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In 1996, E. Formanek classified all the irreducible complex representations of Bn
of dimension at most n � 1, where B is the Artin braid group on n strings. In thisn
paper we extend this classification to the representations of dimension n, for
n � 9. We prove that all such representations are equivalent to the tensor product
of a one-dimensional representation and a specialization of a certain one-parame-
ter family of n-dimensional representations which was first discovered in 1996 by
Tong, Yang, and Ma. In order to do this, we classify all the irreducible complex

Ž Ž . .representations � of B for which rank � � � 1 � 2, where the � are then i i
standard generators. � 2001 Academic Press

1. INTRODUCTION

Let B be the braid group on n strings. In terms of generators andn
relations it has the following presentation:

² �DEFINITION 1. B � � , . . . , � � � � � � � � ,n 1 n�1 i i�1 i i�1 i i�1
� � :1 � i � n � 2; � � � � � , i � j � 2 .i j j i

� 	In his paper 3 Formanek classified all of the irreducible representa-
Ž .tions of B of dimension at most n � 1 . Since then there have beenn

some attempts to classify irreducible representations of B of dimensionn
n. In particular the classification is known for very small n. The case n � 3

� 	was done by Formanek 3, Theorem 24 . Woo Lee has classified the
� 	four-dimensional irreducible representations of B 5 .4

In this paper we solve this problem completely for n � 9.
To describe our results, we need the following definition.
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Ž .DEFINITION 2. The corank of the representation � : B � GL �n r
Ž Ž . .is rank � � � 1 , where the � are the standard generators of thei i

group B .n

� 	Remark 1.1. Because the � are conjugate to each other 2, p. 655 , thei
Ž Ž . .number rank � � � 1 does not depend on i, which justifies the abovei

definition.

�The corank of specializations of the reduced Burau representation 1,
	p. 121; 4, p. 338 and of the standard one-dimensional representation is 1.

If one looks at the proof of the classification theorem of Formanek in
� 	3 , it can be separated into two parts. The first is to classify all irreducible
representations of braid groups of corank 1. The second is to prove that
apart from a few exceptions, the irreducible representations of the braid

Ž .group B of dimension at most n � 1 can be obtained as a tensorn
product of a one-dimensional representation and an irreducible represen-
tation of corank 1.

Our proof follows a similar strategy.
The first part of this paper is the classification of all the irreducible

complex representations of corank 2. Apart from a number of exceptions
for n � 6, they all are equivalent to specializations for u � 1, u 
 �* of

Ž � �1 	.the following representation � : B � GL � u , first discovered byn n
� 	Dian-Ming Tong et al. in 7 ,

Ii�1

0 u
� � � ,Ž .i 1 0� 0In�1�i

for i � 1, 2, . . . , n � 1, where I is the k � k identity matrix.k
In the second part of the paper we complete the proof of the Main

Ž .Theorem Theorem 6.1 . We show that for n � 9 every irreducible repre-
sentation of B of dimension n is equivalent to the tensor product of an
one-dimensional representation and a representation of corank 2.

The main tool we use for the classification of the irreducible representa-
Ž .tions of corank 2 is the friendship graph of a representation. The full

friendship graph of a representation � of a braid group B is the graphn
Ž .whose vertices are the set of generators � , � , . . . , � of B . Two0 1 n�1 n

Ž Ž . .vertices � and � are joined by an edge if and only if Im � � � 1 �i j i
Ž Ž . . � 4 Ž .Im � � � 1 � 0 . See Lemma 2.1 for the definition of � .j 0
Using the braid relations, we investigate the structure of the friendship

graph. It turns out that the friendship graph is a chain for every irreducible
representation of B of dimension at least n and corank 2, provided thatn
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n � 6. This means that � and � are joined by an edge if and only ifi j
� �i � j � 1.

For a given friendship graph it is relatively easy to classify all irreducible
complex representations of B for which it is the associated friendshipn
graph. When the graph is a chain, we get specializations of the representa-
tion discovered by Tong, Yang, and Ma.

This paper is the first in a series of papers aimed at extending the
classification by Formanek to irreducible representations of higher dimen-
sions.

Another result, which will appear elsewhere, is that for n large enough
there are no irreducible complex representations of B of corank 3 and non
irreducible complex representations of B of dimension n � 1.n

Based on the above results we would like to make the following two
conjectures.

Conjecture 1. For every k � 3 and n large enough there are no
irreducible complex representations of B of corank k.n

Conjecture 2. For every k � 1 and n large enough there are no
irreducible complex representations of B of dimension n � k.n

We should also note that for the purpose of brevity we did not include in
this paper some of the details of the classification of representations of Bn

� 	for small n. The full proof can be found in our thesis 6, Chaps. 6 and 7 .
The paper is organized as follows. In Sections 2 through 5 we prove the

classification theorem for the irreducible complex representations of B ofn
corank 2. In Section 2 we introduce some convenient notation that will be
used throughout the rest of the paper. In Section 3 we define the
friendship graph of the representation and study its structure. We also
study the case when the friendship graph is totally disconnected. In Section
4 we prove that for n � 6 the associated friendship graph is a chain for any
irreducible complex representation of B of corank 2 and dimension atn
least n. In Section 5 we determine all irreducible representations of
corank 2 whose friendship graph is a chain. In Section 6 we give a
complete classification of the irreducible representations of B of dimen-n
sion n for n � 6.

2. NOTATION AND PRELIMINARY RESULTS

Let B be the braid group on n strings.n

LEMMA 2.1. For the braid group B setn

� � � � ��� � and � � �� ��1 .1 2 n�1 0 n�1
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Then:

Ž .1 � � � � � � � ;i i�1 i i�1 i i�1

Ž . �12 � � �� � ;i�1 i

Ž . � �3 � � � � � , i � j � 2 for all i, j where indices are taken moduloi j j i
n.

Ž .Remark 2.2. For 1 � i � n � 2 the relationship 2 was established in
� 	2, p. 655 .

Remark 2.3. Taking into account the above lemma, we also have the
following presentation of B ,n

²B � � , � , . . . , � � � � � � � � � ;n 0 1 n�1 i i�1 i i�1 i i�1

� � �1:� � � � � , i � j � 2; � � �� �i j j i 0 n�1

for all i, j where indices are taken modulo n and � is defined as above.

Ž .Let � : B � GL � be a matrix representation of B withn r n

� � � 1 � A , and � � � T 
 GL � .Ž . Ž . Ž .i i r

Ž .Then for any i indices are modulo n , the relation

�� ��1 � �i i�1

implies that

TA T�1 � A .i i�1

Hence all the A are conjugate to each other, so they have the same rank,i
spectrum, and Jordan normal form.

LEMMA 2.4. For a representation � of B withn

� � � 1 � A ,Ž .i i

we ha�e:

Ž . � �1 A A � A A , for i � j � 2;i j j i

Ž . 2 22 A � A � A A A � A � A � A A A for all i �i i i i�1 i i�1 i�1 i�1 i i�1
0, 1, . . . , n � 1, where indices are taken modulo n.

Proof. This follows easily from the relations on the generators of B .n
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3. THE FRIENDSHIP GRAPH

In this section we define and prove some properties of the friendship
graph which is a finite graph associated with a representation of B . Ourn
graphs are simple-edged, which means that there is at most one unoriented
edge joining two vertices, and no edges joining a vertex to itself.

We assume throughout this section that we have a representation

� : B � GL � ,Ž .n r

with

� � � 1 � A i � 0, 1, . . . , n � 1 .Ž . Ž .i i

Ž . Ž .DEFINITION 3. 1 A , A are neighbors indices modulo n .i i�1

Ž .2 A , A are friends ifi j

� 4Im A � Im A � 0 .Ž . Ž .i j

Ž .3 A , A are true friends if eitheri j
Ž .a A and A are not neighbors, andi j

A A � A A � 0;i j j i

or
Ž .b A and A are neighbors, andi j

A � A2 � A A A � A � A2 � A A A � 0.i i i j i j j j i j

LEMMA 3.1. If A, B are true friends, then they are friends.

Ž .Proof. 1 If A and B are not neighbors, then AB � BA � 0, so,

� 4Im A � Im B 
 Im AB � Im BA � Im AB � 0 .Ž . Ž . Ž . Ž . Ž .

Ž .2 If A and B are neighbors, then

A 1 � A � BA � A � A2 � ABAŽ .
� B � B2 � BAB � B 1 � B � AB � 0,Ž .

and again

2 � 4Im A � Im B 
 Im A � A � ABA � 0 .Ž . Ž . Ž .

ŽDEFINITION 4. The full friendship graph associated with the represen-
Ž ..tation � : B � GL � is the simple-edged graph with n verticesn r

Ž .A , A , . . . , A and an edge joining A and A i � j if and only if A0 1 n�1 i j i
and A are friends.j
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The friendship graph is the subgraph with vertices A , . . . , A ob-1 n�1
tained from the full friendship graph by deleting A and all edges incident0
to it.

Our main interest is the friendship graph, but it is convenient to
introduce the full friendship graph as a tool, because of the following
lemma.

LEMMA 3.2. There is an edge between A and A in the full friendshipi j
graph if and only if there is an edge between A and A , where indices arei�k j�k
taken modulo n. In other words, � acts on the full friendship graph byn
permuting the �ertices cyclically.

Proof. This follows immediately from the fact that conjugation by
Ž . Ž . ŽT � � � � � � ��� � permutes � , � , . . . , � cyclically Lemma1 n�1 0 1 n�1

.2.1 .

Ž .LEMMA 3.3 Lemma about Friends . Let A and B be neighbors which are
not friends. If C is not a neighbor of A and C is a friend of B then C is a true
friend of A.

Proof. By Lemma 3.1, A and B are not true friends, because they are
not friends, that is,

A � A2 � ABA � B � B2 � BAB � 0.

Ž . ŽConsider y 
 V such that Cy 
 Im B , Cy � Bz � 0 y exists because
.C and B are friends . Then

BACy � BABz � � B � B2 z � � 1 � B Bz � 0Ž . Ž .

Ž .because Bz � 0 and 1 � B is invertible.
So, AC � CA � 0; that is, A and C are true friends.

Ž .THEOREM 3.4. Let � : B � GL � be a representation. Then one of then r
following holds.

Ž . Ž .a The full friendship graph is totally disconnected no friends at all .
Ž .b The full friendship graph has an edge between A and A for all i.i i�1

Ž .c The full friendship graph has an edge between A and A whene�eri j
A and A are not neighbors.i j
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Ž . Ž .Proof. Suppose neither a nor b holds. Since the graph is not totally
Ž .disconnected, there is an edge joining some vertices B and C. Since b

does not hold, no neighbors are joined by an edge. Lemma 3.3 implies that
there is an edge between C and any neighbor of B which is not a neighbor
of C. It follows inductively that there is an edge joining C to every vertex

Ž .which is not a neighbor of C. Then c holds, because the full friendship
graph is a � -graph.n

Ž .DEFINITION 5. The friendship graph the full friendship graph is a
chain, if the only edges are between neighbors.

Ž .Case b of the above theorem can be restated as
Ž .b The full friendship graph contains the chain graph.

COROLLARY 3.5. For n � 4, the friendship graph and the full friendship
Ž .graph are either totally disconnected no edges or connected.

Remark 3.6. For n � 4 there is a full friendship graph which is neither
totally disconnected nor connected:

The friendship graph in this case is:

� 	By 6, Lemmas 6.2 and 6.3 , every representation of B of corank 2 and4
dimension at least 4 which has this friendship graph is reducible.

Now consider the case when the friendship graph is totally disconnected
Ž Ž . .that is, statement a of Theorem 3.4 holds .

LEMMA 3.7. If A and B are neighbors and not friends then:

Ž . 2 2 2 2a A B � AB ; BA � B A.
Ž . Ž . Ž . Ž . Ž .b If x 
 Im A � Ker A � �I , then B Bx � � Bx and ABx �

Ž .� 1 � � x.
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Ž .Proof. a By Lemma 3.1, A and B are not true friends, so

A � A2 � ABA � B � B2 � BAB � 0.

Multiplying the left hand side by B on the right and the right hand side by
A on the left gives

AB � A2B � ABAB � 0 � AB � AB2 � ABAB.

Thus, A2B � AB2; by a symmetric argument BA2 � B2A.
Ž . Ž . Ž .b Let x � Ay 
 Im A � Ker A � �I . Then

B Bx � B2Ay � BA2 y � BAx � �Bx ,Ž .
and

0 � A � A2 � ABA y � 1 � A � AB x � 1 � � x � ABx.Ž . Ž . Ž .
Ž .Thus, ABx � � 1 � � x.

Ž . Ž .THEOREM 3.8. Let � : B � GL � n � 2 be an irreducible represen-n r
tation, whose associated friendship graph is totally disconnected. Then r �
dim V � n � 1.

Proof. If A � 0, � is the trivial representation and r � 1.i
If A � 0, choose an eigenvalue � for A and a non-zero vectori 1

x 
 Im A � Ker A � �I .Ž . Ž .1 1 1

Set x � A x , x � A x , . . . , x � A x , and U �2 2 1 3 3 2 n� 1 n� 1 n� 2
� 4 Ž . Ž .span x , x , . . . , x . By induction and Lemma 3.7 b , x 
 Im A �1 2 n�1 i i
Ž .Ker A � �I .i

Ž .By Lemma 3.7 b and the fact that A A � A A � 0, if i and j are noti j j i
neighbors,

A x � A A x � � 1 � � x , i � 2, . . . , n � 1,Ž .i�1 i i�1 i i�1 i�1

A x � � x , i � 1, . . . , n � 1,i i i

A x � x , i � 1, . . . , n � 2,i�1 i i�1

and

A x � A A x � 0, j � i � 1, i , i � 1.j i j i i�1

Thus U is invariant under B . Hence r � dim U � n � 1, since � isn
irreducible.

Ž .COROLLARY 3.9. Let � : B � GL � be irreducible, where r � dim Vn r
� n, n � 4.

Then the associated friendship graph is connected.
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Proof. By Corollary 3.5 the friendship graph of � is either totally
disconnected or connected. By Theorem 3.8 it is not disconnected.

Ž .COROLLARY 3.10. Let � : B � GL � be irreducible, where r � dim Vn r
Ž . Ž .� n, n � 4. Suppose � � � 1 � A , where rank A � k.i i i

Ž .Ž .Then r � dim V � n � 1 k � 1 � 1.
In particular, for k � 2, r � dim V � n, where V � � n.

Proof. By Corollary 3.9, the friendship graph of the representation is
connected. Arrange the vertices of the graph in a sequence
A , A , . . . , A such that each term A , 2 � j � n � 1, is a friend ofi i i i1 2 n�1 j

one of the terms A , A , . . . , A . Theni i i1 2 j�1

dim Im A � kŽ .Ž .i1

dim Im A � Im A � k � k � 1 � 2k � 1Ž .Ž . Ž .Ž .i i1 2

���

dim Im A � ��� �Im AŽ . Ž .Ž .i i1 n�1

� k � n � 2 k � 1 � n � 1 k � 1 � 1.Ž . Ž . Ž . Ž .

Combining Theorem 3.4 and Corollaries 3.9 and 3.10, we get the
following

Ž .THEOREM 3.11. Let � : B � GL � be irreducible, where r � dim V �n r
Ž . Ž .n, n � 4. Suppose � � � 1 � A , where rank A � 2.i i i

Then r � n and one of the following holds.

Ž .a The full friendship graph has an edge between A and A for all i.i i�1

Ž .b The full friendship graph has an edge between A and A whene�eri j
A and A are not neighbors.i j

4. FOR CORANK 2 THE FRIENDSHIP GRAPH
IS A CHAIN

In this section, we assume throughout that we have an irreducible
representation

� : B � GL � ,Ž .n r

where r � n, and

� � � 1 � A , rank A � 2, 1 � i � n � 1.Ž . Ž .i i i



BRAID GROUP REPRESENTATIONS 527

Ž .THEOREM 4.1. Let � : B � GL � be an irreducible representation,n r
Ž .where r � n and n � 6. Let rank A � 2.1

Ž . Ž . � 4Then Im A � Im A � 0 for 1 � i � n � 2; that is, the friendshipi i�1
graph of � contains the chain graph.

Ž . Ž . Ž .Proof. Suppose not. Then by Theorem 3.11 b , Im A � Im A � 0i j
whenever A and A are not neighbors. Consideri j

U � Im A � Im A � Im A .Ž . Ž . Ž .1 2 3

Ž . Ž .Since Im A � Im A � 0, dim U � 5.1 3
For i � 4, . . . , n � 1, let a , b be, respectively, nonzero elements ofi i
Ž . Ž . Ž . Ž . Ž . Ž .Im A � Im A and Im A � Im A . Since Im A � Im A � 0, a1 i 2 i 1 2 i

Ž .and b are linearly independent, so they form a basis for Im A , andi i
Ž . Ž . Ž .Im A � Im A � Im A . Thusi 1 2

U � Im A � Im A � ��� �Im A ,Ž . Ž . Ž .1 2 n�1

Ž .which is invariant under � B . Thus r � 5, by the irreducibility of �, an
contradiction since r � n � 6.

Remark 4.2. For n � 5 and � satisfying the hypothesis of Theorem 4.1
Ž .there are two possible friendship graphs: 1 all neighbors are friends and

Ž .2 an exceptional case:

� 	By 6, Theorem 7.1, part 2 , every irreducible representation with the
above friendship graph is equivalent to the restriction to B of the Jones5

Ž � 	.representation see 3, p. 296 .

Ž .LEMMA 4.3. Let � : B � GL � be an irreducible representation, wheren r
Ž .r � n, n � 5, and rank A � 2. Suppose that the associated friendship1

graph contains the chain.
ŽThen r � n and the associated friendship graph is the chain that is, the

.only edges are between neighbors .

Proof. By Corollary 3.10, r � n. Consider the full friendship graph of
�. Then

� 4Im A � Im A � 0Ž . Ž .i i�1
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Ž . Ž .for any i where indices are taken modulo n. If Im A � Im A isi i�1
Ž . Ž . Ž .two-dimensional, then Im A � Im A � ��� , and Im A is a two-1 2 1

dimensional invariant subspace, contradicting the irreducibility of �. Hence
Ž . Ž .Im A � Im A are one-dimensional.i i�1

Ž .For any x 
 Im A , x � A y, x � 0, we have thati i

Tx � TA y � TA T�1 Ty � A Ty 
 Im AŽ . Ž . Ž .i i i�1 i�1

Ž .for T � � � . Moreover, Tx � 0 because T is invertible.
Ž . Ž .Choose x � 0 to be a basis vector for Im A � Im A . Define1 1 2

i Ž .x � T x for 1 � i � n � 1. Then x is a basis vector for Im A �i�1 1 i i
Ž .Im A .i�1
If for some i, x is proportional to x then, because a full friendshipi i�1

graph is a � -graph, all the x are proportional to x . Then, because wen j 1
have 5 or more vertices in the full friendship graph, for any A there existsi
j such that both A and A are not neighbors of A . Thenj j�1 i

A A � A Ai j j i

and

A A � A A .i j�1 j�1 i

Ž . Ž . Ž . Ž .So, if x 
 Im A � Im A then A x 
 Im A � Im A . But thisj j�1 i j j�1
� 4means that span x is an invariant subspace and the representation is not1

irreducible.
So, if the representation is irreducible, then for any i,

� 4x � span x .i i�1

From this follows that for any i

� 4Im A � span x , xŽ .i i�1 i

and the n vectors x , x , . . . , x form a basis of V. Then for any two0 1 n�1
non-neighbors A and Ai j

� 4Im A � Im A � 0 .Ž . Ž .i j

Now, we have the following

Ž .THEOREM 4.4. Let � : B � GL � be irreducible, where r � n. Sup-n r
Ž . Ž .pose that for any generator � , � � � 1 � A , where rank A � 2.i i i i

Ž .1 If n � 6, then r � n and � has a friendship graph which is a chain.
Ž .2 If n � 5, then r � 5 and either � has a friendship graph which is a

Ž .chain or � has the exceptional friendship graph see Remark 4.2 .
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Ž .3 If n � 4, then either r � 4 and � has a friendship graph which is a
chain; or � has one of the following exceptional friendship graphs:

Ž .Proof. 1 If n � 6, then by Theorem 4.1 the associated friendship
graph contains a chain, and, by Lemma 4.3 has no other edges and r � n.

Ž .2 If n � 5, then by Corollaries 3.9 and 3.10 the friendship graph of
� is connected and r � n. If it contains a chain graph, then, by Lemma 4.3,
it has no other edges. If it does not contain a chain graph, we obtain the
exceptional case.

Ž .3 If n � 4, then by Theorem 3.8 the friendship graph is not totally
disconnected. Hence, we have only three possible � -graphs on 4 vertices.4

� 	Remark 4.5. It is proven in 6, Chap. 6 that any representation of B4
Ž .with either of the exceptional friendship graphs in 3 of the above

theorem is reducible.

5. THE CLASSIFICATION OF THE IRREDUCIBLE
REPRESENTATIONS OF B OF CORANK 2n

In this section we will describe the representations whose friendship
graph is a chain. We start with the following definition:

DEFINITION 6. The standard representation is the representation

� �1 	� : B � GL � tŽ .n n n

defined by

Ii�1

0 t
� � � ,Ž .n i 1 0� 0In�1�i

for i � 1, 2, . . . , n � 1, where I is the k � k identity matrix.k

We call the above representation standard because of its simplicity.
Surprisingly, it does not seem to be well known. In fact it seems that it was

� Ž .	first discovered only in 1996 by Dian-Min Tong et al. 7, Eq. 19 .
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Ž .THEOREM 5.1. Let � : B � GL � be an irreducible representation,n n
Ž . Ž .where n � 4. Suppose that � � � 1 � A , where rank A � 2, and the1 1 1

associated friendship graph of � is a chain.
Ž .Then � is equi�alent to a specialization � u of the standard representationn

for some u 
 �*.

Before proving the theorem, we will need the following technical lemma.

LEMMA 5.2. Let A be a friend and a neighbor of B, B be a friend and a
neighbor of C, and suppose that A is not a friend of C:

� 4 Ž . Ž . Ž .Let a � 0 be such that span a � Im A � Im B , and let b � 1 � B a.
Then:

Ž . � 4 Ž . Ž .1 span b � Im C � Im B .
Ž . Ž . � 4 Ž .2 1 � B b 
 span a and 1 � B b � 0.
Ž .3 The �ectors a and b are linearly independent.

Proof. First of all, notice that the vector b is non-zero, because 1 � B
is invertible and a � 0.

Ž . Ž . Ž . Ž .1 b � 1 � B a 
 Im B , because a 
 Im B .
A and C are not friends, that is, CA � 0, so Ca � 0. Let a � Ba . Then1

1 � B a � 1 � B � BC a � 1 � B � BC Ba � B � B2 � BCB aŽ . Ž . Ž . Ž .1 1

� C � C 2 � CBC a 
 Im C ;Ž . Ž .1

Ž . Ž . Ž . Ž .that is, b 
 Im C � Im B , and because Im C � Im B is one-dimen-
sional and b � 0,

� 4span b � Im C � Im B .Ž . Ž .
Ž . Ž . Ž .2 Clearly, 1 � B b 
 Im B .

Ž .Note that Ab � 0, as b 
 Im C by the above, and AC � 0. Let
b � Ba�. Then

1 � B b � 1 � B � BA b � 1 � B � BA Ba�Ž . Ž . Ž .
� A � A2 � ABA a� 
 Im A .Ž . Ž .
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Ž . Ž . Ž . Ž . Ž . Ž . � 43 a 
 Im A , b 
 Im C by part 1 , and Im A � Im C � 0 by
the hypothesis of the lemma.

Proof of Theorem 5.1. We include the redundant generator � , and0
Ž . Ž .indices are modulo n. Consider Im A � Im A , which is 0, 1, ori i�1

2-dimensional. It is non-zero, because of the hypothesis that the friendship
graph is a chain. It is not 2-dimensional, for then

Im A � Im A � ��� � Im AŽ . Ž . Ž .0 1 n�1

would be a 2-dimensional invariant subspace, contradicting the irreducibil-
Ž . Ž .ity of �. Hence, Im A � Im A is one-dimensional.i i�1

Ž . Ž .Let a be a basis vector for Im A � Im A . Let0 0 1

a � 1 � A a , a � 1 � A a , . . . , a � 1 � A a .Ž . Ž . Ž .1 1 0 2 2 1 n�1 n�1 n�2

Ž . Ž .By induction and Lemma 5.2, part 1 , a is a basis vector for Im A �i i
Ž . Ž .Im A , for 0 � i � n � 1. By Lemma 5.2, part 3 , a and a arei�1 i i�1

� 4 Ž .linearly independent. Thus a , a is a basis for Im A .i i�1 i
Since

� 4span a , . . . a � Im A � ��� �Im AŽ . Ž .0 n�1 1 n�1

is invariant under B and � is an n-dimensional irreducible representa-n
� 4 ntion, a , . . . a is a basis for � .0 n�1

Ž . Ž . Ž .We now wish to determine the action of � � , � � , . . . , � � on1 2 n�1
this basis.

Ž . Ž .Consider a 
 Im A � Im A . If j � i, i � 1, then A is not ai i i�1 j
Ž .neighbor of one of A , A since n � 4 , say A , and then A A �i i�1 k k j

A A � 0, so A a � 0, andj k j i

� � a � 1 � A a � a .Ž . Ž .j i j i i

By our construction

� � a � 1 � A a � aŽ . Ž .i�1 i i�1 i i�1

for 0 � i � n � 2.
Ž .By Lemma 5.2, part 2 ,

� � a � 1 � A a � u a ,Ž . Ž .i i i i i i�1

for 1 � i � n � 1, where u 
 �*.i
Ž . Ž .By the above calculations the matrices of � � , . . . , � � with re-1 n�1

spect to the basis a , a , . . . , a are0 1 n�1

Ii�1

0 ui� � � ,Ž .i 1 0� 0In�1�i
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for i � 1, 2, . . . , n � 1, where I is the k � k identity matrix, andk
u , . . . , u 
 �*. Since � , . . . , � are conjugate in B , the u are all1 n�1 1 n�1 n i
equal, and we have the standard representation.

Now let us consider when the standard representation is irreducible.

Ž .LEMMA 5.3. If u � 1 then � u is reducible.n

Ž .TProof. If u � 1 then the vector � � 1, 1, 1, . . . , 1 is a fixed vector.

Ž .LEMMA 5.4. If u � 1 then � u is irreducible.n

Proof. We need to prove that starting from any non-zero vector x �
Ýa e , we can generate the whole space. Obviously, it is enough to showi i
that we can generate one of the standard basis vectors e . To do this, take ii
such that a � 0. Consider the operatori

H � A � A2 � ABA � B � B2 � BAB,
Ž . Ž .where A � � � � 1 and B � � � � 1. By a direct calculation Hx �i�1 i

Ž .u � 1 a e . Because u � 1 the vector Hx is a non-zero multiple of e .i i i

Now, we have the classification theorem for the representations of B ofn
corank 2.

Ž .THEOREM 5.5. Let � : B � GL � be an irreducible representation ofn r
Ž . Ž .B for n � 6. Let r � n, and let � � � 1 � A with rank A � 2.n 1 1 1

Then r � n and � is equi�alent to the representation

� : B � GL � ,Ž .n n

Ii�1

0 u
� � � ,Ž .i 1 0� 0In�1�i

for i � 1, 2, . . . , n � 1, where I is the k � k identity matrix, and u 
 �*,k
u � 1. These representations are non-equi�alent for different �alues of u.

Proof. By Theorem 4.4 the friendship graph of � is a chain. Then, by
Ž .Theorem 5.1, � is equivalent to a standard representation � u for some

u 
 �*. By Lemmas 5.3 and 5.4, u � 1.

Combining Theorem 5.5 and the classification theorem of Formanek
Ž � 	.see 3, Theorem 23 , we get the following

Ž .COROLLARY 5.6. Let � : B � GL � be an irreducible representation ofn r
Ž .B for n � 7. Let corank � � 2.n

Ž .Then � is equi�alent to a specialization of the standard representation � u ,n
for some u � 1, u 
 �*.
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6. THE CLASSIFICATION OF THE IRREDUCIBLE
REPRESENTATIONS OF B OF DIMENSION n, n � 9n

In this section we will prove the main result of this paper.

Ž . Ž .THEOREM 6.1 The Main Theorem . Suppose that � : B � GL � isn n
an irreducible representation of B of dimension n � 9. Then it is equi�alentn
to the tensor product of a one-dimensional representation and a specialization
for u � 0, 1 of the standard representation.

We proved in Section 5, Theorem 5.5, and Corollary 5.6 that for n � 7
every irreducible complex representation of B of corank 2 is a specializa-n

Ž .tion of the standard representation see Definition 6. To complete the
proof of Theorem 6.1 it is enough to show that for n � 9 every irreducible
representation of B of dimension n is the tensor product of a one-dimen-n
sional representation and a representation of corank 2. This will be done
in Theorem 6.5. Before that we need some preparatory results. The key of

� 	the proof is the following theorem, which is similar to Theorem 16 of 3 .

Ž .THEOREM 6.2. Suppose that � : B � GL � is an irreducible rep-n�1 n�1
Ž .resentation of B of dimension n � 1 n � 4 . Suppose that the restrictionn�1

² : n�1of �, � � B � � , stabilizes the one-dimensional subspace �� of � .n�1 n
Ž Ž . .Then rank � � � yI � 2 for some y 
 �*.1

Ž .Proof. For notational simplicity we will write � instead of � � for
� 
 B .n

By hypothesis,

² :� � B � � : �� � ��n�1 n

is a one-dimensional representation of B � B , so there exist x, y 
 �*n�1 2
such that

� � � � � � ��� � � � � y� , � � � x� .1 2 n�2 n

Consider � � � � � � ��� � , � � �� ��1,n�1 1 2 n 0 n

� � � , � � � � , � � � 2 � , . . . , � � � n� .n n�1 1 n�1

Conjugation by � permutes � , . . . , � , � cyclically.1 n 0
Because � is an irreducible representation and � n�1 is central in B ,n�1
Ž n�1.� � � dI for some d 
 �*. Thus, the left action of � permutes

�� , �� , . . . , �� cyclically.1 2 n�1
We have

� � � x� ,i i i

� � � y�i i�j i�j
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for

i � 1, . . . , n � 1, j � 2, . . . , n � 1,

where indices are taken modulo n � 1.
The following table summarizes the above calculations:

� � � ��� � � �1 2 3 n�1 n n�1

� x� � y� ��� y� y� �1 1 3 n�1 n
� � x� � ��� y� y� y�2 2 n�1 n n�1
� y� � x� ��� y� y� y�3 1 3 n�1 n n�1. . . . . . . .. . . . . . . .. . . . . . . .

� y� y� y� ��� x� � y�n�1 1 2 3 n�1 n�1
� y� y� y� ��� � x� �n 1 2 3 n
� y� y� y� ��� y� � x�0 1 2 3 n�1 n�1

Suppose that � , . . . , � are linearly dependent. Consider1 n�1

a � � a � � ��� �a � � a � � a � � � ��� �a � t�1� � 0,1 1 2 2 t t 1 1 2 1 t 1

a linear dependence relationship with minimal t.
In the equation above, a � 0, since � is invertible, and a � 0 by the1 t

minimality of t.
We claim that t � n. Indeed, suppose that t � n � 1. Then � is an�1

linear combination of � , . . . , � , which are eigenvectors for � with1 n�2 n
� � � y� , i � 1, . . . , n � 2. So, � � � y� . Applying � 3 implies thatn i i n n�1 n�1
� � � y� , which means that �� is B -invariant, which contradicts the2 1 1 1 n�1
irreducibility of �. So, t � n.

Thus, � , . . . , � are linearly independent.1 n�1
Ž .Assume that rank � � yI � 2. Then, as1

dim Ker � � yI � rank � � yI � n � 1,Ž . Ž .Ž .1 1

Ž Ž ..dim Ker � � yI � n � 2.1
Note that � , . . . , � are n � 2 linearly independent elements of L �3 n
Ž . Ž Ž .. � 4Ker � � yI . So, dim Ker � � yI � n � 2, and L � span � , . . . , � .1 1 3 n

� 4 � 4Since the vectors � , . . . , � are linearly independent, � , . . . , � and1 n�1 2 n
� 4� , . . . , � are also linearly independent. Therefore � � L, and �3 n�1 2 n�1
� L.

The action of � implies that for i � 1, . . . , n � 1

� 4Ker � � yI � span � , . . . , � ,Ž .i i�2 i�2

� � L, and � � L, where indices are taken modulo n � 1.i�1 i�1
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Since � commutes with � , and n � 4,1 n

� � yI � � � � � � yI � � 0.Ž . Ž .n 1 2 1 n 2

Ž .Thus, � � 
 Ker � � yI , so1 2 n

� � � b � � b � � ��� �b � ,1 2 1 1 2 2 s s

where 1 � s � n � 2 and b � 0.s
We claim that s � 2. Indeed, if s � 3, then

0 � � � � yI � � � � yI � �Ž . Ž .1 s�1 2 s�1 1 2

� � � yI b � � b � � ��� �b � � � � yI b � .Ž . Ž . Ž .s�1 1 1 2 2 s s s�1 s s

Ž .This contradicts the fact that � � Ker � � yI .s s�1
Thus,

� � � b � � b � , b , b 
 �.1 2 1 1 2 2 1 2

By a symmetric argument which reverses the roles of � and � , and starts1 n
with the equation

� � yI � � � � � � yI � � 0,Ž . Ž .1 n n�1 n 1 n�1

we obtain

� � � c � � c � , c , c 
 �.n n�1 1 n�1 2 n 1 2

Using the action of � , we get the following table:

� � ��� � �1 2 n n�1

� x� b � � b � ��� y� c � � c �1 1 1 1 2 2 n 1 n�1 2 1
� c � � c � x� ��� y� y�2 1 1 2 2 2 n n�1
� y� c � � c � ��� y� y�3 1 1 2 2 3 n n�1. . . . . .. . . . . .. . . . . .

� y� y� ��� b � � b � y�n�1 1 2 1 n�1 2 n n�1
� y� y� ��� x� b � � b �n 1 2 n 1 n 2 n�1

� 4 � 4Span � , � , . . . , � is B -invariant. Thus, if � , � , . . . , � are1 2 n�1 n�1 1 2 n�1
� 4linearly dependent, then � is reducible. So, � , � , . . . , � are linearly1 2 n�1

independent, and they form a basis for � n�1.
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In this basis,

x b c� �1 2

0 b2

y
� � ,.1 . .

y� �c1

y� �
c1

c x b2 1

b� � .23

y
. . .� �y

Ž .Using the 3, 2 -entry of the matrix � � � � � , we have1 3 3 1

b c � yc .2 2 2

If c � 0, then �� is invariant under B , which contradicts the irre-2 1 n�1
Ž .ducibility of �. So, c � 0. Thus, b � y. Then rank � � yI � 2, a2 2 1

contradiction.
Ž . � 	 Ž .So, rank � � yI � 2. But by 3, Theorem 10 , the case rank � � yI1 1

Ž .� 1 is impossible. Thus, rank � � yI � 2.1

�The following argument is due to Formanek. He also used it in 3,
	Lemma 17 and Corollary 18 . My original argument was much longer.

� 	Lemma 6.3 below is a corollary of Theorem 23 of 3 , which classifies the
irreducible representations of B of dimension at most n � 1.n

Ž .LEMMA 6.3. If � : B � GL � is irreducible and r � n � 3, then � isn r
one-dimensional.

Ž .LEMMA 6.4. Let � : B � GL � be a representation, where n � 6.n r
Ž .Suppose that � is an eigen�alue of � � . Suppose that the largest Jordann�1

block corresponding to � has size s and multiplicity d.
² :If d � n � 5, then � � B � � has a one-dimensional in�ariantn�2 n�1

subspace.

Ž . Ž . Ž .Proof. Let f t be the minimal polynomial of � � . Set m t �n�1
Ž . Ž . r Ž Ž ..f t � t � � . Let V be the image of � under m � � . Then V isn�1
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² :invariant under � � B � � , and dim V � d. If d � n � 5, then byn�2 n�1
Lemma 6.3, all composition factors of

² :� � B � � : V � Vn�2 n�1

are one-dimensional.

THEOREM 6.5. For n � 9, e�ery n-dimensional complex irreducible repre-
sentation � of the braid group B is equi�alent to a tensor product of an

Ž .one-dimensional representation 	 y , y 
 �*, and an n-dimensional repre-
sentation of corank 2.

Proof. Assume not. Then by Theorem 6.2 and Lemma 6.4, the largest
Ž .Jordan block corresponding to each eigenvalue of � � has multiplicityn�1

� n � 4.
Ž .If � � has two or more eigenvalues, we getn�1

n � 4 � n � 4 � n ,Ž . Ž .

a contradiction, since n � 9. Similarly, if some eigenvalue has the corre-
sponding largest Jordan block of size s � 2, we get a contradiction

2 n � 4 � n.Ž .

Ž .Thus, � � has only one eigenvalue � and the Jordan canonical formn�1
Ž . Ž .of � � consists of 1 � 1 elementary Jordan blocks. But then � �n�1 n�1

� �I, which contradicts the irreducibility of �.
This completes the proof of the theorem, and thus the proof of Theo-

rem 6.1.
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