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Abstract.

The crack propagation problem in a ccupled thermo-

mechanic2l system of nonlinear media nave been considered and

the related path-independent integrals are given.

It is shown

the dynamical crack extcnsicn force in a coupled thermo-mecha-

nical system

equals to this Iintegral,

thus it could consi-

der such integrals as a nonlinear fracture criterion for coupled
thermo-mechanical fracture dynamics.
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INTRODUCTION

It is well-known in fracture statics
that the J-integral (Rice, 1968)

T=fwdy—T s (1)
Here W 1s strain energy density,
J615%%15; 1, is the surface traction;
uy is the displacement; and 7 is in-

tegration patn around the crack tip.
For any path [’ around the crack tip,
J is path-indepencent.

Sometimes, in engineering problems
therwo-mechanical coupling is impor-
tant, and cannot be neglected. Here
thermo-mechanical coupling effects,
dynamnical effect and crack propaga-
tion phenomewon should be included
in tae analysis (Ouyang, 1981).

This paper deals with the crack pro-
pagation problem for nonlinear cou-
pled thermo-mechanical system. Both
the nonlinear elastic and elastic-
plastic media are considered, and
some related path-independent inte-
grazls are worked out. TFor explaining
the physical meaning of such inte-
grals, a notcred specimen is used,
and we have shown tnat this integral
equals to the dynamical crack exten-
sion force. Thus, it is possible to
form nonlinear dynamical fracture
criterion by using these integrals.
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BASIC EQUATIONS FOR COUPLED
THERMO-MECHANICAL SYSTEM OF
NONLIN#AR CONTINUA

We consider a solid body subjected to
external forces and heating. Assume
that the material is nonlinear elas-
tic or elastic-plastic and that it is
stress-free at a uniform reference
temperature To wnen all external

forces are renoved. Choose the rec-
tangular Cartcsian coordinates Xy o
Let Uy, eij’ gij, P Ty Vi hi be the
displacements, strain tensor, stress
tensor, density, temperature, veloci-
ty and heat flux. Then, for a coupl-
ed thermo-mechanigal system of nonli-
near continua, we have the following
governing equations:

Strain-displacement equation:

T .
ES Z(U.,J'fllj,i) , 1,9=1,2,3 (2)
Constitutive equation:
Siy= fis(eut; T)=F5(00)- B,
' i KL p;,e
(3)
6=T-T (4)
Bi; : Thermal moduli
Continuity equation:
2P L v (5
it T e )
— o
vi= 2 (6)
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Equation of motion:

f“fl: 6")-‘)+ XI R (7)
Fourier's law:
hi: =Kis T3 (8)

ki.: Heat conduction
J coefficients.

Equation of energy conservation:

-hi,i=FC,6 + TB:;; & (9)
Here CV is heat capacity per unit

mass at constant strain, symbol “,"
means 3/3t, ",j" means partial dif-
ferentiation about xj.

Therefore, we get 23 equations (2) -
(9) for 23 unknowns ug, Vi, ‘ij’ ey
, Ty by

If we introduce vector Hi’ preportion

@l to the entropy displacement, such
that

. 84 10
hi= 24 (10)
and
H=0 , When 6= €;=0 (11)
Then (9) may be integrated to give
—Hi’iz £CvB +Top'|38i') . (12)

Here we have assumed that 8 = T—To«
To’ thus the approximation T szo is
valid.

In subsequent discussion about crack
propagation, we need the following

thermal and wmechanical, initizal and
boundary conditions:

Boundary conditions:

W=, on boundary S (13)
=T, on boundsry S (14)
=9, on boundary S, (15)
hn—h, 6 OR boundary S-S, (16)
¥ =0, =0, on crack surface (17)

Initial conditions:

W=900) t=o0, in V (18)
Wimpixy t=0, in V (19)
B8 =04(X) . t=0, in V (20)

Here Ti is the surface traction, hn =

hivi is the component of the heat
flux vector hi in the direction of

Sth ICMM

the outer normal to the boundary.
Ei,'fi,E, En are assigned values on
the boundary. 849 ki’ eo are given
in V.

CRACK PROPAGATION IN NONLI-
NEAR ELASTIC MEDIA

For the crack propagation in nonli-
near elastic media, we may propose
the following:

Theorem 1. The integrzl
Y =fof(wea-xiui - k)dy

—{2Ui _ 8y oHi
(n3 + T )ds)dt
M g, &
+ j'va, a—;dV’t.

't i .
+ ‘.Iv £ s Hj%( H;dvdt

(21)

S Z
cracK

Fig. 1. Crack in Nonlinear

Elastic Medi:..
is poth-independent for =ny path T

sround the crack tip (Fig. 1) and any
t,‘ > to> 0. Here

W =] §;de; (22)

is the strain energy density under
uniform temperature,

v 0
Q———Sf—(.:n— de (23)

is the heat that may be transformed
into useful worke.

K=z Pvivi | (24)
is the kinetic energy,
>‘i']= (Kij).‘ (25)

is the inverse of matrix (k1 ). The

domain V is bounded by 7 and crack
surfaces. Here we assume that Xi is

independent of X,



THERMO-MECHANRYCAL SYSTEM

If we consider moving paths I'(t),
then we could obtain the following:

Theorem 2. The integral

Yo={o)

raW T B+ (PR Xi Juiddy

—(Ti%%‘—i v; 2t 7 )ds)dt

__[t. 5,(‘,5’“' EL Py

X | . 3
ﬂt.jvm“_!".}“i ng%‘dvdt

(26)
or, simply
Y=o (W r @ +(fai-Xi)us)dy
W_ 8, M
— (3-8 v 35 s — |, SuZHa
* S Mot 2 4 (27)

CRACK PROPAGATION IN ELAS-
TIC-PLASTIC MEDIA

¥e introduce tae integral
)
Y=o, (we r @ =K =Xiu)dy

— (T3 - 8y Wi yds)dt

1]
+ L. fv" ( Gy + ﬁije)g—x C-S dvdt

* S:Jv _':_'.)‘ii Hi :_:‘ dvdt + S 9‘,’9“‘ JV,

(28)

Here we is the elastic strain energy
donsity,

We= [ fiydef (29)
Vp ig the plastic region within path
P egj ig the plastic strain,

Wow we have the following:
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Theorem 3. The integral 14'15 path~

independent for any path I around
the crack tip and t1 > toz 0 in the

case of elastic-plastic crack propa-
gation.

Por moving path | (t), we may
show the following?

Theorem 4. The integral

Y;r_r (o (We + @ + (P03 X)u )dy

— (T -2y T )ds)dt
¢,
* !t. Iv,(g)<6‘i +Pl56)%‘e:’, dvdt

-

3”\
t, ivm 7N Hj dvdt

5 5"“)?“1 v dth

(30)
or simply

Ys grm<We + QA+ (90~ i) dy

~ (n2-2 u Miyss

7.7
+ Jv,m(s"l *+Bis 05 ei5dv

YRE.LL]
+Svm1; 3H; 5x 3% 4V

jv«:) fu'?a‘ av
(31)

is path-independent for any path ["(t)
around the crack tip and any t1> 1:02

O.
Theorem 5., The integral

Y? ':j:( jnt)(w¢+ Qe+ (Pa =X U Ydy
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. (T'?u. V ?H- )dS)dt
~fef, P Wavae
1, \
+k]v.—r; l)Hlax dVAt (32)
or simply

Yo= i (We + Qe+ (£8:-Xi)UT )dy

i H: 2
(Tau—— i?X )JS Ifuaej—

+jvT J 3% dV

(33)
is pata-independent for any path I"(t)
around the crack tip and any t1> to;
0, here

ae:j' vade

Be=< ¢ (Wi + Tpj€5)
(34)

Y-INTEGRAL AND DYNAMICAL
CRACK EXTENSION FORCE

Consider a notcned specimen, as

shown in Fig. 2. When the notch
width tends to zero, we get a cracked
body. Suppose boundary traction Ti

is given on S, and © is given on S1

C S. Let the crack extends a dis-
tance aa, Consider the energy rela-
tion during this crack extension.

The work done by the applied traction
is

AA,=[ T suids

5th ICMM

Fig. 2. Crack Extension

Force.
Here uy is the displacement incre-
ments after crack extension.

The work done by the applied bedy
force consists of two parts:

a). The one on the shadowed region
AV, released during crack exten-
sion:

AAg, = = f, (X~ PR dv

b). The one on the region V-aV, it
equals to

AAe= IV_‘v (x; - pai)auidv

The heat flux into the body is

AA=-f, & amivids

The work dome by the internal force
also consists of two parts:

a). The one done in the regiom AV, it
equals to the elastic strain en-
orgy released during crack exten-
sion:

aA=-f Josdes yav

b). The one on the region V-aV:
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A A,_:jv_‘v 5‘3 A€ dv

The heat energy absorbed for useful
work consists of two parts:

a). AA3=—IV'%AH;" AV

). aAe= [, (f a0

The internal dissipation energy is:
The one in V-aV:

AAs=J,,, T M3 Py abydv

Thus, the crack extension force is
determined by the following equality:

G aa=aA, + AAg +AAg2 +8A,

—(8A, +8A, + AA3 + AA, +AAg)

So

G=J T.:‘:l' ds +[ (%~ a2 4y

—{ 6% My
j""aa dv = js T ‘)‘aa

LN

5 EAN L av +],2 T 34 4V

+‘L:q°ﬁ Av(fo?Jde.J)dV-‘bm f, §xi-Prpday

! 0
~}A‘Tho A—ﬂ EAV(S Te AH‘;i )JV

From (33), we also have

v} e
Y.—Sr(we-b Qg*(?ai'xi)lh )AY (35)
for notched specimen.,

Therefore, we have
G=Y,

Let the notch width tend to zero, we
get

G=Y, (36)

Thus, we have proved that the inte-
gral Y8 is the dynamical crack exten-

sion force. And it is possible to
form some nonlinear fracture criteri-
on with this integral in fracture dy-
namics,
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