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Abstract

Although extensive research has been devoted to cognitive models of human language, the role of
executive functions in language processing has little been explored. In this work we present a neural-
network-based cognitive architecture which models the development of the procedural knowledge that
underpin language processing. The large scale organization of the architecture is based on a multi-
component working memory model, with a central executive that controls the flow of information
among the slave systems through neural gating mechanisms. The system was validated, starting from a
tabula rasa condition, on a on a corpus of five datasets, each devoted to a thematic group, based on
literature on early language assessment, at the level of a preschool child. The results show that the
system is capable of learning different word classes, and to use them in expressive language, through
an open-ended incremental learning process, expressing a broad range of language processing
functionalities.

Keywords: large-scale artificial neural networks, human language understanding, verbal working memory,
cognitive architectures, Hebbian learning rule

1 Introduction

Neural-network language models are suitable for modeling the cognitive foundations of language
processing and for representing statistical regularities in natural language [1-3]. They have widely
been used in natural language processing (NLP), demonstrating superior performances over
conventional approaches in next-word prediction and other standard NLP tasks. Recently, deep
learning techniques based on recurrent neural networks (RNNs) have been used successfully for
several NLP tasks, including speech recognition [4], parsing [5,6], machine translation [7], sentiment
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analysis of text [8]. Although some of these models are biologically inspired, they are mainly designed
as engineering solutions to specific problems in NLP. On the other hand, little work was done to
integrate neural models of language into comprehensive cognitive models compatible with current
knowledge of how verbal information is stored and processed in the brain. Miikkulainen [3,9] and
Fidelman et al. [10] presented a cognitive neural architecture able to parse script-based stories, to
store them in episodic memory, to generate paraphrases of the narratives, and to answers questions
about them. Their model was tested on a small corpus of nine scripts, each of which consisted of 4-7
sentences. Dominey and Hinaut [11,12] proposed a neural model of brain areas involved in language
processing, able to learn grammatical constructions and to generalize the acquired knowledge to novel
constructions.

In this work, we present a cognitive neural model aimed at explaining the development of the
procedural knowledge that is involved in processing verbal information at the sentence level,
combining it with information retrieved from long-term memory, selecting relevant items and planning
language production. The purpose of this work is to contribute to understanding the mechanisms that
make the human brain able to develop a broad range of language processing skills, starting from a
tabula rasa condition.

2 Methods

The model described in this work, called ANNABELL (Artificial Neural Network with Adaptive
Behavior Exploited for Language Learning), is a cognitive neural architecture that was designed to
help understand the cognitive processes involved in early language development. A detailed
description of the model and of the database used for its validation is provided in Ref. [13]. The source
code of the software, the User Guide and the datasets used for its validation are available in the
ANNABELL web site at https:/github.com/golosio/annabell/wiki . The global organization of the
architecture is based on a multi-component working memory model [14]. The model comprises four
main components, as shown in Fig. 1: a verbal short-term memory (STM), a verbal long-term memory
(LTM), a central executive (CE) and a reward structure.

The STM includes a phonological store, a focus of attention, a goal stack and a comparison
structure. The phonological store maintains the working phrase, which is either acquired from verbal
input or retrieved from LTM. The focus of attention holds up to about four words. The goal stack is a
structure for storing goal chunks that contributes to decision-making processes. The comparison
structure recognizes similarities among words in the phonological store, in the focus of attention and
in the goal stack, and is also used for decision-making processes.

The LTM includes a structure for memorizing the working phrases, and a retrieval structure that
uses the focus of attention as a cue for retrieving memorized phrases.

The CE controls all decision-dependent processes. It includes a state-action association system, a
set of action neurons and a set of gatekeeper neurons. The state-action association system is a neural
network that is trained by a rewarding procedure to associate mental actions to the internal states of
the system.

The reward structure is a system that memorizes the sequences of the internal states and of the
mental actions performed by the system (state-action sequences) during the exploration phases. When
the exploration produces a target output, the reward structure retrieves the state-action sequence and
rewards the association between each internal state and the corresponding mental action, by triggering
synaptic changes of the state-action association connections.

At the lowest level, the system is entirely composed by interconnected artificial neurons. The
learnable connections among neurons are updated by a discrete version of the Hebbian learning rule
(DHL rule) [15,16]. The inhibitory competition among groups of neurons is modeled by the k-winner-
take-all rule [17].
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Figure 1. Schematic diagram of the main system architecture. (a) Short-term memory and long-term
memory. (b) Central executive and reward structure.

The network architecture is designed in such a way that the system can elaborate phrases using
mental actions, which are elementary operations on word groups and phrases that are used, for
instance, for acquiring the words of the input phrases, for memorizing phrases, for extracting word
groups from the working phrase, for retrieving memorized phrases from word groups through an
association mechanism, etc. Such actions are performed by special neurons, called mental action
neurons, which can control the flow of signal between different subnetworks. Each mental action
neuron can activate one or more gatekeeper neurons, which control the flow of signal between
different subnetworks. Neural gating mechanisms play an important role in the cortex and in other
regions of the brain [18]. In the ANNABELL model, the gatekeeper neurons are generally fully
connected to one or more subnetworks, and they can enhance or suppress the activation state of the
postsynaptic neurons, acting in a similar way to a change in the bias signal. In this manner they can
control the flow of signal from one part of the system to another.

A key feature of the ANNABELL system that is particularly important for its generalization
capabilities is that the learnable connections that are affected by the reward (i.e. the connections of the
state-action association system) are connected to action neurons, rather than being directly connected
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to output words or phrases. In this way, the system learns preferentially to build the output through
sequences of elementary operations on word groups or phrases.

The system was implemented on a PC equipped with a high-performance GPU (graphics
processing unit) NVIDIA Kepler GK104 having 1536 cores. The current version of the system is
composed by 2.1 million neurons, interconnected through 27 million connections.

3 Results and Discussion

The database used for training and validating the system is based on literature on early language
assessment. Its sentences have been prepared by treating the system as a child in a virtual social
environment. The database is organized in five datasets, which include declarative sentences and
interrogative sentences. The first dataset, devoted to the subject people, includes sentences related to
the people that belongs to the social environment of the girl impersonated by the system, and it is
inspired by the Language Development Survey work of Rescorla [19,20]. The second dataset, called
parts of the body, includes sentences related to the definition, location and function of thirty-three
body parts. The third dataset, named categorization, uses the animal-world classification for training
the system to answer simple questions related to categorization, category hierarchies and combinations
of categories and adjectives. The fourth dataset, devoted to the communicative interactions, is based
on the Warren-Leubecker corpus [21,22] from the CHILDES database [23]. This corpus contains data
transcribed from child-parent conversations. In particular, the session used in this work (the file
“david.cha”) is a conversation between a 5-years-and-10-months old child and his mother. The fifth
dataset represents a text-based virtual environment where the system can perform simple tasks by
means of verbal commands. The system is trained to accomplish the task of bringing objects to a
person, which involves the ability to move in the virtual environment from some starting room to the
room where an object is located, to execute the command for taking the object, to move back to the
starting room and to execute the command for giving the object to the person.

The training procedure is organized in five learning sessions, one for each dataset. Each session is
divided in two stages. During the first stage, a set of declarative sentences from the corresponding
dataset is presented to the system. As the system does not have any other sensory input, all the
information must be provided to it in the form of verbal descriptions. In the subsequent training stage,
the teacher trains the system by asking it a set of questions related to the previous sentences. During
this stage, the system works in an exploration modality, which combines an association mechanism
with partially-random operations on word groups and phrases. The teacher guides the system to
retrieve useful associations, and instructs the interface to trigger a reward signal when the system
yields a correct answer.

The evaluation of the system performance (test stage) is performed at the end of the learning
sessions, after the cumulative training on all five datasets. In this stage, the teacher evaluates the
system by asking it a set of questions similar to the ones used during the training stages, and by testing
the generalization capabilities of the system, i.e. its ability to elaborate the information provided by the
memorized sentences, and to answer questions having a similar structure to those presented during the
training stages but involving different nouns, adjectives or verbs. The teacher also validates the
linguistic competences of the system in the use of articles, nouns, verbs, adjectives, personal pronouns,
possessive pronouns and other word classes. The system output sentences were considered to be valid
when they were syntactically and semantically correct and appropriate for the conversation. In the test
related to the communicative interaction dataset, the human interlocutor brought out the system in a
conversation similar to the one transcribed in the corpus.

The system performance was evaluated through a four-round cross validation. In a single round of
the cross validation, the system was trained and evaluated using 1587 input sentences, containing 595
different words, with an average number of 5.6 words per sentence. It produced 521 output sentences,
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containing 312 different words (expressive vocabulary), with an average number of 4.6 words per
sentence.

The percentage of correct output sentences over the total number of requested output sentences,
averaged over the four rounds of the cross validation, was 82.4% for the people dataset, 85.3% for the
parts of the body dataset, and 95.3% for the categorization dataset. The communicative interaction
dataset and the virtual environment dataset are excluded here because they are not suitable for this
type of evaluation.

In the session based on the Warren-Leubecker corpus, the total number of tokens (words) used by
the system in the output sentences was 111, while those used by the real child in the same conversation
were 134. The total numbers of different token types were 75 and 86, respectively. The type/token
ratios are close to each other, being 0.68 for our system and 0.64 for the child.

The capacity of the system to generalize acquired knowledge to new situations was tested in two
generalization experiments. The first experiment tested the ability of the system to handle learned
grammatical constructions with new open-class words. For this purpose, we used an extended corpus
of 5352 declarative sentences and 4028 interrogative sentences. This corpus was generated by
replacing the open-class words of the three datasets people, parts of the body and categorization, with
new, randomly generated words, preserving the correct correspondence among words in the
declarative sentences and words in the interrogative sentences. The percentage of correct output
sentences over the total number of requested output sentences was 88.1% for the people dataset,
88.3% for the parts of the body dataset, and 76.7% for the categorization dataset. The second
experiment evaluated the capacity of the system to generalize acquired knowledge to new grammatical
constructions (compositional generalization) on a task of sentence-to-meaning mapping. This
experiment was performed on a corpus of 462 distinct grammatical constructions, developed by
Hinaut and Dominey [12]. A ten-fold cross validation on this dataset yielded 9.2% meaning error and
36.7% sentence error rate.

4 Conclusion

The validation show that, compared to previous cognitive neural models of language, the model is
able to develop a broad range of functionalities, starting from a tabula rasa condition. Those results
support the hypothesis that executive functions play a fundamental role for the elaboration of verbal
information. Our work emphasizes that the decision processes operated by the central executive are
statistical decision processes, which are learned by exploration-reward mechanisms, rather than being
based on pre-coded rules.
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