Research on the Operational Characteristics of Diverging Area on Expressway Off-Ramp Based on Different Restricted Strategy of Lane

Jianguo Gonga, Xiucheng Guob, Shuai Daia, Li Duanc*

aRoad Traffic Safety Research Center of the Ministry of Public Security, 14th floor, B Buildings, the center of Xinshijie, No. 3 DongCheng District, Beijing, 100062, China

bSchool of Transportation, Southeast University, Room 327, 1st Buildings, No. 35 Jinxianghe Road, Nanjing, Jiangsu, 210096

cSchool of Civil Engineering and Mechanics, Huazhong University of Science & Technology, Room201, the West Building No. 6, No. 1037 Luoyu Road, Wuhan 430074

Abstract

In order to find the operational characteristics of diverging area on expressway off-ramp with Vehicle Type Restricted Strategy (VTRS) and Vehicle Type Unrestricted Strategy (VTUS) in different lane, this paper analyzed the distribution of vehicle type in each lane, in use of the data which is investigated from diverging area on the two expressway off-ramp with different operational strategy of lane. Furthermore, the χ^2 test technology was used to do the hypothesis test on the headway distribution. The result shows that the shift-negative-exponential distribution can well reflect the headway distribution of deceleration lane, and the first-order or the second-order Erlang distribution can well reflect the headway distribution of mainline. Finally, the conclusion can provide an important theoretical basis for the freeway off-ramp planning, designing, and management.

* Jianguo Gong. Tel.: 010-59790019(8032); fax: 010-59790019(8032).
E-mail address: gongjianguo2012@sina.com
1. Introduction

The capacity of diverging area on expressway off-ramp is less than expressway basic section’s because of disturbance of deceleration and lane-changing behavior between going straight vehicles and right-turning vehicles. Thus, it is considered as the bottleneck and accident black-spots. With the increase of lane number and the change of operational strategy in multi-lane (more than four lanes in bidirectional) expressway, the characteristics of car-flow become more complexity and the operational safety and efficient is affected. As the increase of multi-lane expressway with Vehicle Type Restricted Strategy(VTRS) in different lane, the characteristic of diverging area on the off-ramp should be studied, so that it can provide the reference for the diverging area designing and management.

The first author, named Jianguo Gong, is a male and was born in 1985. His major is transportation planning and management. Especially, traffic flow in the expressway is his research interests.

The second author, named Xiucheng Guo, was born in 1964. He is a professor and a director in School of Transportation at Southeast University. His research interests include urban and regional transportation planning, transportation safety and strategy, rail transit plans, and regional logistics analysis.

The third author, named Shuai Dai, was born in 1980. Her major is transportation policy and planning.

The fourth author, named Li Duan, was in 1978. His major is traffic management. The main research content is traffic flow in the expressway.

The rest of paper is organized as follows. In the next section, the literature with traffic characteristics of expressway is reviewed. Then the process of data collection and selection is analyzed. In the subsequent section, the distribution characteristics of vehicle type on the expressway with different traffic rules is discussed. Finally, the distribution characteristics of headway on the expressway with different traffic rules is analyzed.

Nomenclature

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>VTRS of Vehicle Type Restricted Strategy and</td>
</tr>
<tr>
<td>B</td>
<td>VTUS of Vehicle Type Unrestricted Strategy</td>
</tr>
</tbody>
</table>
2. Literature Review

The characteristic of diverge and the jam on the diverging area has been analyzed by many researchers at home and board. The four-lane expressway with vehicle type unrestricted strategy in different lane, is considered as the research objective in their paper. G.F. Newell (1999) researched the jam phenomenon on the expressway off-ramp preliminarily. Cassidy (2000) find that vehicles in queue which overflow from downstream intersection of off-ramp to the diverging area, can affect the operational status on expressway mainline severely. Therefore, the relationship between the length of queue on off-ramp and the ratio of diverging vehicles was studied, and the principle of bottleneck formed was found. Juan Carlos (2002) et al studied the operational mechanism of jam on the off-ramp. R. Horowitz (2000) discussed some typical behavior with longitudinal and transverse control in the car-flow, such as merging, diverging, lane-changing and so on. Chen Yongmao (2010) analyzed the characteristic of merging and diverging on the expanding section of four-lane expressway, and put forward the model of dynamic merging based on signal control. Li Tiezhu et al (2001) analyzed the traffic characteristics, such as speed, acceleration, deceleration, the distribution of merging points, and merging gap of ramp vehicles in the merging (diverging) zones of acceleration (deceleration) lanes of expressway on the basis of investigation. Zhao Xiaocui et al (2012) studied the characteristic of diverging area on expressway off-ramp by use of detector NC200, and set up the headway distribution model in different flow.

3. Data Collection and Selection

3.1. Process of Data Collection

In order to analysis the car-flow characteristics between the VTRS and VTUS on the diverging area of expressway off-ramp, two expressways are selected, one is Expressway H and the other is Expressway S. They both are located in Zhejiang Province, China. There are six lanes on its mainline and the exit we selected is of directional deceleration lane. But the operational strategy of lane in the mainline is different, Vehicle Type Restricted Strategy (VTRS) and Vehicle Type Unrestricted Strategy (VTUS) in different lane is applied in Expressway H and Expressway S respectively. For the purpose of expression simply, the serial number of lanes is set as follow in this paper: Lane1 is in the name of the far right lane expect deceleration lane on the expressway, Lane2 is in the name of the middle of lanes on the expressway, and the Lane3 is in the name of the far left lane on the expressway. In the VTRS, the heavy or large freight cars are allowed to run only in Lane1, the middle or small freight cars and the large or middle passenger cars are allowed to run in lane2, the small cars are allowed to run in lane3. In the VTUS, each kind of cars can run in each lane. In line with road traffic safety law, the slower car should run on the right lane of expressway, and the rapid cars should run on the left lane of expressway.

In this survey, the video camera is fixed on the gantry that is about 100 meters in front of the end of off-ramp diverging area, and the location of data collection is about 100 meters apart from the end of off-ramp diverging area. The data of volume and headway is recorded from the video. The information about location and time of data collection is in table 1.

Table 1 The location information of data collection

<table>
<thead>
<tr>
<th></th>
<th>Expressway H</th>
<th>Expressway S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Lane</td>
<td>Six Lanes in bidirectional</td>
<td>Six Lanes in bidirectional</td>
</tr>
<tr>
<td>Type of diverging area</td>
<td>With Directional Deceleration Lane</td>
<td>With Directional Deceleration Lane</td>
</tr>
<tr>
<td>Operational Strategy</td>
<td>VTRS</td>
<td>VTUS</td>
</tr>
<tr>
<td>Site of Data Collection</td>
<td>Exit Site in Stake No. K43</td>
<td>Exit Site in Stake No. K61+700</td>
</tr>
<tr>
<td>Time of Data Collection</td>
<td>8:00-12:00 am, August 19, 2010</td>
<td>8:00-12:00 am, August 24, 2010</td>
</tr>
</tbody>
</table>
3.2. Type of Data

The sample that used in this paper is selected with three steps. Firstly, the video was watched detailed and ensured that no accident and dangerous drive behavior occur in half an hour. Secondly, the data was recorded from the video in fixed time. Thirdly, the abnormal data was excluded and the sample is determined. Finally, the sample includes 2219 vehicle type and 2211 headway. The detail data is show in table 2 and table 3.

<table>
<thead>
<tr>
<th>Expressway</th>
<th>Deceleration Lane</th>
<th>Lane 1</th>
<th>Lane 2</th>
<th>Lane 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number on the H</td>
<td>133</td>
<td>236</td>
<td>281</td>
<td>418</td>
</tr>
<tr>
<td>Number on the S</td>
<td>156</td>
<td>120</td>
<td>372</td>
<td>503</td>
</tr>
</tbody>
</table>

Table 3 The ratio of each vehicle type on the two expressways with different operational strategy

<table>
<thead>
<tr>
<th>Vehicle Type</th>
<th>Small Cars</th>
<th>Middle or Small Freight Cars</th>
<th>Large or Middle Passenger Cars</th>
<th>Heavy or Large Freight Cars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratio in the deceleration lane (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VTRS</td>
<td>38.6</td>
<td>27.9</td>
<td>14.3</td>
<td>19.3</td>
</tr>
<tr>
<td>VTUS</td>
<td>40.5</td>
<td>21.7</td>
<td>27.0</td>
<td>10.8</td>
</tr>
<tr>
<td>Ratio in Lane 1 (%)</td>
<td>3.39</td>
<td>41.05</td>
<td>3.02</td>
<td>52.54</td>
</tr>
<tr>
<td>Ratio in Lane 2 (%)</td>
<td>39.86</td>
<td>23.13</td>
<td>19.22</td>
<td>17.79</td>
</tr>
<tr>
<td>Ratio in Lane 3 (%)</td>
<td>94.74</td>
<td>0.48</td>
<td>4.07</td>
<td>0.72</td>
</tr>
</tbody>
</table>

4. Distribution of Vehicle Type

4.1. Comparison and Analysis the Number of Vehicle Type

According to table 3, we can find that the ratio of each vehicle type in deceleration lanes is similar, though the operational strategy is different. When VTRS is used on the expressway, the most proportion of heavy or large freight cars is distributed in Lane1 so that the ratio of small passenger cars is less than 5%. The ratio of small passenger cars goes up to over 40% in Lane2 yet and the ratio of heavy or large freight cars decreased to below
In Lane3, the ratio of small passenger cars is 94.74% and the ratio of heavy or large freight cars is only 0.72%. On the contrast, when VTUS is used in the expressway, the large or middle passenger cars is of less proportion, but the ratio of small passenger cars is 35.83% and far more than its in lane1 with VTRS. In Lane2, the ratio of small passenger cars and heavy or large freight cars make large proportion. The ratio of small passenger cars is 77.41% and less than its in lane3 with VTRS.

4.2. Vehicle Type Characteristic with Different Operational Strategy

The distribution characteristic of vehicle type on the off-ramp diverging is always decided to the social-economic and industry feature in the region that is joined with off-ramp. The ratio small passenger car is of large proportion when area along with the expressway was developed. But if the secondary industry is the most important industry in the area along with the expressway, the ratio of heavy or large freight cars would be of the largest part of vehicles.

From the perspective of traffic flow, the distribution characteristic of vehicle type on the off-ramp diverging is depended on the operational strategy in each lane. The type of vehicle that it is allowed to travel in this lane is always of large proportion, and the number of the rest of vehicle type is seldom, when the VTRS is used. If the VTUS is used, the distribution characteristic of vehicle type is similar as the characteristic that when the VTRS is used. The difference of characteristic between the VTRS and VTUS is that the distribution of vehicle type on Lane3. The ratio of small passenger cars on the Lane3 is only about 80% in VTUS, however, it is exceed of 95% in VTRS. The most important is that many cars would travel illegally even if the lane is of vehicle type-restricted.

5. Headway Distribution

5.1. Distribution Fitting and Hypothesis Test

In the basis of vehicle type distribution above, there is large difference in vehicle type among lanes, so that the headway of each lane on the off-ramp diverging is also different, regardless of the VTRS or VTUS is used. Take the example of headway on deceleration lane, it is counted and described as histogram. It shows in table 2 and table 3 respectively.

In VTRS, the point of deceleration headway distribute on the intervals [1, 13]s, the maximum headway is 53.2s and the 85% headway is 20s approximately, the most of headway is small. While in VTUS, the point of deceleration headway distribute on the intervals [1, 12]s, the maximum headway is 37.1s and the 85% headway is 19s approximately.

![Fig 1](image-url) Fig 1 The headway characteristics of deceleration lane in use of VTRS
Fig 2 The headway characteristics of deceleration lane in use of VTUS

The Erlang distribution or the shift-negative-exponential distribution can well reflect the headway distribution according to reference (Wang Wei, Guo Xiucheng(2011)). For the example of headway distribution in VTRS, the analysis step is as follows:

Step 1: Calculate the mean of sample \(\bar{t} \), the variance of sample \(S^2 \) and the parameter \(l \):

\[
\bar{t} = \frac{\sum_{i=1}^{54} f_i t_i}{138} = 9.94, \quad S^2 = \frac{\sum_{i=1}^{54} f_i t_i^2}{N-1} - \left(\frac{\sum_{i=1}^{54} f_i t_i}{N(N-1)} \right)^2 = 143.95
\]

(1)

\[
l = \frac{t^2}{S^2} = 0.6866, \quad \lambda = \frac{Q}{3600} = \frac{138 \times 2}{3600} = 0.077(\text{veh/t})
\]

(2)

The parameter \(l \) should be an integer, so \(l = 1 \) in this calculate process. Thus, the headway distribution function of deceleration lane on the expressway with VTRS as follows:

\[
P(h \geq t) = \exp(-0.076t)
\]

(3)

Step2: Hypothesis Test

According to the distribution function above, each interval theoretical frequency can be calculated, and \(\chi^2 \) test can be used to do the hypothesis test.

The result:

\[
\chi^2 = \sum_{i=1}^{54} \frac{f_i^2}{f'_i} - N = 174.40 - 138 = 36.40
\]

(4)
There is only one unknown parameter in Erlang distribution, so the result is \(r = 1 \). Let \(\alpha = 0.05 \), the result is:

\[
\chi^2_{0.05}(K - r - 1) = \chi^2_{0.05}(16) = 26.296
\]

\[
\chi^2 > \chi^2_{0.05}(16) = 26.296
\]

Thus, the mentioned above hypothesis should be refused, that is, headway distribution doesn’t fit the first-order Erlang distribution.

Step3: Hypothesis Test Again

Generally speaking, the least headway always exits so that every vehicle can be braked in danger. We assumed that the headway distribution would fit the shift-negative-exponential distribution, and let \(\Delta t = 0.5s, 1.0s, 1.5s, 2.0s \) respectively. Furthermore, the hypothesis would be test in use of \(\chi^2 \) test. The result shows that the headway distribution fits the shift-negative-exponential distribution when \(\Delta t = 2.0s \). The calculate result is showed in table 4.

<p>| Table 4 The parameters of headway distribution on the deceleration lane in use of VTRS |
|-----|----------------|----------|-----|-----|-----|-----|-----|-----|</p>
<table>
<thead>
<tr>
<th>Mean (\bar{t})</th>
<th>Variance (S^2)</th>
<th>(\lambda)</th>
<th>(l)</th>
<th>(\Delta t)</th>
<th>(\chi^2)</th>
<th>(\alpha)</th>
<th>(\chi^2_{0.05})</th>
<th>Degree of Freedom</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.94</td>
<td>143.95</td>
<td>0.077</td>
<td>0.6866</td>
<td>2</td>
<td>25.24</td>
<td>0.05</td>
<td>26.296</td>
<td>16</td>
</tr>
</tbody>
</table>

Results of Hypothesis Test

\[
\chi^2_{0.05} = 26.296 > 25.24
\]

It fits the shift-negative-exponential distribution

\[
P(h \geq t) = \exp[-0.076(t - 2)]
\]

Similarly, the headway distribution in each lane of expressway with different operational strategy can be calculated. The result shows in table 5.

<p>| Table 5 The characteristic of headway distribution on each lane in different operational strategy |
|-----|----------------|----------------|----------------|----------------|</p>
<table>
<thead>
<tr>
<th>Lane</th>
<th>Operational Strategy</th>
<th>Mean (\bar{t}) (s)</th>
<th>Variance (S^2)</th>
<th>Distribution Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deceleration Lane</td>
<td>VTRS</td>
<td>9.94</td>
<td>143.95</td>
<td>(P(h \geq t) = \exp[-0.076(t - 2)])</td>
</tr>
<tr>
<td>VTUS</td>
<td>10.27</td>
<td>82.45</td>
<td>(P(h \geq t) = \exp[-0.087(t - 2)])</td>
<td></td>
</tr>
<tr>
<td>Lane1</td>
<td>VTRS</td>
<td>7.57</td>
<td>38.92</td>
<td>(P(h \geq t) = \exp(-0.13t))</td>
</tr>
<tr>
<td>VTUS</td>
<td>8.58</td>
<td>73.60</td>
<td>(P(h \geq t) = \exp(-0.07t))</td>
<td></td>
</tr>
<tr>
<td>Lane2</td>
<td>VTRS</td>
<td>6.28</td>
<td>27.88</td>
<td>(P(h \geq t) = \exp(-0.16t))</td>
</tr>
<tr>
<td>VTUS</td>
<td>5.23</td>
<td>13.88</td>
<td>(P(h \geq t) = (1 + 0.21t) \exp(-0.21t))</td>
<td></td>
</tr>
<tr>
<td>Lane</td>
<td>VTRS</td>
<td>4.56</td>
<td>17.13</td>
<td>(P(h \geq t) = \exp(-0.23t))</td>
</tr>
<tr>
<td>VTUS</td>
<td>3.82</td>
<td>10.59</td>
<td>(P(h \geq t) = \exp(-0.28t))</td>
<td></td>
</tr>
</tbody>
</table>
5.2. Headway Distribution in Different Operational Strategy

There exits some regular pattern on diverging area headway of expressway off-ramp. In VTRS, the vehicle type is little, the headway distribute on the small intervals. While in VTUS, the velocity distribution of different is discrete, the intervals of headway distribution always become wide.

At the point of mean headway, the headway among adjacent lane is small if in VTRS, it is 1.3s and 1.7s respectively. In VTUS, the volume leads to different headway on each lane, and the headway among adjacent lane is large, it is 3.4s and 1.4s respectively.

With the seen of headway distribution on different lane, the shift-negative-exponential distribution can well reflect the headway distribution of deceleration lane, and the negative-exponential distribution can well reflect the headway distribution of Lane1 and Lane3, regardless of it is VTRS or VTUS. There exits difference on the Lane2 between the VTRS and VTUS is used. It fits the negative-exponential distribution and the second-order Erlang distribution, because the different type of vehicle redistribute as its operational rules on off-ramp diverging area.

6. Conclusion and Prospect

In this paper, it is analyzed that the distribution of vehicle type and headway on the off-ramp diverging area if the VTRS and VTUS is applied. Furthermore, the χ^2 test technology was used to do the hypothesis test on the headway distribution. The result shows that:

- First point: There exits main difference that the composition of vehicle type is simple on Lane3 when VTRS is used but it is complexity when VTUS is used.
- Second point: The shift-negative-exponential distribution can well reflect the headway distribution of deceleration lane, and the negative-exponential distribution can well reflect the headway distribution of Lane1 and Lane3, regardless of it is VTRS or VTUS. In Lane2, the headway distribution fits the negative-exponential distribution in VTRS and it fits the second-order Erlang distribution in VTUS.

On the basis of analysis that aim at traffic flow characteristic, it need to be further studied that some parameters in the off-ramp diverging area, such as the curve of off-ramp, the length of deceleration lane, the site of sign and so on. Besides, it should be discussed that the safety and efficiency due to the difference of traffic characteristic among lanes with different strategy.

Acknowledgements

The authors thank all the members in the BLUESKY studio.

References

