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Abstract Here we show that in contrast to other cancer types,
tumor necrosis factor (TNF)-a suppresses YKL-40 expression in
glioma cell lines in a nuclear factor jB (NF-jB) dependent man-
ner. Even though TNF-a causes recruitment of p65 and p50 sub-
units of NF-jB to the YKL-40 promoter in all cell types,
recruitment of histone deacetylases (HDAC)-1 and -2, and a
consequent deacetylation of histone H3 at the YKL-40 promoter
occurs only in glioma cells. Importantly, using chromatin immu-
noprecipitation assays in frozen glioblastoma multiforme tissues,
we show that YKL-40 levels decrease consistent with HDAC1
recruitment despite high levels of nuclear p-p65. This study pre-
sents a paradigm for NF-jB regulation of one of its targets in a
strict cell type specific manner.
Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.
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1. Introduction

YKL-40 (also known as chitinase 3-like 1 or human cartilage

glycoprotein 39) is a glycoprotein that belongs to the family 18

of chitinases, though it does not have glycolytic properties [1].

Purified YKL-40 has been shown to induce proliferation in a

variety of cell lines, stimulate endothelial cell migration, and

protect cells against inflammatory damage [2–5]. Using expres-

sion profiling, we previously found that expression of the

YKL-40 gene was strongly associated with poor outcome in
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glioblastoma multiforme (GBM) [6,7]. In addition, our previ-

ous studies on immortalized human astrocytes stably transfec-

ted with YKL-40 found that YKL-40 conferred radiation

resistance and increased invasion across a chemotactic gradi-

ent in vitro [6,7]. In recent years, YKL-40 has garnered much

attention as a serum biomarker for multiple diseases, including

cancer, arthritis, and asthma [8–10]. However, little is known

about how YKL-40 functions as well as its transcriptional reg-

ulation. Therefore, we sought to learn more about the biolog-

ical regulation of this protein, specifically in GBM.

Recently, it was shown that the YKL-40 promoter sequence

contains consensus binding sites for several known transcrip-

tion factors, and specific binding of the nuclear PU.1, Sp1,

Sp3, USF, AML-1, and C/EBP proteins was confirmed using

gel shift assays [11]. Recklies et al. found that inflammatory

cytokines, such as tumor necrosis factor (TNF)-a and interleu-

kin (IL)-1b, induced sustained levels of YKL-40 in chondro-

cytes via nuclear factor jB (NF-jB) signaling [12].

NF-jB complexes are composed of homo- or heterodimers

formed from members of the RelA (p65), c-Rel, RelB, NF-

jB1 (p50/p105), and NF-jB2 (p52/p100) multigene family.

These genes mediate the transcriptional activity of a number

of target genes involved in oncogenesis, apoptosis, and inflam-

mation [13,14]. p65, a well-characterized member of the NF-

jB family, is found in most unstimulated cells in an inactive

form, sequestered in the cytoplasm by inhibitory jBs (IjBs).

In response to treatment with typical (TNF-a, IL-1b) or atyp-

ical (ultraviolet [UV]-B radiation, chemotherapeutic agents)

activators, IjB is phosphorylated, ubiquitinated, and ulti-

mately degraded by the proteosome, resulting in the release

of the p65 complex to the nucleus [13,14]. The p65 and p50 het-

erodimers then bind to the DNA promoter of target genes and

mediate transcriptional activation [13,14]. However, studies

have found that NF-jB can also cause transcriptional repres-

sion of select genes, such as antiapoptotic factors, by direct

recruitment of corepressors, such as histone deacetylases

(HDAC)-1 and -2 [15,16].

In this study, we show that NF-jB, specifically its p65 and

p50 subunits, act as a negative regulators of YKL-40 in glioma

cell lines. Using chromatin immunoprecipitation (ChIP) as-

says, we further show that TNF-a treatment recruits HDAC1

and HDAC2 in glioma cells, leading to deacetylation of his-

tone H3 at the YKL-40 promoter.
European Biochemical Societies.
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2. Materials and methods

2.1. Cell culture, plasmids, and transfection
We obtained the SNB-75 glioma cell line from the Division of Can-

cer Treatment and Diagnosis at the National Cancer Institute (Freder-
ick, MD) and the U87 (glioma) BT549 (breast), SW1353
(chondrosarcoma), and THP-1 (leukemia) cell lines from American
Type Culture Collection (Manassas, VA). All cells were maintained
in Dulbecco�s modified Eagle medium/F-12 (50:50 mixture) supple-
mented with 10% fetal bovine serum, 10 units/ml penicillin G sodium,
and 10 lg/ml streptomycin sulfate. We purchased the IjB-SR adenovi-
rus from Vector Biolabs (Philadelphia, PA). The �1300 to �1 bp re-
gion of the YKL-40 promoter was cloned into PGL-3 luciferase
vector (Promega, WI) as previously described [11]. The �751 and
�800 mutant vectors were created using site directed mutagenesis with
following primers: �751-S-mut, 5 0-AAGCATTCTTGAGCTCTTCC-
CTGTCTTTCC-3 0; �751-AS-mut, 5 0-GGAAAGACAGGGAAGAG-
CTCAAGAATGCTT-3 0; �800-S-mut, 5 0-CTCTCTTTATGAGCTC-
TTCAAAACAGAAGC-3 0; �800-AS-mut, 5 0-GCTTCTGTTTTGA-
AGAGCTCATAAAGAGAG-3 0. For transient transfection studies,
cells were split 24 h prior into triplicate 60 mm dishes followed by
transfection with 1 lg of indicated luciferase constructs. A b-actin
Renilla luciferase construct was co-transfected for normalizing lucifer-
ase activity. Twenty-four hours after transfection, cells were treated
with TNF-a (100 ng/ml) or trichostatin A (TSA) (100 nM) for an addi-
tional 24 h. Cells were lysed and analyzed for luciferase activity using
Dual luciferase reporter system (Promega, WI).

2.2. Real time reverse transcriptase-polymerase chain reaction
(RT-PCR) for mRNA detection

We detected mRNA using a one-step RT-PCR method with re-
agents purchased from Applied Biosystems (Foster City, CA). Briefly,
0.3–0.5 lg total RNA was reverse transcribed using MuLvRT
(2.5 units/ll). To amplify the cDNA, we used primers and Taqman
probes for YKL-40 (Hs00609691_m1) and b-actin (Hs99999903_m1)
in conjunction with 1· Taqman Universal PCR Master Mix (Applied
Biosystems). RNase inhibitor (0.4 units/ll; Roche Applied Science,
Indianapolis, IN) was included in every reaction. Reaction mixtures
were incubated at 48 �C for 30 min, followed by 10 min at 95 �C for
1 cycle and then 15 s at 95 �C and 1 min at 60 �C for 40 cycles. We
measured the fluorescent signal using the ABI Prism 7700 Sequence
Detector (Applied Biosystems), and we calculated the relative level
of fold changes in YKL-40 expression using the absolute DDCT

method.

2.3. Western blot analyses
We performed Western blot analyses according to standard proto-

cols to determine YKL-40 expression in all the cell lines. YKL-40 anti-
bodies were obtained from Quidel Corporation (San Diego, CA) and
b-actin control antibodies were obtained from Lab Vision (Fremont,
CA).

2.4. Electrophoretic mobility shift assay (EMSA)
SNB-75 cells were treated with TNF-a for the appropriate amount

of time and nuclear extracts were prepared for EMSA according to
standard protocols. Briefly, 32P end-labeled wild-type DNA probes
to the two consensus sites (�751-sense: 5 0-AAGCATTCTTGGGA-
ATTTCCCTGTCTTTCC-30; �751-antisense: 5 0-GGAAAGACAGG-
GAAATTCCCAAGAATGCTT-3 0; �800-sense: 5 0-CTCTCTTTAT-
GGGAATTTCAAAACAGAAGC-30; �800-antisense: 5 0-GCTTCT-
GTTTTGAAATTCCCATAAAGAGAG-3 0) were incubated with
10 lg of nuclear extract in a 10-ll reaction volume containing
75 mM NaCl, 15 mM Tris–HCl (pH 7.5), 1.5 mM ethylenediamine tet-
raacetic acid (EDTA), 1.5 mM dithiothreitol, 25% glycerol, 20 lg/ml
bovine serum albumin, and 1 lg poly(dI-dC). The reaction mixture
was incubated on ice for 40 min then at 25 �C for 20 min; it was then
applied to a 4% non-denatured polyacrylamide gel containing 0.25·
TBE (22.5 mM Tris, 22.5 mM borate, 0.5 mM EDTA [pH 8.0]) buffer.
For competition assays, we added a 50- to 250-fold molar excess of
unlabeled wild-type or mutant (�751-mut-sense: 5 0-AGCATTCTT-
GAGCTCTTCCCTGTCTTTCC-30; �751-mut-antisense: 5 0-GGAA-
AGACAGGGAAGAGCTCAAGAATGCTT-3 0) oligodeoxyribonu-
cleotides to the binding reaction. For antibody supershift assays, 2 ll
of polyclonal antibody against p65 (H-286) or p50 (C-19) (Santa Cruz
Biotechnology, Santa Cruz, CA) was preincubated for 45 min on ice
before the probe was added. After electrophoresis, the gel was dried
for 1 h at 80 �C and exposed on Kodak film (Rochester, NY) at
�80 �C.
2.5. ChIP assay
We performed ChIP assays as described previously [17]. Briefly, cells

were plated in a 150-mm dish 24 h and then treated for 1 h with TNF-
a. The proteins were cross-linked by incubation with 1% formalde-
hyde, and the cells were then washed with phosphate-buffered saline
(PBS)-containing protease inhibitors, pelleted, and treated with so-
dium dodecyl sulfate (SDS) lysis buffer (1% SDS, 10 mM EDTA,
50 mM Tris–HCl [pH 8.1]) for 10 min. We performed sonication six
to eight times for 10 s each at a constant duty cycle with an output
of 3, and we incubated the cells on ice after every sonication. The deb-
ris was then pelleted, and the supernatant was diluted to 1/10 concen-
tration with ChIP dilution buffer (0.01% SDS, 1.1% Triton X-100,
1.2 mM EDTA, 16.7 mM Tris–HCl [pH 8.1], 167 mM NaCl). The pro-
teins were precleared with 50 ll of 1:1 protein A-Sepharose beads in
TE buffer (22.5 mM Tris and 0.4 mM EDTA [pH 8.0]); 200 ll of the
mixture was reserved as input, and the remaining 800 ll was incubated
with 5 lg of antibodies and 2 lg of sheared salmon sperm DNA (Strat-
agene, La Jolla, CA) overnight at 4 �C. The protein–DNA–antibody
complex was precipitated using 1:1 protein A-Sepharose beads and
2 lg of salmon sperm DNA at 4 �C for 2 h. The beads were pelleted
and washed once each with high-salt wash buffer, low-salt wash buffer,
and 1· TE. The DNA–protein complex was obtained by extracting the
beads with 50 ll of extraction buffer (1% SDS, 0.1 M NaHCO3) three
times. We reversed the cross-linking of the DNA protein complex by
incubating it at 65 �C for 16 h. The DNA was extracted with a QIA-
quick PCR purification kit (QIAGEN, Valencia, CA). For ChIP as-
says using frozen tissues, each frozen section was histologically
assessed for tumor by a neuropathologist (K.D.A.) and used only if
at least 90% of the tissue was determined to be tumor. Tumor tissue
was dissected and quickly ground in liquid nitrogen. Tissues were
washed four times with a PBS-containing protease inhibitor cocktail
and phenylmethylsulfonyl fluoride to remove any blood. We prepared
tissue lysates using a method similar to that used for preparing adher-
ent cells 50 ll of packed cell volume was then used for each ChIP as-
say. We purchased antibodies against p65 and p50 from Santa Cruz
Biotechnology, antibodies against HDAC1 and HDAC2 from Cell
Signaling Technology (Danvers, MA), and antibodies against acetyl-
histone-H3 from Upstate Biotechnologies (Billerica, MA). PCR was
performed using primers that amplified both NF-jB consensus sites
(YKL-NF-F [forward]: 5 0-CGAGCTTGCAAAAGATCCTCTC-3 0;
YKL-NF-R [reverse]: 5 0-GAAGGAAAGCAAAGAGCCTGAAA-
3 0), the �751 consensus site only (�751-F [forward]: 5 0-GGGA-
ATTTCCCTGTCTTTCC-3 0; �751-R [reverse]: 5 0-AGGCTCAG-
CATTGCCCTGC-3 0), or the �800 consensus site only (�800-F [for-
ward]: GAGAGGGGCTGTATCATCAGGCT-3 0; �800-R [reverse]:
5 0-GCCCCGGTGCTATTTTGC-3 0). The IjB promoter was amplified
using published primer sets [16].
2.6. Immunohistochemical analysis
We performed immunohistochemical (IHC) analyses using 5 lmol/l

sections that were cut from paraffin blocks, deparaffinized, hydrated
through an ethanol series. After microwave antigen retrieval, anti-
bodies against phosphorylated p65 (p-p65; 1:100; Cell Signaling
Technology) or YKL-40 (1:1,000; Quidel) were incubated with the
slides overnight at 4 �C. Staining was performed using the DAKO
Envision kit according to the manufacturer�s instructions (DAKO,
Carpinteria, CA). p-p65 and YKL-40 staining were scored as strongly
positive, weakly positive, or negative. The staining for YKL-40 was
described previously [6]. A neuropathologist (K.D.A.) identified
blocks with sufficient tumor available for analysis of each case. In
all cases, scoring was based on the most positive area present in
the tumor.
2.7. Statistical analyses
Student�s t-test was performed on all real time PCR data to evaluate

fold changes. P values of <0.05 were considered statistically significant.
Fisher�s exact test was done to identify positive or negative relation-
ships between expression levels of p-p65 and YKL-40.
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3. Results

3.1. TNF-a modulates YKL-40 levels in a cell type-specific

manner via NF-jB signaling

We analyzed the promoter region of YKL-40 using the Gen-

omatix (Ann Arbor, MI) software tool and identified a consen-
Fig. 1. TNF-a modulates YKL-40 levels in a cell type specific manner via N
and total RNA was isolated, converted to cDNA and analyzed for mRNA exp
actin levels. The fold change for the control group was set at one and compa
with TNF-a for the indicated time points and lysed. Fifty micrograms protein
blotting. (C) Cells were treated with TNF-a (20 ng/ml) for 24 h and total RNA
of YKL-40 and results normalized to b-actin levels as described previously. T
TNF treatment groups after 24 h. (D) Western analyses of cells as indicated up
was used as loading control and YKL-40 expression was compared. (E) and
transfected with YKL-40 promoter construct and luciferase activity was meas
driven by the b-actin promoter was used as control to normalize luciferase
luciferase values without TNF-a treatment were set to one and compared. (G
stable mutant form of IjB-alpha (S32/36) at an MOI of approximately 5 for
not pre-treated with IjB-SR were mock infected with a GFP expressing adeno
expression of YKL-40 and actin by Western blotting.
sus sequence for NF-jB at �800 upstream of the transcription

start site in addition to the previously reported �751 site [12].

Since cytokines have been shown to activate YKL-40 in chon-

drocytes [12], we evaluated the effects of TNF-a treatment, a

known inducer of the NF-jB signaling pathway, in glioma cell

lines. TNF-a treatment of SNB-75 and U87 cells, which consti-
F-jB signaling. (A) Cells were treated with TNF-a (20 ng/ml) for 24 h
ression of YKL-40 using real time PCR. Results were normalized to b-
red to TNF treatment groups. (B) SNB-75 and U87 cells were treated
was loaded onto 10% SDS–poly acrylamide gel and subject to Western
was isolated, converted to cDNA and analyzed for mRNA expression

he fold change for the untreated group was set at one and compared to
on treatment with TNF-a for the indicated time points. Actin antibody
(F) SNB-75, U87, BT549, SW1353, and THP-1 cells were transiently

ured after treatment with TNF-a for 24 h. A Renilla luciferase plasmid
activity. Bar graphs indicate average of triplicate measurements and
) SNB-75 and SW1353 cells were infected with adenovirus expressing

24 h followed by TNF-a treatment for additional 24 h. Cells that were
virus. At the end of treatment period, cells were lysed and analyzed for
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tutively express YKL-40, surprisingly resulted in the downreg-

ulation of endogenous YKL-40 mRNA (Fig. 1A) and protein

in a time-dependent manner (Fig. 1B). However, TNF-a treat-

ment of the same cell lines caused a parallel increase in the

expression of Cox-2, a downstream target of NF-jB (data

not shown). To address these seemingly contradictory findings,

we examined whether TNF-a treatment repressed YKL-40 in

additional cancer cell lines (BT549, SW1353, and THP-1) that

expressed varying levels of YKL-40. All three cell lines showed

induction of YKL-40 in response to TNF-a treatment at both

the mRNA and protein level (Fig. 1C and D). Both activation
Fig. 2. p65/p50 are actively recruited to the YKL-40 promoter in response t
were either untreated or treated with TNF-a for the indicated time points. G
representing either �751 and �800 jB consensus and complexes were analyze
consensus oligos or supershift assays using antibodies against p65 or p50 w
stimulated with TNF-a for the indicated time points and ChIP assays were pe
YKL-40 promoters was detected by PCR. (D) NIH3T3 cells were transfecte
with TNF-a for additional 8 h. Cells were then lysed and analyzed for lucifer
measurements.
and repression of YKL-40 occurred as early as 6 h after TNF-

a treatment and could be sustained up to 72 h (data not

shown). We next asked if the activation or repression of

YKL-40 by TNF-a could be recapitulated at the promoter le-

vel using transient transfection assays. A �1300 to �1 bp pro-

moter region of YKL-40 cloned into PGL-3 luciferase vector

was transfected into the indicated cell lines followed by

TNF-a treatment for 24 h. As expected, treatment of glioma

cell lines with TNF-a caused a significant repression of the

promoter activity (Fig. 1E), whereas activation was observed

in all non-glioma cell lines upon TNF-a treatment (Fig. 1F).
o TNF-a. (A) Nuclear extracts were prepared from SNB-75 cells that
el shift analyses was performed after incubating with 32P-labeled oligos
d as described. (B) Competition using cold wild type or mutant �751 jb
ere performed as indicated. (C) SNB-75, SW1353 or BT549 cells were
rformed using antibodies directed to p65 or p50. Binding to the IjB or
d with the indicated reporter plasmids for 24 h followed by treatment
ase activity as described. Bar graphs represent mean values of triplicate
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To examine whether the alteration of YKL-40 levels by

TNF-a was primarily mediated by NF-jB, we transfected cells

with a stable mutant form of IjB-a (S32/36) that retains inac-

tive NF-jB in the cell cytoplasm. Under these conditions,

TNF-a induced repression and activation of YKL-40 was

abolished (Fig. 1G). These results indicate that TNF-a differ-

entially modulates YKL-40 in a cell type-dependent manner

by means of NF-jB signaling.

3.2. p65 and p50 are actively recruited to the YKL-40 promoter

in response to TNF-a
Since p65 and p50 are ubiquitous NF-jB subunits that are

primarily activated in response to TNF-a, we next studied

whether p65 and p50 mediated repression of YKL-40. We per-

formed EMSA with double-stranded oligonucleotides corre-

sponding to the putative NF-jB consensus site sequences

(�751 and �800) using nuclear extracts of the SNB-75 cells.

TNF-a treatment induced the formation of strong DNA–pro-

tein complexes at both consensus sites, which exhibited similar

kinetics (Fig. 2A). In both cases, complex formation was dis-

rupted by the addition of an excess amount of unlabeled

wild-type oligonucleotides but not by oligonucleotides with a

mutated 5 0 fi 3 0 core sequence (Fig. 2B; data not shown for
Fig. 3. HDAC1 and HDAC2 are recruited to the YKL-40 promoter during
YKL-40 promoter construct and luciferase activity was measured after treatm
alone (20 ng/ml) or in combination with TSA (20 nM) as indicated for 24 h an
normalizing to b-actin. The control YKL-40 levels were set at one and comp
the indicated time points and analyzed by ChIP assay using antibodies direc
�800). To further characterize the proteins in the EMSA com-

plexes, we performed supershift assays with antibodies specific

for p65 and p50. We observed a supershift with p50 in partic-

ular, whereas the p65 antibody simply interfered with complex

formation, indicating a possible p65/p50 heterodimer

(Fig. 2B).

To examine the in vivo recruitment of NF-jB proteins to the

YKL-40 promoter in untreated versus TNF-a-treated cells, we

performed ChIP assays using p65- and p50-specific antibodies.

The primers were designed to amplify both NF-jB consensus

sites (�751 and �800) on the YKL-40 promoter. Primers spe-

cific to the IjB promoter were used as positive controls. p65

and p50 were both recruited to the YKL-40 promoter as early

as 30 min, similar to the recruitment by the IjB promoter

(Fig. 2C). We did not find any significant differences in the

kinetics or the extent of p65/p50 bound to the YKL-40 pro-

moter in all cell lines tested.

Having established that both NF-jB consensus sites were

occupied in response to TNF-a treatment in both cell types,

we then tested the functional relevance of these sites in altering

YKL-40 expression. We performed reporter assays using the

YKL-40 promoter construct transfected in NIH 3T3 cells.

Treatment with TNF-a induced luciferase activity that was
repression mediated by TNF-a. (A) SNB75 cells were transfected with
ent with TSA for 24 h. (B) SNB-75 cells were treated with either TNF-a
d analyzed by real time RT-PCR for YKL-40 mRNA expression after

ared to treated samples. (C) SNB-75 cells were treated with TNF-a for
ted against HDAC1, HDAC2 or acetyl-histone-H3 (D).



3198 K.P. Bhat et al. / FEBS Letters 582 (2008) 3193–3200
attenuated when either or both of the consensus sites were mu-

tated (Fig. 2D), indicating that p65 and p50 formed a hetero-

dimeric complex at the YKL-40 promoter and that both

consensus sites were occupied by NF-jB upon TNF-a treat-

ment.

3.3. HDAC1 and HDAC2 are recruited to the YKL-40 promoter

during repression

Because HDACs have been shown to be recruited to the NF-

jB targets that are repressed upon treatment with various acti-

vators of this pathway [16,18–20], we examined the role of

HDACs in the NF-jB-mediated repression of YKL-40.

SNB-75 cells were transiently transfected with the YKL-40

promoter construct and treated with TSA, a known inhibitor

of HDAC activity. We observed a dramatic induction of pro-

moter activity indicating that inhibiting HDAC activity is suf-

ficient to induce YKL-40 expression (Fig. 3A). Further,

repression of YKL-40 mRNA in SNB-75 cells was countered,

as well as induced, by prior treatment with TSA (Fig. 3B).

Next, we studied whether HDACs were recruited to the
Fig. 4. (A) Representative immunohistochemical staining of GBM samples fo
and negative staining for YKL-40, whereas case 2 represents negative stainin
number of positive and negative cases is shown below and a Fisher�s exact
(P = 0.01). (B) Immunohistochemical staining of human chondrosarcoma sam
positive staining for both proteins, whereas lower panel indicates negative sta
shown below and a Fisher�s exact test indicates significant positive correlati
frozen GBM tissues were either analyzed by ChIP assay using HDAC1 anti
YKL-40 promoter region upon TNF-a treatment. As shown

in Fig. 3C, HDAC-1 and -2 were strongly recruited to the

YKL-40 promoter in SNB-75 cells; however, we did not ob-

serve HDAC recruitment in SW1353 cells that previously

showed activation of YKL-40.

If HDAC recruitment seen above was of functional signifi-

cance, we expected that histone acetylation around the YKL-

40 promoter chromatin would be reduced. To determine if this

was the case, we performed ChIP assays directed against the

histones using an acetyl-histone-H3 antibody. TNF-a treat-

ment was associated with a striking decrease in acetylated his-

tones at the YKL-40 promoter in SNB-75 cells, while SW1353

cells showed increased acetylated histone H3 (Fig. 3D). In con-

trast, because IjB-a is primarily induced by NF-jB, we no-

ticed a concordant increase in acetyl-histone-H3 associated

with the IjB promoter in both cell types (Fig. 3D).

To extend our in vitro findings further, we examined the reg-

ulation of YKL-40 by NF-jB in primary cancer tissues. We

evaluated 100 cases of human GBM by IHC. We stained the

tumor sections with p-p65 (Ser276) rather than with unphos-
r YKL-40 or p-p65 expression. Case 1 shows positive staining for p-p65
g for p-p65 and positive staining for YKL-40. A table summarizing the
test indicates negative correlation between the two proteins in GBM
ples for YKL-40 or p-p65 expression. The upper panel of case 1 shows

ining. A table summarizing the number of positive and negative cases is
on between the two proteins in chondrosarcoma (P = 0.03) (C). Three
body (top two panels) or Western blotting (bottom two panels).
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phorylated p65, because nuclear localization of the phosphor-

ylated protein represents the transcriptionally active form of

p65 [21] (Fig. 4A). YKL-40 showed cytoplasmic staining in

about 50% of GBM samples (Fig. 4A). Statistical analyses re-

vealed a significant negative correlation between YKL-40 and

nuclear p-p65 expression in GBM tissues (Fig. 4A, Fisher�s ex-

act test, P = 0.01). We next compared the expression of YKL-

40 and p-p65 in chondrosarcoma specimens and observed a

significant positive correlation between these two proteins

(Fig. 4B; Fisher�s exact test, P = 0.03).

Finally, we examined whether HDACs played a significant

role in regulating YKL-40 levels in GBM tumors by perform-

ing ChIP analyses on frozen GBM specimens. We selected

three cases of GBM that had high p-p65 expression but various

levels of YKL-40 expression. Tumors were carefully separated

from neighboring normal or necrotic tissue and lysates were

subjected to either ChIP or Western blot analyses. As shown

in Fig. 4C, the amount of HDAC1 recruited to the YKL-40

promoter increased with a corresponding decrease in YKL-

40 protein levels. Taken together, our data strongly suggest

that HDACs play a critical role in altering levels of YKL-40

in response to NF-jB in glioma cells.
4. Discussion

We found that YKL-40, an NF-jB target, is both activated

and repressed in response to TNF-a and that either response

could be attenuated by cotransfection with a non-degradable

mutant form of IkB-a. Both negative and positive regulation

of YKL-40 involve p65/p50 occupancy of the YKL-40 pro-

moter. However, our response from GBM specimens suggest

that in vivo, HDACs are recruited to the YKL-40 promoter

and YKL-40 expression is consequently repressed.

Although TNF-a primarily mediates activation of NF-jB

target genes by triggering IkB-a degradation and inducing nu-

clear translocation of NF-jB, previous studies have shown

that TNF-a and other activators of NF-jB can indeed induce

transcriptional repression of some NF-jB target genes. For

example, TNF-a negatively regulates COL1A2 expression by

means of JNK1 signaling [22]. Other targets, such as MIS,

were shown to be downregulated by TNF-a in coordination

with transcriptional regulators, such as SF-1 [23]. Similarly,

TNF-a repressed EAAT-2 by recruiting N-myc to the NF-

jB promoter [24]. Other studies have found that atypical acti-

vators of NF-jB, such as UV, and chemotherapeutic agents

but not TNF-a repress global antiapoptotic gene expression,

exemplifying the complexity of the NF-jB signaling pathway

[16].

We tested other signals that activate NF-jB, including IL-

1b, doxorubicin, and daunorubicin, and found that YKL-40

was repressed by all these stimuli in glioma cells in a NF-jB-

dependent manner, ruling out a signal-specific effect (data

not shown). Also, since phosphorylation of the S276 and

S536 residues of p65 favors recruitment of coactivator com-

plexes and is important for p65 transcriptional activation func-

tion [25,26], we compared glial versus non-glial tumors and did

not find any significant differences in the phosphorylation

states upon treatment with TNF-a (data not shown). Also,

other targets of NF-jb such as Bcl-xL, IjBa and Cox-2 were

induced in a similar fashion in both cell types. Moreover,

our ChIP analyses using GBM specimens revealed that
HDAC1 recruitment was the major determinant of the

YKL-40 level, regardless of the p-p65 level (Fig. 4C). How-

ever, the possible role of modification of other amino acids

on p65, such as phosphorylation at Thr-505 or acetylation of

lysine residues 122, 123, and 310, which facilitates corepressor

functions, needs to be explored [25,26].

Our data show that chromatin remodeling of the YKL-40

promoter in glioma cell lines specifically accounts for these dif-

ferential effects for the following reasons. First, using reporter

assays with the YKL-40 promoter (1.3 kb) in a neutral envi-

ronment, we found that YKL-40 activation is a primary re-

sponse to TNF-a treatment (Fig. 2D). Second, treatment

with TSA alone was sufficient to increase basal YKL-40 pro-

moter activity in glioma cells indicating that HDACs repress

the YKL-40 promoter in the absence of NF-jB signaling in

these cell types (Fig. 3A). Third, TNF-a treatment does not re-

press other NF-jB target genes in glioma cells that we tested

(data not shown), and finally we have identified multiple bind-

ing sites for neural specific transcriptional factor MYT1 as well

as Oct-1 in the YKL-40 promoter and both these factors have

been reported to recruit HDACs via interaction with Sin-3b

and SMRT, respectively [27,28]. Alternatively, glial-specific

factors that bind to long-distance enhancers further upstream

of the YKL-40 promoter may play a role in modulating

YKL-40 expression, similar to that seen with MCP-1 [29].

Therefore, in-depth biochemical analyses of upstream enhan-

cer regions should be done and the influence of MYT1 and

Oct-1 on chromatin folding and YKL-40 expression needs to

be explored.

The apparent paradoxical relationship between NF-jB acti-

vation and YKL-40 expression observed in glioma may have

an adverse impact on the potential future use of HDAC inhib-

itors as a mode of therapy against this disease. YKL-40 is

overexpressed in approximately 70% of GBM cases, and sev-

eral studies have demonstrated a role for YKL-40 in the cellu-

lar and clinical aggressiveness of GBM. Earlier observations

that HDAC inhibitors suppress the inducibility of NF-jB

[30] coupled with our data showing that NF-jB suppresses

YKL-40, would suggest that GBM carries an inherent mecha-

nism of resistance to such a therapeutic strategy against this

devastating disease.

As more physiological targets of YKL-40 are uncovered, we

will be able to assess the impact of NF-jB on YKL-40 func-

tion. Given that most solid tumors exhibit necrosis accompa-

nied by inflammation during which both NF-jB and YKL-

40 are induced, the interplay between these proteins should

be explored under these conditions.
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