infection in numerous
mammalian species, resulting in equivalent or enhanced severity of
disease compared with traditional liquid instillation of virus.

Mice represent the most frequently utilized model for evaluat-
ing the virulence of influenza viruses following IN or AR admin-
istration. Several experimental protocols have been established to
inoculate mice by the AR route, delivering virus-containing aero-
sols to mice via nose-only inhalation systems which require the
use of anesthesia, restraint tubes, and/or training of animals prior
to exposure, or whole-body exposure systems without anesthesia
(Bowen et al., 2012; Johansson and Kilbourne, 1991; Larson et al.,
1976; Sherwood et al., 1988; Smith et al., 2011). Conclusions drawn
from these studies are conflicting; some studies demonstrated
enhanced virulence and infectivity following AR inoculation com-
pared with IN (Bowen et al., 2012; Smith et al., 2011), whereas
others observed enhanced lethality following IN compared with
AR inoculation (Johansson and Kilbourne, 1991), or comparable
results by either inoculation method (Frankova, 1975; Larson et al.,
1976; Sherwood et al., 1988). Variability in inoculation procedures,
inoculating dose and volume, mouse age, virus strain, and size of
generated aerosols all likely contribute to this disparity. Further-
more, all of these studies were performed with H1N1 and H3N2
strains (wild-type or lab-adapted), limiting our ability to apply
these findings to current viruses of concern, notably HPAI and low
pathogenicity avian influenza (LPAI) strains. There is a need to
assess if existing models that utilize IN inoculation are not over or
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under-estimating the infectivity or virulence of viruses with
pandemic potential compared with AR delivery. Here, we estab-
lished a whole-body AR model to inoculate mice with three
influenza A viruses which exhibit differential virulence in the

mouse model and compared infectivity, disease progression, and
viral titers with traditional IN inoculation (Table 1).

Numerous studies have found that aerosol particles o1 mm
represent the dominant size of expelled aerosols in the exhaled
breath of humans (Fabian et al., 2008; Papineni and Rosenthal, 1997).
To simulate this exposure, murine AR inoculations were performed
using equipment and experimental conditions previously described
using a Collison nebulizer to generate aerosols in this range (Gustin
et al., 2011). Unanesthetized female BALB/c mice (Jackson Labora-
tories) were placed inside a whole-body aerosol exposure chamber
in animal holding cages (9″�4.5″�5″) (Biaera) for the duration of a
15-min exposure while the animals were exposed to aerosolized
virus. Following removal of mice from holding cages, surface decon-
tamination of mouse fur was performed by wiping the animals with
isopropanol wipes. To estimate the amount of virus inhaled by mice
during the inoculation period (the “presented dose”), we measured
the concentration of virus generated in the exposure chamber and
multiplied that by the exposure time and respiratory minute volume
of mice (0.06 L/min) as described previously (Flandre et al., 2003;
Gustin et al., 2011). Because each virus stock responds differently
to the aerosolization process, prior to animal experiments, we

Table 1
Infectivity and lethality of influenza virus following AR or IN inoculation.

Virusa Subtype Infectivity (MID50)b Lethality (LD50)b

AR IN AR IN

A/ck/Korea/Gimje/08 HPAI H5N1 8.9 15.8 15.8 88.9
A/Anhui/1/13 LPAI H7N9 8.9 1.6 1.1�104 3.4�103

A/Mexico/4482/09 2009 H1N1 0.3 1.5 NAc NA

a Virus stock propagations are described previously in (Belser et al., 2013a, 2013b;
Maines et al., 2009), with all experiments conducted in biosafety level 3 containment
(Chosewood and Wilson, 2009).

b Values are expressed as the PFU required to give 1 MID50 or 1 LD50,
respectively.

c NA, not applicable as all mice survived the virus challenge.

Fig. 1. Comparison of mortality, morbidity, and viral titers following AR or IN inoculation of mice with HPAI H5N1 virus. Mice (5 per group) were inoculated by the AR or IN
route with 10-fold serial dilutions of A/ck/Korea/Gimje/08 virus and monitored daily for 14 days for survival (A) and weight loss (B). Any mouse which lost 425% initial body
weight was euthanized. Lungs and noses were collected from an additional 3 mice per group on day 3 p.i. for virus titration (C). Tissues were titered in MDCK cells by
standard plaque assay and reported as log10 PFU/ml. The limit of detection was 10 PFU. Viral challenge for each group is presented in the legend (A and B) or x axis (C) as PFU.
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established the starting virus concentration required in the nebulizer
to achieve a particular virus concentration in the exposure chamber
(within one log). This procedure was repeated until the dosimetry of
each virus stock was well established. Based on these results,
reproducible aerosol inoculations of animals are made possible.
Therefore, unlike traditional IN inoculation, where serial 10-fold
dilutions of liquid inoculum are based on virus titers alone, aerosol
inhalation inoculations are based on virus titers, respiration, time,
and the sensitivity of each virus to the aerosolization process,
demonstrating the reproducibility of viral titers achieved in the
exposure chamber as serial dilutions of the initial virus titers in the
nebulizer which correspond with a serially diluted presented dose.
All animal research was conducted in an Association for Assessment
and Accreditation of Laboratory Animal Care International-accredited
facility, under the guidance of the CDC's Institutional Animal Care
and Use Committee.

To determine if a HPAI virus maintained comparable lethality
following AR inoculation, mice were inoculated by the AR or IN route
with serial 10-fold dilutions of A/ck/Korea/Gimje/08 (Gimje/08),
a HPAI H5N1 virus which exhibits a lethal phenotype in mice
following IN inoculation (Belser et al., 2013b). All IN inoculations
were performed with 50 ml of diluted virus volume delivered to the
nares of the animal while under avertin anesthesia (Belser et al.,

2013a). Mice inoculated by either route exhibited severe disease at
inoculation doses 4103 PFU, leading to 420% weight loss and 450%
lethality at each dilution (Fig. 1A–B). The 50% lethal dose (LD50) for
both inoculation routes were o100 PFU, though the LD50 for AR
inoculation (16 PFU) was 5-fold lower compared with IN inoculation
(89 PFU) (Table 1); survival curves between mice receiving compar-
able levels of virus either AR and IN were not statistically different by
the log-rank (Mantel–Cox) test. Gimje/08 virus replicated efficiently
in the lungs of mice inoculated by either route, exhibiting comparable
infectivity by AR (50% mouse infectious dose (MID50)¼8.9 PFU) or IN
(MID50¼15.8 PFU) inoculation. While viral titers in the lungs day 3 p.i.
were higher following AR inoculation at doses of 5�104�5�101 PFU
compared with IN (Fig. 1), these differences were not statistically
significant by the Mann–Whitney test; viral titers in this tissue on day
6 p.i. from mice inoculated with 5�104 PFU were approximately
1�105 PFU/ml for both inoculation routes and not statistically
different (data not shown). Gimje/08 virus replicated to comparable
low titers in the nose on day 3 and 6 p.i. following either inoculation
route, with no statistical differences observed between IN and AR
delivery (Fig. 1C). In summary, the HPAI H5N1 virus maintained a
lethal phenotype following inoculation by either route, though AR
inoculation was modestly more infectious and lethal than IN
inoculation.

Fig. 2. Comparison of mortality, morbidity, and viral titers following AR or IN inoculation of mice with LPAI H7N9 virus. Mice (5 per group) were inoculated by the AR or IN
route with 10-fold serial dilutions of A/Anhui/1/13 virus and monitored daily for 14 days for survival (A) and weight loss (B). Any mouse which lost 425% initial body weight
was euthanized. Lungs and noses were collected from an additional 3 mice per group on day 3 p.i. for virus titration (C). Tissues were titered in MDCK cells by standard
plaque assay and reported as log10 PFU/ml. The limit of detection was 10 PFU. Viral challenge for each group is presented in the legend (A and B) or x axis (C) as PFU.
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Next, we inoculated mice AR or IN with A/Anhui/1/13 (Anhui/1),
a LPAI H7N9 virus isolated from a fatal human case. In general,
Anhui/1 virus maintained a lethal phenotype following either
inoculation route, though mice inoculated with 5�103 PFU of virus
IN exhibited severe morbidity and 450% mortality compared with
mice inoculated AR with an equivalent inoculation dose, leading to
a 3-fold lower LD50 for IN delivery (3.4�103 PFU) compared with
AR (1.1�104 PFU) (Fig. 2A–B, Table 1); survival curves between
mice receiving comparable levels of virus either AR and IN were not
statistically different by the log-rank (Mantel–Cox) test. Anhui/1
virus exhibited high infectivity following IN or AR delivery; infec-
tious doses were o10 PFU for both routes. At intermediate doses,
mice inoculated IN possessed higher viral titers in the lung on day
3 p.i. compared with AR inoculated mice, but these differences were
not statistically significant by the Mann–Whitney test. Similar to
infection with the H5N1 virus, mice inoculated with Anhui/1
possessed day 6 p.i. viral titers in the lung that were not statistically
different between IN and AR routes, reaching titers 43�105 PFU/
ml. In the nose, differences in viral titers were within 10-fold
between both inoculation routes on day 3 and 6 p.i. (Fig. 2C). These
results indicate that both routes were highly infectious and main-
tained a lethal phenotype for Anhui/1 in mice, though virus
delivered IN was slightly more infectious and lethal than that
delivered by the AR route.

A/Mexico/4482/09 (H1N1pdm09) virus (Mex/4482), isolated dur-
ing the 2009 H1N1 pandemic from a human case with severe
respiratory disease (Maines et al., 2009), replicated efficiently in mice
in the absence of lethality following IN inoculation in a previous study
(Belser et al., 2010). In accord with this finding, mice inoculated by
either the IN or AR route exhibited only moderate morbidity (mean
maximum weight loss approximately 10%) and no lethality (Fig. 3A).
Mex/4482 virus was highly infectious by either inoculation route,
with MID50 values of o2 PFU for both routes (Table 1). Viral titers in
the lungs were slightly higher following IN inoculation compared

with AR on day 3 p.i. but not statistically significant by the Mann–
Whitney test; by day 6 p.i. titers were generally comparable by both
inoculation routes (Fig. 3B). Virus was not consistently detected in the
noses of mice by either inoculation route. In summary, both AR and IN
inoculation routes yielded generally similar levels of infectivity,
disease progression, and viral replication in mice challenged with a
H1N1pdm09 virus.

The majority of comparative studies examining AR and IN
inoculation in mice to date have used only one virus, making it
difficult to understand the contribution of inherent viral virulence.
Using both HPAI and LPAI viruses as well as a human-adapted
pandemic virus in the present study has provided a more compre-
hensive assessment of the inherent variability among influenza
viruses, and illustrates that subtle augmentation or diminishment of
virus infectivity or viral titers between AR and IN inoculation routes
in mice is likely attributable to strain-specific differences and not
delivery methods, though future studies examining additional
viruses and virus subtypes are needed to corroborate this observa-
tion. It is important to note that the use of 50 ml of liquid suspension
for IN inoculations is a standard, reliable volume to achieve
consistent murine infectivity and has been used often in similar
comparative studies (Johansson and Kilbourne, 1991; Larson et al.,
1976; Sherwood et al., 1988). However, the volume of virus
inoculum administered IN can dramatically alter the resulting
severity of disease in mice (Miller et al., 2013); studies which have
demonstrated enhanced virulence in mice following inhalation
versus intranasal inoculation have used a wide range of volumes
(30–100 ml) for IN inoculation which may have contributed to these
findings (Bowen et al., 2012; Smith et al., 2011). Comparable results
between delivery methods were observed employing both egg-
grown (H5N1, H7N9) and cell-grown (H1N1) virus preparations
(Belser et al., 2013a, 2013b; Maines et al., 2009); while further
studies are needed to closely examine the potential contribution of
the growth matrix in the aerosolization of influenza viruses, our

Fig. 3. Comparison of mortality, morbidity, and viral titers following AR or IN inoculation of mice with 2009 H1N1 virus. Mice (5 per group) were inoculated by the AR or IN
route with 10-fold serial dilutions of A/Mexico/4482/09 virus and monitored daily for 14 days for weight loss (A). Lungs were collected from an additional 3 mice per group
on days 3 and 6 p.i. for virus titration (B). Tissues were titered in MDCK cells by standard plaque assay and reported as log10 PFU/ml. The limit of detection was 10 PFU. Viral
challenge for each group is presented in the legend (A) or x axis (B) as PFU.
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results support prior studies in mammalian models which indicate
that the choice of propagation method for the starting virus stock
does not adversely influence the resulting pathogenicity observed
between intranasal or aerosol delivery (Gustin et al., 2013).

To date, comparison of virulence following AR or IN inoculation of
HPAI viruses and other virus strains with pandemic potential has
been largely restricted to the ferret model. These studies have shown
that inoculation with HPAI H5N1 viruses by both AR and IN inocula-
tion routes are capable of causing a systemic and fatal disease in this
species (Gustin et al., 2011, 2013; Lednicky et al., 2010). Ferrets
inoculated AR with low doses of a HPAI H5N1 virus shed significantly
higher nasal wash virus titers than ferrets inoculated IN, though this
difference was abrogated when ferrets were challenged with higher
viral doses (Gustin et al., 2011). While these studies using HPAI
viruses in the ferret model have revealed inoculation method-specific
differences in morbidity and kinetics of virus shedding in the upper
respiratory tract (Gustin et al., 2013), comparable studies in the
murine model were lacking. As such, our findings extend work in
ferret model and highlight subtle strain-specific and subtype-specific
differences in virulence between different inoculation routes in mice,
while further underscoring the utility of both inoculation routes for
pathogenesis studies.

Whole-body AR exposure systems offer several advantages to
traditional IN inoculation. Notably, mice remain unanesthetized for
the duration of the exposure, eliminating any confounding physiolo-
gic effects of anesthesia administration (Gargiulo et al., 2012). Nose-
only AR methods typically require prior training of mice and/or the
use of restraints, which can cause significant reductions in baseline
breathing parameters of the animals (Rasid et al., 2012). While whole-
body exposure does leave the fur of mice exposed to aerosolized
virus, transmission of virus to naïve cage-mates was not observed
(data not shown), in agreement with prior studies which indicate that
residual virus on the fur of exposed mice is not transmissible
(Schulman and Kilbourne, 1963). Mice remained alert and active for
the duration of the exposure, with viral titers in AR inoculated mice
exhibiting a comparable range of titers to those observed in IN
inoculated mice with all viruses tested, indicating that huddling of
mice during the exposure period leading to unequal inhaled doses did
not occur (Bowen et al., 2012). The comprehensive examination of
three virus strains in this study, yielding generally comparable results
between all virus dilutions and parameters examined, demonstrates
in triplicate the reproducibility of the methods used and results
obtained between IN and AR delivery methods.

In conclusion, all influenza viruses tested were capable of
mounting a productive respiratory infection in mice following
AR inoculation, with generally comparable infectivity, disease
progression, and lethality to that observed in IN inoculated mice.
While potential strain-specific differences in virulence were
observed, the magnitude of these differences were not statistically
significant and were within the scope of previously published
studies, suggesting that both inoculation routes are suitable for
assessing influenza virus pathogenesis in this species. Further
examination of inflammatory responses and cell-mediated immu-
nity elicited following IN or AR virus challenge are warranted to
determine the contribution of inoculation route on these immu-
nological parameters (Johansson and Kilbourne, 1991; Rivers et al.,
2013; Smith et al., 2011).
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