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Boron-containing organic compounds have found widespread use in synthetic organic chemistry. More
recently, boronic acid-containing polymers have proven valuable in a variety of biomedical applications,
including the treatment of HIV, obesity, diabetes, and cancer. However, as compared to many other
classes of functional polymers, boronic acid-containing (co)polymers remain underutilized, despite their
unique reactivity, solubility, and responsive nature. This Feature Article highlights research in this area,
with particular focus on recent developments in synthesis, processing, and materials development that
have enabled the preparation of new biomaterials. In addition to providing an overview to the current
state of the art, we emphasize the versatility of boronic acid polymers and suggest routes for their further
employment in other potential biomedical applications.

� 2011 Elsevier Ltd. Open access under CC BY-NC-ND license .
1. Introduction

Boronic acids contain trivalent boron atoms bonded to one
alkyl/aryl substituent and two hydroxyl groups (ReB(OH)2) [1].
Unlike carboxylic acids, boronic acids are not naturally occurring,
though they have appeared in the literature since at least 1860 [2].
Unique and versatile reactivity [3] and stability [4] of boronic acids
have led to uses in numerous areas, including CeC bond formation,
acid catalysis, asymmetric synthesis, carbohydrate analysis, metal-
catalysis, molecular sensing, and as therapeutic agents, enzyme
inhibitors, and novel materials (Fig. 1) [3].

Several unique characteristics of boronic acids make them well
suited for biomedical applications [5]. The empty p-orbital on boron
leads to Lewis acidity and facile interconversion from sp2 to sp3

hybridization in the presence of Lewis bases. In aqueous media, this
interconversion can readily occur by reaction with water, such that
neutral and trigonal boron is converted to an anionic tetrahedral
geometry. The pH at which this reaction occurs for 50% of the
boronic acid groups is defined as the pKa, with most boronic acids
having pKa z 4.5e10 [5e7]. Most of the polymeric boronic acids
reported in the literature contain phenylboronic acid moieties (-Ph-
B(OH)2) [8,9]. Addition of various substituents on the phenyl ring
allows the pKa to be tuned so that boronic acid-containing polymers
can be employed in a physiologically relevant pH range [5,10,11].
214 768 4089.
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Perhaps the most important chemical characteristic that has led
to boronic acids finding utility in a plethora of biomedical appli-
cations is the ability to form reversible covalent complexes with
1,2- or 1,3-diols [4,7]. In aqueous systems, boronic acids exist in
equilibrium between an undissociated neutral trigonal form (1) and
a dissociated anionic tetrahedral form (2) (Scheme 1) [10,12e15]. In
the presence of 1,2- or 1,3-diols, cyclic boronate esters formed by
reaction of the neutral boronic acid with a diol are generally
considered hydrolytically unstable [13]. On the other hand, reaction
of the anionic boronate anion (2) with a diol leads to stable boro-
nate esters (3). Therefore, the net effect of adding reactive diols to
boronic acids (1) in aqueous media is a shift in equilibrium to the
anionic forms (2 and 3) [10]. For polymeric boronic acids, this
transition from a neutral, and often hydrophobic polymer to
a hydrophilic polyanion can lead to useful “diol-responsive”
behavior.

Also of importance for biological applications, many boron
compounds exhibit uniqueneutronbombardment behavior [5]. Boron
naturally consists of two non-radioactive isotopes, boron-10 and
boron-11. Boron-10 is inw20% natural abundance and has the ability
to capture low energy thermal neutrons to release lithium-7 nuclei
and alpha particles capable of low penetration of alpha radiation [17].
Because these particles are capable of moving a distance approxi-
mately the width of a cell, boron neutron capture therapy (BNCT) is
particularly well suited for localized radiation therapy [17e21].

An encouraging sign for the use of boronic acids in medical
applications is a lack of apparent toxicity or in vivo instability issues.
Bortezomib (Velcade�), a boronic acid-based proteasome inhibitor,
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Fig. 1. Various uses of boronic acids [3]. Adapted from Aust. J. Chem., 60, Petasis, N.A.,
“Expanding roles for organoboron compounds e Versatile and valuable molecules for
synthetic, biological, and medicinal chemistry”, 795e798. Copyright (2007), with
permission from CSIRO.
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was approved by the US Food and Drug Administration inMay 2003
for the treatment of multiple myeloma with no unacceptable
toxicity issues [5,22,23]. The eventual end product in the break-
down of boronic acid-containing compounds is generally boric acid,
which is not particularly toxic to humans [5,24,25]. Boron is present
in various foods [26] and a variety of consumer products [27].
However, despite these encouraging signs, ultimately the toxicity of
each boronic acid considered for biological use requires individual
assessment.

Several reviews describe the use of small molecule boronic
acids in medical applications [3e5,28], but significantly less
attention has been dedicated to summarizing the biological
utility of boronic acid-containing polymers. The use of polymers
in biotechnology, particularly drug delivery, provides several
well-known benefits, including increased activity caused by
multivalency and the possibility of slow and controlled drug
release with targeted biodistribution. Macromolecular drug
delivery vehicles can provide increased circulation time in the
body since their relatively large size significantly limits rates of
glomerular filtration [29]. Additionally, small molecules can be
readily removed from the body by the reticuloendothelial
system (RES), while large hydrophilic polymer-based systems
may not be as readily detected, thus increasing their circulation
time [30].

Boronic acid-containing polymers with their unique reactivity
and stimuli-responsive behavior have potential applications as self-
healing materials, therapeutic agents, self-regulated drug delivery
systems, nucleotide adsorbents, and sensors for sugars and glyco-
proteins [8,28,31e39]. In this Feature Article, we highlight recent
reports of boronic acid-containing polymers being used in
biomedical applications. Focus will be given to materials that serve
as lipase inhibitors, human immunodeficiency virus (HIV) inhibi-
tors, glucose sensors, insulin delivery systems, dopamine sensors,
supports for cell growth, and BNCT agents.
Scheme 1. Ionization equilibria of bor
2. Lipase inhibition

Obesity, defined as abnormal or excessive fat that has accumu-
lated to an extent that may have an adverse effect on health, is
a major problem, particularly in the developed world. Obesity can
lead to increased risk for cardiovascular disease (e.g., heart disease
and stroke), diabetes, musculoskeletal disorders, and some forms of
cancers, such as endometrial, breast, and colon. To combat obesity,
diets low in fat and calories are often recommended, but the inci-
dence of compliance and maintenance of these diets is often low
[40]. Several chemical approaches, such as anorectic drugs, have
been used in an attempt to reduce appetite and food consumption.
However, all of these methods have associated risks and compli-
cations, and the most successful technique for controlling obesity is
currently controlled diet [40].

Dietary fat must be hydrolyzed prior to absorption by the
digestive tract. Lipases are enzymes responsible for the hydrolysis
of insoluble hydrophobic lipids [41]. Lipases hydrolyze lipids to
enable absorption by the digestive tract. Phenylboronic acid groups
have been shown to inhibit hydrolases, including lipases [42,43]
and proteases [44e46]. The ability of boronic acids to readily
convert between a neutral trigonal sp2 and anionic tetrahedral sp3

geometry is similar to that of an sp2 carbonyl carbon converting to
a tetrahedral sp3 carbon during the hydrolysis of amide or ester
bonds [5]. The inhibitory action of boronic acids is generally
thought to occur by the trigonal boronic acid forming a negatively
charged tetrahedral complex with a serine hydroxyl group in the
lipase active center (Scheme 2) [47]. The affinity of the enzymes for
the boronic acid residues is greater than that for typical lipid
substrates by a factor of 102-104 [48].

Lipase inhibitors can be used to prevent the hydrolysis of lipids
and thereby reduce fat absorption in the digestive tract. Undigested
triglycerides and diglycerides are then removed from the body
without significant absorption. While caloric intake is decreased as
a result, an unfortunate side effect is the occurrence of subsequent
leaky or oily stools. Therefore, fat-binding polymers can be admin-
istered in combinationwith lipase inhibitors to stabilize/complex the
undigested oils [49]. Polymers with electron withdrawing groups
either para ormeta to pendent aryl boronic acids have been shown to
be effective lipase inhibitors while simultaneously serving as fat
binders to help reduce the occurrence of these unpleasant side
effects [40].

3. HIV inhibition

HIV is the virus that leads to acquired immune deficiency
syndrome (AIDS) [50]. In 2009, there were an estimated 2.6 million
people newly infected with HIV, 1.8 million in sub-Saharan Africa
alone. While HIV can spread by a variety of mechanisms, unpro-
tected heterosexual intercourse is the dominant mode of HIV
transmission. Considering this, a clear need exists for women-
controlled prophylactics or microbicides that prevent HIV infec-
tion [51]. The design of effective microbicides requires under-
standing of vaginal physiology and the mechanism of heterosexual
onic acids in aqueous media [16].
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Scheme 2. Lipase inhibition by formation of a tetrahedral boronate adduct with an active site serine hydroxyl [48].

Fig. 2. Water-soluble polymers with phenylboronic acid and salicylhydroxamic acid
(SHA) moieties with 2-hydroxypropylmethacrylamide (HPMA) or acrylic acid (AA)
polymer backbones.
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HIV transmission. Vaginal fluid has a precoital pH that is acidic,
ranging frompHz4e5. Semen is capable of neutralizing the vaginal
fluid due to its alkaline nature, high buffering capacity, and larger
volume [52e54]. The transmission ofHIV starts through transport of
virions from the seminal fluid to themucosal surfaces in the vagina.
The virions can then transverse the vaginal epithelium to enter the
sub-epithelial tissue where the CD4 þ T-cells, macrophages, and
dendritic cells are infected [55]. Targets for active agents in micro-
bicides include the mucosa, tissue or cell/virus surfaces and inter-
ruption of the replication cycle within the cell [55].

Kiser and coworkers synthesized polymers capable of exploiting
the well-known complexation behavior between phenylboronic acid
moieties and diols to form hydrogel networks in physiological pH
ranges. Boronic acid-containing polymers were shown to form
reversible covalent interactions with salicylhydroxamic acid (SHA)
moieties on another polymer. Typically phenylboronic acids form
stable complexes with diols in neutral or alkaline environments
[10,12e14]; however, SHA has been shown to also form stable
complexeswithphenylboronicacidatmildlyacidicpHs [56,57].When
two randomcopolymers of 2-hydroxypropylmethacrylamide (HPMA)
or acrylic acid (AA) and 10 mol% N-[3-(2-methylacryloylamino)
propyl]-4-amidophenylboronic acid (APMAmPBA) and HPMA or AA
and 10 mol% 4-[(2-methylacryloylamino)-methyl]-salicylhydroxamic
acid (MAAmSHA) were mixed, the phenylboronic acid and SHA
moieties associated to form bonds that were reversible and formed
a dynamically crosslinked hydrogel network (Fig. 2) [58].

The hydrogels demonstrated a responsive viscoelastic behavior
with enough fluidity for application, yet at the higher pH that
results after insemination, became a highly crosslinked network
that entraps HIV-1 virions to prevent penetration of the mucosa.
This physical barrier can potentially halt the first steps of HIV
infection. Therefore, these hydrogels may serve as pH-sensitive
vaginal microbicides, though other possible applications as lyso-
somal and gastric drug delivery systems exist [58].

The viscoelastic behavior of these gels could be controlled by
varying the comonomer polymerized with the boronic acid or SHA
monomer [58]. When the polymer backbone was composed of
HPMA with APMAmPBA or MAAmSHA, the gel exhibited a viscous
behavior and slowly flowed under gravity due to the boronic acid-
SHA equilibrium lying toward the unbound state with only a few
groups complexed to form a viscoelastic network. When the pHwas
raised to 7.6, the equilibrium shifted primarily to the bound state
leading to a more highly crosslinked network. However, if AA was
used as the comonomer, the gels at pH 7.6 exhibited a behavior
similar toHPMAgels at pH4.2 due to theDonnan effect [58,59]. Kiser
et al. also examined copolymers with 2-acrylamido-2-methyl-1-
propanesulfonic acid [60]. The negatively charged backbone
allowed for reversible crosslinks to formatneutral pH,whichwasnot
typically observed in similar systems with an uncharged backbone.

In addition to fundamental studies on the viscoelastic behavior
of the aforementioned boronic acid-polymeric gels, Kiser et al.
examined the diffusion of Gag-Cherry labeled HIV-1 virions at
various pHs to access the possibility of the poly(HPMA-co-
APMAmPBA) and poly(HPMA-co-MAAmSHA) hydrogels to retain
HIV virions of approximately 110e128 nm [52]. At pH 4.3, the
virions were able to diffuse rapidly through the network. In general,
with increasing pH, the movement of the virion particles through
the hydrogel decreased. Interestingly, at pH 4.5, the HIV-1 virions
had even lower diffusion coefficients than smaller (100 nm) poly-
styrene beads, which was attributed to the ability of the phenyl-
boronic acid moieties to bind terminal sialic acid residues on
glycosylated regions of the HIV-1 envelope protein gp120 [52].

Another possible mechanism of HIV microbicides is to inhibit
entry of the virus into cells. The gp120 envelope proteins are largely
responsible for entry of HIV-1 into the CD4þ cells. Balzarini
proposed that carbohydrate-binding agents that target the glycans
on gp120 could show a marked enhancement of HIV neutralization
[61]. Hall et al. demonstrated the ability of polymers containing
multiple benzoboroxole moieties to bind glycopyranosides that
were similar to sugar moieties on gp120 [62]. Kiser and coworkers
synthesized high molecular weight copolymers of HPMA and 5-
methacrylamido-2-hydroxymethylphenylboronic acid with 25, 50,
and 75 mol-% benzoboroxole groups (Fig. 3A) [63]. All three poly-
mers demonstrated the ability to inhibit HIV entry for the strains
tested, with the activity increasing with the number of benzobor-
oxole sites [4,63]. Hypothetically, the benzoboroxole sites on the
polymer are capable of complexing with the mannose residues on
gp120, rendering the HIV-1 inactive before reaching the CD4þ cells
and halting HIV transmission (Fig. 3B, C) [63].
4. Saccharide sensing and controlled release/delivery

Diabetes mellitus, commonly referred to as diabetes, is a chronic
disease in which the body does not manufacture or use insulin
effectively. The World Health Organization (WHO) estimates that
180 million people are afflicted with diabetes, with that number
being expected to double by the year 2030. Blood glucose control is
typically accomplished via insulin therapy, a practice which has



Fig. 3. (A) Poly(2-hydroxypropylmethacrylamide) (PHPMA)-co-poly(5-methacrylamido-2-hydroxymethylphenylboronic acid. (B) Proposed scheme of polymer-bound o-hydrox-
ymethylphenylboronic acid complexed with the high mannose region of gp120. (C) Graphical depiction of the polymer (I) interacting with gp120 (II) of HIV-1 (III) [63]. Fig. 3B and C
reprinted with permission from Mol. Pharmaceutics, 7, Jay, J.I., Lai, B.E., Myszka, D.G., Mahalingam, A., Langheinrich, K., Katz, D.F., Kiser, P.F., “Multivalent benzoboroxole func-
tionalized polymers as gp120 glycan targeted microbicide entry inhibitors”, 116e129. Copyright (2010) American Chemical Society.
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been used since at least 1921. Because insulin must be subcutane-
ously injected several times per day and blood sugar values must be
checked regularly, patient compliance is often low. Onemechanism
to increase patient compliance is the development of improved
glucose monitoring systems and self-regulated insulin delivery
systems.

There are numerous examples of saccharide sensors [64e66]
and insulin release systems [67e79] that rely on lectins (e.g.,
Concanavalin A) or glucose oxidase. While these methods are
highly specific to glucose [64], the reliance on protein-based
components may limit applications under non-biological condi-
tions or over longer time spans due to the potential of denaturation
[16,80]. Therefore, there is significant interest in the development
of glucose sensing and insulin delivery systems based on purely
synthetic components. Because of their ability to covalently bind
with diols (i.e., sugars), boronic acid-containing polymers have
shown particular promise in this respect [80].

4.1. Saccharide sensing

There are several examples of boronic acid-containing sensors
and receptors [81e84]. Typically, the sensingmoiety is immobilized
on a support that facilitates end-use applications [82]. Saccharide
sensing with boronic acid-based systems generally relies on either
a b

c

Fig. 4. Boronic acid polymers used for sacch
optical property changes or conductivity changes upon binding of
a sugar with a boronic acid moiety [81].

4.1.1. Optical sensors
Several methods of glucose sensing with boronic acids rely on

a change in absorption upon binding with saccharides [85e89].
Shinkai et al. synthesized poly(L- and D-lysine)s modified with
phenylboronic acid residues [85e87]. Upon complexation of the
boronic acid groups with saccharides, the resulting anionic boro-
nate esters led to electrostatic interaction with a cationic cyanine
dye, leading the dye absorption spectrum to shift to shorter
wavelengths (Fig. 4a). Wolfbeis and coworkers copolymerized
aniline and 3-aminophenylboronic acid to obtain a sugar-binding
polymer film (Fig. 4b) [89]. Changes in the absorption spectra
were attributed to either steric effects that resulted from the
insertion of the saccharide altering the interactions between the
boronic acid and Lewis basic nitrogen atoms or the loss of interlayer
hydrogen bonding that occurred when the boronic acid groups
were converted to boronate esters. Other examples of boronic acid
polymers serving as optical saccharide sensors have relied on
interruption of azobenzene-boronic acid side chain complexes
upon sugar-binding (Scheme 3 and Fig. 4c) [88,90].

A number of fluorescence-based saccharide sensors have been
reported [91e95]. Wang and coworkers employed conventional
aride sensing via changes in absorption.
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Scheme 3. Proposed mechanism for the sugar-induced spectral change [90]. Reprinted
from Colloids Surf., B, 79, Okasaka, Y., Kitano, H., “Direct spectroscopic observation of
binding of sugars to polymers having phenylboronic acids substituted with an ortho-
phenylazo group”, 434e439, Copyright (2010), with permission from Elsevier.
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radical polymerization and atom transfer radical polymerization
(ATRP) to prepare fluorescent imprinted polymers that contained
boronic acid groups [91]. The resulting polymers showed an
increase in fluorescence intensity upon the addition of D-fructose.
This method of preparing sensors has been extended to other
sugars and catecholamines. Singaram et al. adopted a slightly
different approach for the design of fluorescence-based sensors by
synthesizing a two-component system that allowed continuous
blood glucose monitoring [92,96]. A hydrogel based on a cationic
boronic acid-based quencher monomer and an anionic pyrene-
based crosslinker was prepared by radical polymerization in the
presence of 2-hydroxyethyl methacrylate and poly(ethyleneglycol
dimethacrylate). The electrostatic interaction of the anionic dye
and the cationic receptor resulted in quenching of the pyrene
fluorescence. However, upon addition of glucose, the shift to
anionic, tetrahedral boronic ester groups led to increased fluores-
cence due to attenuation of the electrostatic attraction between the
cationic receptor/quencher and the anionic dye (Scheme 4).
Because this approach was based on fully reversible electrostatic
interactions, the system proved capable of continuous glucose
detection. As opposed to solution-based systems, these sensing
components were immobilized into thin-film poly(2-hydroxyethyl
methacrylate) hydrogels suggesting their potential for in vivo
continuous glucose detection [92,97].

In a similar manner, Yam et al. synthesized polyacrylamide-co-
poly(3-acrylamidophenylboronic acid) (PAPBA) copolymers and
exploited the shift of the boronic acid moieties to the anionic,
tetrahedral form upon binding with glucose to result in the
aggregation of positively charged pyrene derivatives which led to
a strong excimer emission [93]. Tao et al. synthesized a copolymer
containing pyrene and boronic acid units, from 3-
acrylamidophenylboronic acids (APBA) [94]. The saccharide-
induced conformational change of the copolymer could be moni-
tored via fluorescent spectroscopy.
Scheme 4. Proposed electrostatic interaction between fluorescent anionic dye and a cation
with permission from Langmuir, 22, Gamsey, S., Suri, J.T., Wessling, R.A., Singaram, B., “C
hydrogels: Linker effects and extension to fiber optics”, 9067e9074. Copyright (2006) Ame
Appleton and Gibson synthesized boronic acid-containing
photoinduced electron transfer (PET) materials [98]. Polymers
with amine, fluorophore, and boronic acid moieties in each repeat
unit exhibited increased fluorescence in the presence of saccha-
rides (Fig. 5a). It is believed that the saccharide binding to the
boronic acid moieties enhanced the Lewis acid-Lewis base inter-
actions between the amine and the boronic acid, which decreased
the interaction of the lone pair on the amine nitrogen with the
fluorophore, thereby leading to a decrease in PET and an increase in
fluorescence emission. Interestingly, these polymers exhibited high
specificity for glucose. James et al. reported a similar approach of
saccharide sensing based on PET [99]. A small molecule amine that
contained two boronic acid units and a pyrene fluorophore with
amaleic anhydride copolymer backbone allowed the preparation of
a variety of sensors in a modular manner (Fig. 5b).

Other methods of saccharide detection have relied on swelling of
boronic acid-containing hydrogels upon glucose binding due to the
increase in osmotic potential that occurs when the neutral boronic
acid groups are converted to anionic boronate esters [100e108].
Asher et al. have conducted extensive research involving crystalline
colloidal arrays (CCAs) embedded into a network containing phe-
nylboronic acid units [100e104]. Because the diffraction behavior of
the CCAs depend on the hydrogel volume, glucose concentration
could be directly inferred from the change in diffraction wavelength
(Scheme 5). Interestingly, these materials have been examined for
use as ocular inserts for themonitoring of blood glucose values [101].
In a similar manner, Lowe and coworkers synthesized holographic
biocompatible hydrogels using either APBA or 2-acrylamido-5-
fluorophenylboronic acid [105,106]. Glucose-induced swelling of
the hydrogel led to a concentration dependent red shift. Zenkl et al.
synthesized crosslinked nanospheres of APBA and N-iso-
propylacrylamide (NIPAM) that contained a fluorescence resonance
energy transfer donor and acceptor [107]. Swelling of the nano-
particles resulted in separation of the donor/acceptor pair which
caused a decrease in the energy transfer rate.

4.1.2. Conductivity sensors
Other saccharide sensing systems have relied on a change in

conductivity that occurs during the interaction of boronic acid
moieties with saccharides [109e114]. Okano and coworkers
prepared a copolymer of N,N-dimethylacrylamide (DMA), 3-
methacrylamidophenylboronic acid (MAPBA), 3-dimethylam-
inopropyl acrylamide (DMAPAA), and n-butyl methacrylate that
formed complexes when mixed with poly(vinyl alcohol) [109].
When coated on a platinum electrode, the resulting gel
membranes swelled upon introduction of a saccharide. The
swelling resulted in an increase in ion diffusion and thus a current
ic, boronic acid/ester receptor in the presence and absence of glucose [96]. Reprinted
ontinuous glucose detection using boronic acid-substituted viologens in fluorescent
rican Chemical Society.
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Fig. 5. Boronic acid polymers for saccharide sensing via photoinduced electron transfer (PET) [98,99].
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change. Michaels and coworkers also reported a conduction-based
glucose detection system based on boronic acid moieties immo-
bilized in a hydrogel [110]. Freund et al. synthesized a poly(aniline
boronic acid) (PABA)-based system capable of continuous
saccharide monitoring in the physiological relevant range of
4e6 mM [111,112]. Oxidative polymerization with the horseradish
peroxidase enzyme in the presence of an anionic polyelectrolyte
template has been used to prepare self-doped copolymers of
poly(aniline-co-3-aminobenzeneboronic acid) that were capable
of optical and electrochemical detection of saccharides with
improved sensitivity as compared to chemically synthesized
counterparts [113].

4.2. Controlled release and drug delivery

Reliable knowledge of blood sugar concentrations is indeed
a key component to the management of diabetes. However,
Scheme 5. Swelling of crystalline colloidal arrays in response to carbohydrates [100]. Adap
A.V., Sharma, A.C., Lednev, I.K., Wilcox, C.S., Finegold, D.N., “Photonic crystal carbohydrate
Chemical Society.
treatment of the disease typically requires insulin delivery. Boronic
acid polymers have proven useful in this respect as well, with most
delivery strategies relying on the change in hydrophilicity brought
on by conversion of neutral boronic acid moieties to anionic bor-
onate esters upon reaction with a diol (i.e., glucose) [14]. As the
concentration of a compatible diol is increased, the ratio of the
anionic boronate (2) and boronate ester (3) to neutral boronic acid
(1) increases, and the hydrophilicity of the system is enhanced
(Scheme 1) [12].

Many of the boronic acid-based polymers for insulin delivery are
hydrogels that either swell or collapse in response to the hydro-
philicity increase in the presence of glucose. A number of the
systems are based on APBA [9,15,115e128]. PAPBA (co)polymers can
be readily prepared by the postpolymerization modification of
a precursor polymer, typically PAA with a boronic acid amine.
Alternatively, direct polymerization of APBA or the polymerization
of its diol ester followed by deprotection has been reported (vide
ted with permission from J. Am. Chem. Soc., 125, Asher, S.A., Alexeev, V.L., Goponenko,
sensors: Low ionic strength sugar sensing”, 3322e3329. Copyright (2003) American
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infra). The postpolymerization functionalization strategy of PAA has
been described in several reports for the preparation of boronic
acid-containing gels or microgels [9,117,124,125,127]. In several
cases, the inclusion of a cationic comonomer, such as N,N-dime-
thylamino ethylacrylate (DMAEA) allowed the net surface charge of
microgels to be switched from cationic to anionic at critical glucose
concentrations (Fig. 6) [124,125]. Swelling induced by the change in
charge balance allowed delivery of insulin. Instead of modification
of PAA, Strongin et al. synthesized sugar-responsive hydrogels via
the modification of commercially available poly(methyl methac-
rylate) with 3-aminophenylboronic acid moieties and demon-
strated the possibility of release from the swollen hydrogels [118].

Direct copolymerization of APBA with other hydrophilic or
stimuli-sensitive monomers is another strategy to prepare hydro-
gels capable of releasing insulin in response to increased sugar
concentrations. In particular, gels composed of APBA and NIPAM
have been heavily considered, as a result of the synergistic
combination of sugar and temperature sensitivity [15,119e121]. In
addition to increased negative charge in the presence of sugar
leading to osmotic swelling, gels containing NIPAM demonstrated
volume phase transition temperatures dependent on the number of
boronic acid moieties. Ravaine et al. demonstrated the ability of
such gels to encapsulate insulin and release it in a relatively linear
manner in response to increased concentrations of glucose [120].
Xie and coworkers reported a similar system but with poly(NIPAM-
co-APBA) side chains grafted to the poly(NIPAM-co-APBA) hydro-
gels [122]. The more highly branched systems were found to have
particularly fast glucose responses.

In addition to a charge-driven increase in osmotic pressure, an
alternative strategy of sugar-induced release of hydrogel-
encapsulated compounds capitalizes on competitive cleavage of
boronic ester crosslinks by transesterification with saccharides. For
example, copolymers containing APBA have been crosslinked by
complexation with compounds that contain more than one diol
functionality. These multi-diol crosslinkers can be small molecules
(e.g., diglucosylhexanediamine [123]) or polymers (e.g., poly(vinyl
alcohol) [115,116]). Gels formed in this manner contain boronic
ester crosslinks that can be cleaved by transesterification with
monofunctional diols (i.e., sugars). This approach has been
employed to prepare sugar-responsive nanoparticles with narrow
size distributions [126]. Upon exposure to glucose, complexes
formed between the boronic acid polymer and the multi-diol
crosslinker were displaced due to preferential binding to glucose
molecules. The resulting decrease in cross-linking density allowed
swelling and subsequent controlled release from the hydrogels or
nanogels. Okano and coworkers reported a slightly different
competition-based approach involving hydrogel beads that con-
tained boronic acid units complexed to gluconic acid-modified
insulin (G-Ins) [129e132]. The addition of free glucose led to
displacement and linear release of G-Ins.

Dissociation of boronic acid-containing interpolyelectrolyte
complexes is another mechanism for sugar-responsive delivery of
Fig. 6. Microgel behavior with initial cationic charge and initial anionic charge after the add
Pelton, R., “Charge-switching, amphoteric glucose-responsive microgels with physiological
potential therapeutics. De Smedt and coworkers utilized 4-
sodium polystyrene sulfonate (NaPSS) and a random copolymer
of APBA and DMAEA to form hollow polyelectrolyte capsules by
a layer-by-layer approach [128]. Electrostatic interactions
between the alternating layers of negatively charged sulfonate
groups in the NaPSS and positively charged ammonium moieties
in poly(APBA-co-DMAEA) allowed polyelectrolyte capsules to be
formed at neutral pH. When the pH was raised to 9 and glucose
was added to the system, a critical number of the boronic acid
units became negatively charged, disrupting the electrostatic
balance. The interruption of the multilayers led to dissociation of
the capsules (Fig. 7).

Most of the materials described above demonstrate maximum
glucose-sensitivity at pH z 9e10. In an effort to synthesize gels
that respond at physiologically relevant pH, Kataoka et al. recently
introduced a novel boronic acid monomer, 4-(1,6-dioxo-2,5-diaza-
7-oxamyl)phenylboronic acid (DDOPBA), with a pKa of approxi-
mately 7.8 [133e135]. Gels were synthesized with DDOPBA and
a thermoresponsive polymer, poly(N-isopropylmethacrylamide),
that exhibited a phase transition temperature of approximately
40 �C. The gels underwent volume changes under physiological
conditions in response to changes in glucose concentrations within
the range of typical sugar levels.

In order to fully exploit the unique properties of boronic acid
polymers in delivery applications, it is important to prepare well-
defined copolymers with predictable molecular weights, narrow
molecular distributions, and retained chain end functionalities, the
latter of which is particularly important for the preparation of block
copolymers capable of self-assembly into nanoscale delivery vehi-
cles, such as micelles, vesicles, etc [136,137]. Controlled/“living”
radical polymerization (CRP) methods, such as ATRP [138e140] and
reversible addition-fragmentation chain transfer (RAFT) polymer-
ization [141e145], offer control over these areas and have been
used to prepare organoboron-containing polymers [32,146e164].
Jäkle and coworkers synthesized poly(4-vinylphenylboronic acid)-
b-polystyrene (PVPBA-b-PS) block copolymers by ATRP. A block
containing a silylated styrenic precursor was borylated and
subsequently hydrolyzed to yield the boronic acid functionality
[149,155].

Our group has exploited RAFT polymerization to synthesize
a variety of well-defined boronic acid block copolymer via two
general routes (Scheme 6) [150,158e160]. One approach relies on
the polymerization of pinacol esters of boronic acid monomers
followed by a mild deprotection procedure via hydrolysis and
transesterification with solid-supported boronic acid groups [158].
The second approach involved direct synthesis of well-defined
boronic acid (co)polymers by controlled polymerization of free,
unprotected boronic acid monomers [159,160]. The latter approach
wasmade possible by the robust functional group tolerance of RAFT
and has the benefit of eliminating a deprotection step.

Block copolymers with DMA prepared by either route were
fully water-soluble above the pKa of the boronic acid moieties
ition of glucose [125]. Reprinted with permission from Biomacromolecules, 9, Hoare, T.,
swelling activity”, 733e740. Copyright (2008) American Chemical Society.



Fig. 7. Disruption of polyelectrolyte layers upon addition of glucose [128]. Adapted with permission from Langmuir, 22, De Geest, B.G., Jonas, A.M., Demeester, J., De Smedt, S.C.,
“Glucose-responsive polyelectrolyte capsules”, 5070e5074. Copyright (2006) American Chemical Society.
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[159]. However, the block copolymers self-assembled to form
micelles with boronic acid cores at reduced pH. When the pH was
raised above the pKa or glucose was introduced, the micelles
dissociated. When the hydrophilic DMA block was replaced with
temperature-responsive poly(N-isopropylacrylamide) (PNIPAM)
[165], triply-responsive block copolymers that respond to changes
in pH, glucose concentration, and temperature were obtained
(Fig. 8) [160].

Shi et al. and Ji et al. used ATRP to prepare poly(ethylene glycol)
(PEG)-containing boronic acid block copolymers that were sugar-
sensitive [161,162] and capable of insulin release [161]. Recently,
van Hest et al. reported the synthesis of a block copolymer with 4-
dimethylaminomethylstyrene-3-pinacol boronate and PEG via
RAFT using a PEG macroCTA [163]. The boronate ester moieties
were deprotected in situ leaving a block copolymerwithWulff-type
boronic acid moieties with lower pKa values due to the interaction
between B and N atoms that stabilized the boronate ester at lower
pH values [166,167]. The resulting block copolymers were capable
of dissociation in response to saccharides in a phosphate buffer at
the physiologically relevant pH of 7.4 (Fig. 9).

5. Dopamine sensing

Dopamine (Fig. 10) is a catecholamine neurotransmitter
involved in the reward and pleasure centers of the brain. Dopamine
also plays a role in the regulation of movement, and abnormal
dopamine levels are linked to neurological disorders such as
schizophrenia, Huntington’s disease, and Parkinson’s disease. To
assess in vivo dopamine levels, sensors must be fast, sensitive, and
selective [168]. Dopamine concentrations can be 0.01e1 mM in
Scheme 6. Synthesis of boronic ester-containing block copolymers via RAFT followed by dep
boronic acid-containing block copolymers (Route 2) [16]. Reprinted from Prog. Polym. Sci.,
stimuli-responsive materials”, 278e301, Copyright (2010), with permission from Elsevier.
healthy individuals and even lower in patients with Parkinson’s
disease [168e171]. A possible method of dopamine detection
relies on facile oxidization to dopamine-o-quinone with conven-
tional electrodes [168,171]. However, the presence of other easily
oxidized compounds, such as ascorbic acid, often present in
higher concentrations in brain fluid samples further complicates
accurate measurements [168,171]. This has resulted in the use of
boronic acids and their unique ability to complex with diols to
increase the selectivity of electrodes for measuring dopamine
concentrations.

PABA (Fig. 4b) can be used in the synthesis of electrodes for
improved dopamine detection [172e176]. Interdigitated micro-
array [172] and glassy carbon electrodes [173] have been modified
with PABA. In these cases, dopamine bonding to boronic acid
moieties on the polyaniline resulted in reduced electrical conduc-
tivity. The sensors worked fairly selectively even in the presence of
ascorbic acid. Nonetheless, the polyaniline backbone continued to
promote some degree of oxidation of ascorbic acid [173]. However,
incorporation of Nafion into the PABA film significantly suppressed
the ascorbic acid response, allowing further increased selective
determination of dopamine [171,177]. Nafion electrostatically
repels the ascorbic acid [171] and cation exchange leads to uptake
of positively charged dopamine [177]. In another study, gold elec-
trodes were modified with PABA and single-walled carbon nano-
tubes wrapped with single-stranded DNA (ss-DNA/SWNT)
[174e176]. The sensitivity to dopamine increased four orders of
magnitude as compared to electrodes modified with PABA only, an
observation attributed to the ss-DNA/SWNT serving as a template
during the polymerization and therefore increasing the quality of
the PABA film (Fig. 11) [171,175,176].
rotection (Route 1) and direct RAFT polymerization of an unprotected monomer to yield
35, Roy, D., Cambre, J. N., Sumerlin, B. S., “Future perspectives and recent advances in



Fig. 8. PAPBA-b-PNIPAM self-assembly/dissociation in response to changes in pH, glucose concentration, and temperature [160]. e Reproduced by permission of The Royal Society
of Chemistry.

Fig. 9. Wulff-type boronic acid-containing polymers with saccharides in various pH environments. Tube 1: Polymer in phosphate buffer system (PBS) (pH 7.4); Tube 2: Polymer in
PBS with D-fructose (50 mM); Tube 3: Polymer in PBS with D-glucose (100 mM); Tube 4: Polymer in TRIS (pH 7.8) with D-glucose (100 mM) [163]. Reprinted with permission from J.
Am. Chem. Soc., 131, Kim, K.T.K., Cornelissen, J.J.L.M., Nolte, R.J.M., van Hest, J.C.M., “Polymeric monosaccharide receptors responsive at neutral pH”, 13908e13909. Copyright (2009)
American Chemical Society.
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6. Cell growth surfaces

Typical cell-culture surfaces rely on nonspecific protein
absorption [178]. Removal of cell cultures following growth and
proliferation typically involves treatment with trypsin, which can
result in significant cell damage. An optimal surface would
encourage cell adhesion but not require harsh treatment for
subsequent cell recovery [178].

Functionalization with boronic acid (co)polymers has proven to
be a convenient method to render surfaces useful for cell culturing.
For example, Saito and coworkers demonstrated that surfaces
functionalized with a terpolymer (PMBV) of 2-methacry-
loyloxyethyl phosphorylcholine, butyl methacrylate, and 4-
vinylphenylboronic acid promoted the adsorption of the glyco-
protein fibronectin by boronate ester formation (Fig. 12) [178].
Fibronectin is known to mediate several cellular interactions and
plays a vital part in cell adhesion, growth, and differentiation. Thus,
surfaces modified in this manner were capable of promoting cell
adhesion and proliferation. As opposed to more traditional routes
of cell culturing, the adhered cells were readily detached via the
addition of D-sorbitol or D-fructose solutions due to competitive
binding of the sugars with the boronic acid residues in the polymer.
Ivanov et al. prepared surface-initiated poly(N,N-dimethylacryla-
mide)-co-PAPBA copolymer brushes from siliceous surfaces and
Fig. 10. Structure of the neurotransmitter dopamine.
studied the effect of the boronic acid moieties on the adherence of
agarose particles and yeast cells. Boronate ester formation due to
interaction of the polymeric boronic acid units with carbohydrates
on the surface of the particles and cells resulted in well-defined
monolayer cell absorption at pH 8e9 [179]. Interestingly, surfaces
functionalized with the tethered boronic acid copolymers were
more effective at encouraging cell adhesion than were surfaces
modified with lowmolecular weight boronic acid compounds. This
Fig. 11. Boronic acid-polymeric multilayers for the sensing of dopamine. The top
Nafion layer electrostatically repels ascorbate from the electrode surface while dopa-
mine penetrates to the bottom layer of the ss-DNA/SWNTs/PAPBA composite to bind
with boronic acid groups [171]. Reprinted with permission from Anal. Chem., 79, Ali,
S.R., Ma, Y., Parajuli, R.R., Balogun, Y., Lai, W.Y.-C., He, H., “A nonoxidative sensor based
on a self-doped polyaniline/carbon nanotube composite for sensitive detection of the
neurotransmitter dopamine”, 2583e2587. Copyright (2007) American Chemical
Society.
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basic approach has also proven useful for the adherence, removal,
and retention of viability and function of other cells, including
mammalian cells [180,181] and lymphocytes [182,183].

Hubbell et al. utilized the interaction between boronic acid
residues and carbohydrates on cell surfaces to stabilize and
passivate the cells to biological recognition events [184]. A poly(L-
lysine) backbone was functionalized to contain PEG and phenyl-
boronic acid side chains. The boronic acid groups allowed the
copolymer to be immobilized by complexing to carbohydrates on
cell or tissue surfaces, while the PEG component provided steric
stabilization. Polymers of this type could be useful to prevent
antibody binding to transplanted cells.
7. Boron neutron capture therapy (BNCT)

Irradiation of boron-10 with slow neutrons produces alpha
particles and lithium nuclei. Alpha particles are highly damaging to
human tissue but are capable of very limited penetration. There-
fore, irradiation of boron compounds in tumor cells is a viable
means to administer non-invasive and localized radiation therapy.
Effective BNCT relies on specific delivery of boron-containing
compounds that are rich in 10B to the tumor site. BNCT agents can
contain single [28] or multiple borons [28,185e187]. Molecules that
have single borons are usually aryl boronic acids due to their
oxidative and hydrolytic stability [188,189], though the naturally
low concentration of 10B generally requires rather expensive
isotopic enrichment in order for boronic acids to be efficient BNCT
agents. On the other hand, BNCT agents with multiple borons,
typically polyhedral borane anions or carboranes, are much more
effective.

Wright et al. employed a commercially available
polyacrylamide-based gel with MAPBA groups to prepare gel
particle suspensions and colloids for BNCT [190]. Boronic acid
groups on the gel surface were allowed to bind oligosaccharide
units on avidin, providing sites for the immobilization of bio-
tinylated antitumor antibodies to assist with selective uptake. Jiang
and coworkers synthesized dextran-PAPBA nanoparticles with
tunable size and compositions [191]. The biocompatible nano-
particles were capable of encapsulating doxorubicin and
penetrating cell membranes. These boron-containing nanoparticles
were reported to have potential applications in BNCT and chemo-
therapy for cancer treatment.

Copolymers with either styrenic or acrylamido boronic acid
units have also shown potential as BNCT agents [21,192]. Copoly-
mers with 4-vinylphenylboronic acid and maleic anhydrides were
partial grafted with a-hydroxy-u-methoxy-poly(ethylene oxide),
and the resulting macrobranched copolymers were complexed
with polyethyleneimine [192]. Hydrogen bonding resulted in the
formation of supramolecular structures with possible uses for
BNCT.
8. Summary

Boronic acid compounds have found utility in a variety of
biomedical applications. However, given the rather unique ability
of boronic acids to bind to saccharides, the ubiquity of such
saccharides in biological systems, and the benefit of exploiting this
phenomenon in a multivalent manner, there remains a consider-
able number of unexplored applications specifically for boronic
acid polymers. Indeed, polymeric boronic acids have not been as
widely utilized and could provide additional benefits over their
small molecule counterparts. While exciting opportunities exist for
these polymers, there are several challenges to overcome.

Many of the biological applications of boronic acids rely on
interactions with diols (e.g., sugars). However, there are two
specific challenges that must be addressed during the design of
new boronic acid biomaterials that operate by reacting with diols.
Firstly, boronate ester formation occurs most efficiently above the
pKa of the boronic acid. Most phenylboronic acids have pKa values
that are significantly higher than physiological pH. New strategies
for preparing polymers with reduced pKa values have been repor-
ted, but more research is needed in this area. Secondly, complexes
between boronic acids and diol compounds often exhibit limited
specificity. Given the large number of diol compounds present in
biological systems, new approaches for increasing specificity could
prove useful for both current and future proposed applications.
In this respect, much can be learned from the small molecule
saccharide sensing literature, where strategies have evolved to
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increase selectivity. Additionally, new polymeric materials formed
by molecular imprinting or by relying on the increased potential of
multivalent interactions of one sugar over another could likely
contribute in this area.

Despite these challenges, boronic acid-containing polymers
have demonstrated great promise for applications in a variety of
biological applications. Given the recent development of new
techniques that allow their controlled synthesis, it is likely that
boronic acid polymers will demonstrate even greater utility as
versatile biomaterials in the near future.
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Abbreviations

AA: acrylic acid
APBA: 3-acrylamidophenylboronic acid
APMAmPBA: N-[3-(2-methylacryloylamino)propyl]-4-amidophenylboronic acid
ATRP: atom transfer radical polymerization
CCA: crystalline colloidal array
DDOPBA: 4-(1,6-dioxo-2,5-diaza-7-oxamyl)phenylboronic acid
DMA: N,N-dimethylacrylamide
DMAEA: N,N-dimethylamino ethylacrylate
DMAPAA: 3-dimethylaminopropyl acrylamide
G-Ins: gluconic acid-modified insulin
HPMA: 2-hydroxypropylmethacrylamide
MAAmSHA: 4-[2-methylacryloylamino)-methyl]-salicylhydroxamic acid
MAPBA: 3-methacrylamidophenylboronic acid
NaPSS: 4-sodium polystyrene sulfonate
NIPAM: N-isopropylacrylamide
PAA: poly(acrylic acid)
PAPBA: poly(3-acrylamidophenylboronic acid)
PABA: poly(aniline boronic acid)
PEG: poly(ethylene glycol)
PET: photoinduced electron transfer
PNIPAM: poly(N-isopropylacrylamide)
RAFT: reversible addition-fragmentation chain transfer polymerization
RES: reticuloendothelial system
SHA: salicylhydroxamic acid
ss-DNA/SWNT: ss-DNA-wrapped single-walled carbon nanotube
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