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Abstract Nkx2-5 regulates the transcription of muscle-specific
genes during cardiomyogenesis. Nkx2-5 expression can induce
cardiomyogenesis in aggregated P19 cells but not in monolayer
cultures. In order to investigate the mechanism by which cellular
aggregation regulates Nkx2-5 function, we examined the role of
bone morphogenetic protein 4 (BMP4). We showed that the
expression of the BMP inhibitor, noggin, was sufficient to inhibit
the induction of cardiomyogenesis by Nkx2-5 during cellular
aggregation. Furthermore, soluble BMP4 could activate Nkx2-5
function in monolayer cultures, resulting in the formation of
cardiomyocytes. Therefore, BMP signaling is necessary and
sufficient for the regulation of Nkx2-5 activity during cardio-
myogenesis in P19 cells. ß 2001 Published by Elsevier Science
B.V. on behalf of the Federation of European Biochemical So-
cieties.
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1. Introduction

There are several families of transcription factors implicated
in the processes of cardiac muscle commitment and di¡eren-
tiation, including the Nkx2, GATA, and MEF2 families. The
Drosophila NK2 homeobox gene tinman is an obligatory mes-
oderm determination factor essential for subdividing the mes-
oderm into somitic, visceral and cardiac primordia [1]. Loss of
tinman expression results in the loss of embryonic dorsal ves-
sel and visceral muscles. In the mouse, the tinman homologue
Nkx2-5/Csx is expressed in embryonic myocardial progenitors
and in pharyngeal endoderm by 7.5 days post-coitus [2]. Mice
lacking Nkx2-5 are defective in looping of the heart tube and
in the expression of a subset of cardiac muscle-speci¢c genes
[3,4]. Nkx2-5 was shown to serve as a modest transcriptional
activator in ¢broblasts [5^7]. Optimal Nkx2-5 activity requires
combinatorial interactions with other cardiac-restricted fac-
tors such as GATA4 and MEF2 [6^10].

Bone morphogenetic proteins (BMPs) are members of the
transforming growth factor L superfamily of signaling mole-
cules and they mediate a variety of cellular events. In Droso-
phila, the BMP homologue, dpp, is secreted from the dorsal
ectoderm and maintains tinman expression in the mesoderm
[11]. Similarly in chick, BMP2 or -4 is expressed in tissues
adjacent to the precardiac mesoderm and can induce

Nkx2-5 and GATA4 expression [12^14]. Conversely, disrup-
tion of BMP signaling with noggin or dominant negative re-
ceptors can prevent cardiomyogenesis in chick, Xenopus, and
in P19CL6 cells [12,14^18]. Therefore, BMP/dpp signaling
plays an important role in controlling cardiomyogenesis.

P19 cells are embryonal carcinoma cells capable of di¡er-
entiating into a variety of cell types representative of all three
germ layers in suspension culture with several chemical in-
ducers (for review see [19]). The cardiac myocytes derived
from P19 cells display the biochemical and physiological
properties that occur during early embryonic development.
Unlike P19CL6 cells and ¢broblasts [18,20,21], P19 stem cells
can support the induction of cardiomyogenesis by Nkx2-5,
when aggregated in the absence of DMSO [22]. MEF2C and
GATA4 have similar abilities in aggregated P19 cells [22,23].
Furthermore, using dominant negative or antisense ap-
proaches, both Nkx2-5 and GATA4 are essential for P19
cell cardiomyogenesis [24,25].

In the present study, we have examined the regulation of
Nkx2-5 function by cellular aggregation. We have shown that
the expression of the BMP antagonist noggin can inhibit the
function of Nkx2-5 in aggregated P19 cells. Furthermore, the
addition of soluble BMP4 could bypass the requirement for
aggregation and induce cardiomyogenesis in monolayer cul-
tures of P19 cells expressing Nkx2-5. These results indicate
that BMP signaling is both necessary and su¤cient for
Nkx2-5 function.

2. Materials and methods

2.1. Plasmid constructs
All expression vectors utilized the phosphoglycerate kinase (PGK;

pgk-1) promoter to drive the expression of various cDNAs, as consti-
tutive expression can be e¡ectively achieved in P19 cells with this
promoter. The constructs PGK-lacZ, PGK-puro, and B17 have
been described previously [26,27]. PGK-noggin was created by sub-
cloning a 950 bp fragment of mouse noggin (kindly provided by R.M.
Harland, accession U79163) downstream of the pgk-1 promoter.

2.2. Cell culture
P19 cells were obtained from the American Type Culture Collection

(ATCC CRL-1825) and cultured as described previously [28,29]. Sta-
ble P19 cell lines expressing noggin, termed P19[noggin] cells, were
generated using FuGENE 6 Transfection Reagent according to the
manufacturer's protocol (Boehringer Mannheim) as described previ-
ously [25]. Cells were seeded 24 h before transfection with a total of
9 Wg of plasmid: 0.5 Wg of PGK-lacZ, 0.5 Wg of PGK-puro, 2 Wg of
B17, and 6 Wg of PGK-noggin. Several high expressing clones were
selected for further analysis.

Di¡erentiation was induced as described previously [30^32]. Cells
were aggregated for 4 days and then plated in 150 mm culture dishes
(day 4) and harvested for RNA or ¢xed for immuno£uorescence on
day 6.

In order to determine the e¡ects of BMP4 on the ability of Nkx2-5
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to induce cardiomyogenesis, P19[control] and P19[Nkx2-5] cells were
seeded at 100 000 cells on gelatin-coated coverslips in 35 mm dishes,
grown in monolayer in the presence and absence of BMP4 (Genetics
Institute, Cambridge, MA, USA) and ¢xed after 6 days.

2.3. Northern blot analysis
Northern blots were performed as described previously [33]. The

probes used were: a 600 bp PstI fragment from the human cardiac
K-actin last exon (PATA2; [34]), a 1 kb HindIII/BamHI fragment of
mouse BMP4 (generous gift from T.M. Underhill), a 2.4 kb XbaI
fragment of GATA4 [35], a 1.6 kb EcoRI fragment of mouse Nkx2-
5 cDNA [2], and a 900 bp fragment of mouse noggin cDNA. All blots
were standardized using a 750 bp EcoRI fragment of rabbit 18S
cDNA.

2.4. Immuno£uorescence
Cells were ¢xed in methanol at 320³C for 5 min, rehydrated in

phosphate-bu¡ered saline for 15 min at room temperature, and then
incubated with 50 Wl of a mouse anti-myosin heavy chain (MyHC)
monoclonal antibody supernatant, MF20, as described previously
(Ridgeway (2001) #2194). Immuno£uorescence was visualized on a
Zeiss Axioscope microscope with epi£uorescence optics, images were
captured with a Sony 3CCD color video camera, and processed using
Northern Eclipse, Adobe Photoshop 5.5 and Canvas 7 (Deneba) soft-
ware.

3. Results

Nkx2-5 can induce cardiomyogenesis in aggregated P19
cells but not in cells grown in monolayer [22]. In order to
determine the mechanism by which cellular aggregation can
regulate Nkx2-5 function, we examined the role of BMP2/4.
BMP2/4 is necessary and su¤cient to activate the transcrip-
tion of Nkx2-5 and GATA4 [12,18]. BMP4 is also expressed
by day 3 during the aggregation of P19 cells into cardiac
muscle (data not shown).

To identify the muscle-speci¢c transcripts regulated by
BMP signaling in DMSO-induced cardiomyogenesis, North-
ern blots were performed on RNA isolated on days 0 and 6
from P19[noggin] and P19[control] cells (Fig. 1). High levels
of the transfected noggin construct were expressed on both
day 0 and day 6 in P19[noggin] cultures (Fig. 1A, lanes 1^4)
but not in P19 control cultures (Fig. 1A, lanes 5 and 6). The
lack of cardiac muscle in P19[noggin] cultures in comparison
to control cultures was demonstrated by the lack of cardiac K-
actin and GATA4 expression on day 6 (Fig. 1B,D, lanes 2 and
4 compared to 6). Therefore, similar to results reported by
others, inhibition of BMP signaling by noggin interferes
with the DMSO-induced activation of cardiac K-actin and
GATA4.

To investigate whether BMP signaling is essential for Nkx2-
5 activity, P19[noggin] cells were mixed with P19[Nkx2-5] cells
in equal proportions, aggregated in the absence of DMSO for
6 days, and examined by Northern blot analysis. While di¡er-
entiated P19[Nkx2-5] :P19[control] co-cultures expressed car-
diac K-actin and GATA4, aggregated P19[Nkx2-5]:P19[nogg-
gin] and P19[noggin] :P19[control] co-cultures did not (Fig.
1B,D, compare lane 8 with lanes 7 and 9). These results in-
dicate that noggin expression inhibits both DMSO- and
Nkx2-5-induced cardiomyogenesis. As expected, cultures of
P19[Nkx2-5] :P19[noggin] and P19[Nkx2-5]:P19[control] cells
expressed similar levels of transfected Nkx2-5 (Fig. 1C, lanes
7 and 8) and P19[noggin] :P19[Nkx2-5] and P19[noggin] :P19-
[control] co-cultures expressed similar levels of transfected
noggin (Fig. 1A, lanes 7 and 9). Therefore, BMP signaling
is essential for the ability of Nkx2-5 to activate the transcrip-
tion of cardiac K-actin and GATA4.

In order to con¢rm the results of Northern blot analysis,
cultures were stained by immuno£uorescence with the anti-
MyHC antibody, MF20. In the presence of DMSO, P19[con-
trol] cells e¤ciently di¡erentiated into MyHC-positive cardi-
omyocytes (Fig. 2D). When P19[noggin] cells were mixed with
P19[control] cells for 6 days with DMSO, the expression of
noggin inhibited the DMSO-induced cardiomyocyte forma-
tion (Fig. 2B), in agreement with the results from Northern
blot analysis. Furthermore, Noggin expression was shown to
interfere with Nkx2-5-induced cardiomyogenesis, as these
mixed cultures did not form any myocytes by day 6 in culture
compared to P19[Nkx2-5] cells mixed with P19[control] cells
(Fig. 2F,H, respectively). No cardiomyogenesis was observed
in the absence of DMSO in P19[noggin] :P19[control] co-cul-
tures (data not shown). These ¢ndings suggest that BMP sig-
naling is essential for Nkx2-5 function.

These results suggest that cellular aggregation may be re-
sponsible for initiating the BMP signaling cascade that sub-
sequently regulates Nkx2-5 activity. If this is true, then ex-
pression of BMP should bypass the requirement for cellular
aggregation. In order to test this hypothesis, monolayers of

Fig. 1. Noggin inhibits DMSO- and Nkx2-5-induced activation of
cardiac K-actin and GATA4 expression. Two P19[noggin] cell lines,
one P19[control] cell line, and a 1:1 mix of P19[noggin] and
P19[control] cells were di¡erentiated in the presence of DMSO.
P19[Nkx2-5] cells were mixed 1:1 with P19[noggin] or P19[control]
cell lines and di¡erentiated in the absence of DMSO. Total RNA
was harvested on day 0 and day 6 of di¡erentiation, as indicated.
Northern analysis was performed on 6 Wg of total RNA with probes
for noggin (A), cardiac K-actin (B), Nkx2-5 (C), GATA4 (D), and
standardized using an 18S marker (E).
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P19[control] and P19[Nkx2-5] cells were grown in the presence
of various concentrations of BMP4 for 6 days. P19[Nkx2-5]
monolayers treated with 10 ng/ml and 50 ng/ml (data not
shown) as well as 100 ng/ml BMP4 (Fig. 3D) showed substan-
tial cardiomyocyte formation after MF20 staining compared
to similarly treated P19[control] monolayers (Fig. 3C) and
P19[Nkx2-5] cells grown in the absence of BMP4 (Fig. 3B).

Fig. 2. Expression of noggin inhibits both DMSO- and Nkx2-5-induced cardiomyogenesis in P19 cells. Immuno£uorescence using an anti-
MyHC antibody, MF20, was carried out on day 6 of di¡erentiation in the presence of DMSO for P19[control] cells (C, D) and P19[control]
cells mixed with P19[noggin] cells (A, B). Immuno£uorescence with MF20 was also performed on day 6 of di¡erentiation in the absence of
DMSO for P19[noggin] cells mixed with P19[Nkx2-5] cells (E, F) and P19[Nkx2-5] cells mixed with P19[control] cells (G, H). The correspond-
ing Hoechst stain for nuclei is shown (A, C, E, G; observed magni¢cation 400U).

Fig. 3. Monolayers of P19[Nkx2-5] cells show enhanced di¡erentia-
tion in the presence of BMP4. P19[Nkx2-5] (B, D) and P19[control]
cells (A, C) were grown in monolayer in the presence of 0 (A, B),
and 100 ng/ml (C, D) BMP4. Cells were ¢xed after 6 days of
growth and reacted with the anti-MyHC antibody, MF20 (observed
magni¢cation 400U).

Fig. 4. Treating P19[Nkx2-5] cells in monolayer with an increasing
concentration of BMP4 results in an increase in the number of
MyHC-positive cells present. The number of MyHC-positive cardio-
myocytes on each con£uent coverslip was counted (n = 3) for
P19[control] cells (white column) and P19[Nkx2-5] cells (black col-
umn) in monolayer after treatment with BMP4 as indicated for
each column. Bars represent standard error of the mean for each
column.
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In order to quantitate results observed in Fig. 3, the num-
ber of cells expressing MyHC present on a coverslip was
counted and the results of these counts are shown in a bar
graph (Fig. 4). These ¢ndings indicate that increasing BMP4
concentrations to a maximum of 100 ng/ml results in an in-
crease in the formation of Nkx2-5-induced cardiac muscle
cells in monolayer. Since BMP4 was not able to function in
control P19 cells in the absence of Nkx2-5, these data suggest
that BMP4 is su¤cient to activate Nkx2-5 function in P19
cells.

4. Discussion

In the present study, we utilized the P19 cell culture system
to examine the regulation of Nkx2-5 in cardiac muscle devel-
opment. We identi¢ed BMP4 as a candidate for regulating
Nkx2-5 activity during cellular aggregation due to its tempo-
ral pattern of expression during DMSO-induced cardiomyo-
genesis. We examined the role of BMP signaling by using the
BMP antagonist, noggin. Stable P19 co-cultures of Nkx2-5
and noggin aggregated in the absence of DMSO failed to
di¡erentiate into cardiomyocytes. We also demonstrated that
addition of BMP4 protein to P19 cells overexpressing Nkx2-5
in monolayer cultures bypasses the requirement for cellular
aggregation and results in cardiomyogenesis. These results
suggest that BMP signaling is both necessary and su¤cient
for the regulation of Nkx2-5 activity.

In mammalian systems, BMP signaling is both necessary
and su¤cient to activate the transcription of Nkx2-5 [12,18].
However, a role for BMP signaling in the regulation of Nkx2-
5 protein function had not been determined previously. We
present a model in which BMP signaling is required at two
di¡erent stages of cardiomyogenesis. First, BMP signaling is
essential for the expression of Nkx2-5 and GATA4 [12,18].
Second, BMP signaling is essential for the activation of Nkx2-
5 function, resulting in enhanced GATA4 expression and car-
diomyogenesis (this work).

We have shown that BMP4 is su¤cient for regulating
Nkx2-5 but, since noggin inhibits all BMP signaling, other
BMP family members such as BMP2 may also be involved.
In an alternate model, it is possible that the previously iden-
ti¢ed enhancement of Nkx2-5 and GATA4 expression via
BMP signaling may simply re£ect an activation of low levels
of Nkx2-5 protein function, which could then upregulate
GATA4 expression, resulting in cardiomyogenesis. The rele-
vance of the regulation of Nkx2-5 function by BMP signaling
to cardiomyogenesis in the developing embryo remains to be
determined.

Since Nkx2-5 is constitutively expressed in P19[Nkx2-5]
cells, the activation of Nkx2-5 function by BMP signaling
likely occurs at a post-transcriptional level. Consequently,
BMP signaling could result in an enhancement of Nkx2-5
translation, an increase in Nkx2-5 protein stability, or in
changes to the post-translational modi¢cation of Nkx2-5 by
the downstream e¡ectors of BMP signaling, such as TAK1.
Alternatively, BMP signaling could result in the induction of
the expression of a cofactor that modulates Nkx2-5 function,
such as GATA4 or possibly ATF-2 or Smads1/4 [18,36].
These pathways could involve direct interactions between
Nkx2-5 and the Smads factors and/or a cross-talk with the
TAK1 pathway.

In summary, Nkx2-5 function can be regulated by the bal-

ance of inhibition and activation of BMP signaling, leading to
the induction of cardiac muscle-speci¢c gene expression. By
encompassing events from gastrulation to cardiomyogenesis,
the P19 cell system is valuable for analyzing molecular mech-
anisms controlling early cellular di¡erentiation.
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