
Egyptian Informatics Journal (2013) 14, 27–36

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Cairo University

Egyptian Informatics Journal

www.elsevier.com/locate/eij
www.sciencedirect.com
ORIGINAL ARTICLE
Maintaining the search engine freshness using mobile agent
Marwa Badawi a,*, Ammar Mohamed a, Ahmed Hussein b, Mervat Gheith a
a Institute of Statistical Studies and Research, Cairo University, Cairo, Egypt
b Faculty of Computers and Information, Cairo University, Cairo, Egypt
Received 23 June 2012; revised 12 November 2012; accepted 20 November 2012
Available online 21 December 2012
*

E-

Pe

In

11

ht
KEYWORDS

Search engine;

Mobile crawling;

Distributed indexing;

Web page change detection
Corresponding author. Tel.:
mail address: marwa_badaw

er review under responsib

formation, Cairo University.

Production an

10-8665 � 2012 Faculty of C

tp://dx.doi.org/10.1016/j.eij.2
+20 100
i_claes@y

ility of

d hostin

omputer

012.11.00
Abstract Search engines must keep an up-to-date image to all Web pages and other web resources

hosted in web servers in their index and data repositories, to provide better and accurate results to

its clients. The crawlers of these search engines have to retrieve the pages continuously to keep the

index up-to-date. It is reported in the literature that 40% of the current Internet traffic and band-

width consumption is due to these crawlers. So we are interested in detecting the significant changes

in web pages which reflect effectively in search engine’s index and minimize the network load. In this

paper, we suggest a document index based change detection technique and distributed indexing

using mobile agents. The experimental results have shown that the proposed system can consider-

ably reduce the network traffic and the computational load on the search engine side and keep its

index up-to-date with significant changes.
� 2012 Faculty of Computers and Information, Cairo University.

Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Indexing the Web has become a challenge due to the web’s

growing and dynamic nature. Currently it is estimated that
web contains approximately 50 billion publicly accessible/
indexable web documents distributed all over the world on
thousands of web servers, while the deep web (dynamically

generated documents, intranet pages, web-connected
9620075.
ahoo.com (M. Badawi).

Faculty of Computers and

g by Elsevier

s and Information, Cairo Universi

1

databases, etc.) is almost three orders of magnitude larger
[1]. According to [2], the web is very dynamic and 40% of its
contents change daily. Web crawlers are used to recursively

traverse and download web pages for search engines to create
and maintain the web indices. According to [3], the need of
maintaining the up-to-date pages in the indices causes a craw-

ler to revisit the websites recursively. Hence, the resources like
CPU cycles, disk space, and network bandwidth, etc., become
overloaded and sometimes a web site may crash due to such

overload on these resources. One study [4] reports that about
40% of current internet traffic and bandwidth consumption
is due to the web crawlers. The current cooperation schemes
between the search engine and web server can be divided in

two main groups as depicted in [5]: polling schemes and inter-
rupt (or push) schemes. A crawler may use one of them or a
combination of different schemes. In the polling (or pull)

schemes, the search engine periodically requests data from
the web server, based on search engine policies. In the interrupt
ty. Production and hosting by Elsevier B.V. All rights reserved.

https://core.ac.uk/display/82021006?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:marwa_badawi_claes@yahoo.com
http://dx.doi.org/10.1016/j.eij.2012.11.001
http://www.sciencedirect.com/science/journal/11108665
http://dx.doi.org/10.1016/j.eij.2012.11.001


28 M. Badawi et al.
(or push) schemes, the web server begins a transaction with the
search engine whenever it is necessary. This is similar to the
relationship between the main processor and a hardware de-

vice (network card, scanner, etc.) in a modern computer. How-
ever, with the great expansion of the web, the currently
centralized crawling and indexing approach based on pull

schemes appears inadequate. Since crawlers are no longer able
to download web pages with the daily rate required to main-
tain an updated index of the web. A study suggests that no

search engine succeeds coverage of more than 16% of the esti-
mated web size [6]. More specifically; the centralized crawling
and indexing approach has a shortage due to the following rea-
sons [7]:

� Centralized data access: The task of crawling data is highly
centralized. It uses HTTP request and reply paradigm for

every page downloaded to create and maintain the search
engine’s index. Each of these requests and replies requires
a separate TCP connection. Given that the web today has

approximately 50 billion publicly pages, the latency
involved in establishing these connections quickly adds
up. Further, the estimated amount of data in all the web

pages is of the order of tens of terabytes and continues to
grow. Since a search engine has to frequently re-crawl
web pages to account for any changes, the required network
bandwidth is tremendous.

� Centralized page filtering: Crawlers download the entire
contents of a web page, including useless information such
as scripting code, HTML tags and comments, which are

unnecessary for the document indexing.
� Centralized indexing: The indexing strategy is centralized
too where all the downloaded pages are processed locally

at the search engine to generate inverted indices, which
require a lot of storage and processing power.
� Centralized change detection: The crawler detects changes

between the last version of downloaded web pages and
the old one locally at the search engine side.
� Uncompressed data: Documents are usually downloaded by
the crawlers uncompressed, increasing in this way the net-

work bandwidth.
� Asynchronous updating: The vast size of the web makes it
impossible for crawlers to keep up with document changes.

The revisiting frequency for non-sponsored documents, in
some of the biggest commercial search engines, varies from
4 to 6 weeks [8]. As a result, search engines provide the cli-

ents old content. The ideal case would to synchronize the
update of the search engine’s index with the web page’s
actual change frequency.
� Insignificant change detection: Changes occurring in web

pages are best classified as content change (e.g., deletions,
additions and modification of text), layout or structure
change (e.g., changes in the position of elements in the

page), and attributes change (e.g., changes in fonts and col-
ors). The significant changes that actually reflected in the
search engine’s index are the content changes. But the craw-

ler in this centralized approach is nave where it transmits
over the network both significant changes (content changes)
and insignificant changes (structure and attributes changes),

therefore it cause network overload and useless indexing for
insignificant changes.
In this paper, we propose a document index based web page
change detection technique and distributed indexing strategy
by utilizing the mobile agent technology. The proposed distrib-

uted web crawling and indexing system (DWCIS) handles the
above mentioned shortages in centralized approach by mini-
mizing network utilization, to keep up the search engine’s in-

dex up-to-date with document significant changes in real
time by performing on-site monitoring and to minimize the
computational load on the search engine side.

The rest of the paper is organized as follows. Section 2 pro-
vides an overview of centralized or traditional search engine
design. The related work is discussed in Section 3. Section 4 de-
scribes the proposed architecture of the distributed web crawl-

ing and indexing system (DWCIS) and its work flow. Section 5
describes the experimental setup and Section 6 shows the
experimental results and discussion. Finally, we conclude in

Section 7.

2. An overview of traditional search engine design

A search engine usually contains spiders, a web page reposi-
tory, an indexer, search indexes, a query engine, and a user
interface. These components are described in the following [9].

� Spiders: also referred to as web robots, or crawlers, are the
programs behind a search engine that retrieve web pages by

recursively following URL links (Uniform Resource Loca-
tor) in pages using standard Hyper Text Transfer Protocol
(HTTP). First, the spiders read from a list of starting-seed
URLs and download the documents at these URLs. Each

downloaded page is processed, and the URLs contained
within it are extracted and added to the queue. Each spider
then selects the next URL from the queue and continues the

process until a satisfactory number of documents is down-
loaded or local computing resources are exhausted. To
improve speed, spiders usually connect simultaneously to

multiple web servers in order to download documents in
parallel, either using multiple threads of execution or asyn-
chronous input/output.

� Web page repository: Documents retrieved by the spiders
are stored in a repository of web pages. To reduce the
needed storage space, the pages are often compressed before
being stored. The repository is usually in the form of a data-

base, but it is also common for small-scale search engines to
simply store the documents as files.
� Indexers: An indexer processes the pages in the repository

and builds an underlying index of the search engine. The
indexer tokenizes each page into words and records the
occurrence of each word in the page. The indexer is also

used to calculate scores such as the term and document fre-
quencies of each word, which can be used for search result
rankings.
� Inverted index: The results from the indexer are then con-

verted into an ‘‘inverted index’’. While the original indexing
results map a document to a list of words contained within
it, an inverted index maps a word to a list of documents

containing the word. This allows fast retrieval of documents
when a search query is passed to the search engine. The
resulting searchable indexes are usually stored in a

database.



Maintaining the search engine freshness using mobile agent 29
� Query engines: A query engine accepts search queries from

users and performs searches on the indexes. After retrieving
search results from the indexes, the query engine is also
responsible for ranking the search results according to con-

tent analysis and link analysis scores. It is also responsible
for generating a summary for each search result, often
based on the web page repository. The query engine in some
search engines is also responsible for caching the results of

popular search queries. After all the processing, the query
engine generates and renders a search result HTML page
and sends it to the user interface.

As shown in Fig. 1, the processes of the traditional search
engine are totally centralized at the search engine side. Starting

from the crawling process, change detection process to index-
ing process. Given that the web today has approximately 50
billion publicly indexable pages as mentioned before, this is
huge load on the search engine side and the network band-

width required is tremendous.

3. Related work

These authors [7,10,11] have initiated the concept of mobile
crawling by processing the use of mobile agents as the crawling
units. The proposed concept surpasses the centralized architec-

ture of the current web crawling systems by distributing the
data retrieval process across the network. Mobile crawlers
are able to perform remote operations such as data analysis

and data compression at the data source before the data is
transmitted over the network. However their systems ignore
the distributed indexing, index updating and web page change

detection.
Brandman et al. [12] have studied the idea of how to make

web servers more crawler friendly through that web servers ex-
port meta-data archives describing their content, so that crawl-

ers can efficiently create and maintain large, ’’fresh’’
repositories. This meta-data includes the last modified date
and size for each available file. This approach reduces the net-

work bandwidth by sending only the modified pages after last
crawling date, but in the same time it provides the search
Figure 1 Work flow of the tr
engine’s index with significant changes (content changes) and
insignificant changes (structure and attributes changes) to-
gether. These insignificant changes results in network overload

and wasted resources for the search engine through re-crawling
and re-indexing the web pages for insignificant changes. The
authors here concern only with the search engine’s index fresh-

ness and ignore the distributed crawling and indexing.
Yadav et al. [13,14] have proposed checksum (hash value)

based content level change detection. At the time of page

crawling, only comparison will be made to the text code of that
page. The main drawback of this technique is that if any
change in that value is detected for the actual copy on the
web as compared to the local copy, regardless it is significant

or not, the page will be refreshed or re-crawled. Hence this
technique results in network overload and wasted resources
for the search engine.

Artail and Abi-Aad [15] have proposed a web page change
detection approach based on restricting the similarity compu-
tations between two versions of a given web page to the nodes

with the same HTML tag type. Before performing the similar-
ity computations, the HTML web page is transformed into an
XML-like structure in which a node corresponds to an open-

closed HTML tag. This tree structure uses a lot of storage
space as well as causes a lot of inconvenience at time of refresh,
as the tree structure has to be compared. Also this approach
works only on the page types that can be transformed into

an XML-like structure such as HTML pages.
Bal et al. [16,17] have proposed a novel indexing system

based on mobile agents, which can filter out the HTML pages

that have not been modified since last crawl through two web
page change detection methods. The first method is the com-
parison of page sizes of web pages at the time of page change

detection. The second one uses the last modification date of
web pages. These methods have the same drawback like the
hashing method in above discussed related work as any insig-

nificant change will change both the page size as well as its last
modification date. This leads to overloading the search engine
with processing web pages that will not change the index.

These authors [18–20] have proposed a distributed crawling

system based on mobile agents, but they do not take into
aditional crawling system.



30 M. Badawi et al.
consideration either distributed indexing or web page change
detection. In [21] a technique is proposed to utilize the users’
browsing behavior at the crawling and indexing process so as

to direct the crawler to download the important pages, which
were not previously crawled. As the work attempts to index
most of important pages based on user feedback.

These authors [22–29] have studied the concept of parallel
crawling; multiple processes run in parallel to download pages.
So that download rate is maximized, network load dispersion,

network load reduction and scalability, but they did not con-
sider distributed indexing and change detection.

4. The proposed distributed system architecture

We introduce a distributed web crawling and indexing system
(DWCIS). The key idea of our architecture is based on the

Master-Slave agent design pattern [30,31]. On the Master-
Slave design pattern, a master agent delegates a task to be
done on a given agency to a slave agent, in order to continue
executing other tasks that cannot be interrupted. The slave

agent visits the indicated agency, where it accomplishes the
task and then returns to the source agency with the results.
The master agent receives the results from the slave agent.

Then, the slave one destroys itself. Fig. 2 shows the idea of
our system as follows: instead of downloading the pages at a
web server across the network; the search engine uploads an

agent, called the mobile crawler to the web server. The mobile
crawler processes the pages at the web server locally and sends
back the results in a custom format to the search engine.

The main contribution of the proposed system is the crea-

tion of document index of web pages at the web server side.
This proposed approach has three advantages: First, it is used
as a change detection technique where it is more robust to

non-significant web page changes than other existing change
Figure 2 Architecture of
detection techniques that depend on page size, last modifica-
tion date and hash value. Second, the document index of chan-
ged pages is returned to the search engine instead of the pages

themselves. Therefore, it reduces the network load results from
crawling. Third, it reduces the computational load at the
search engine side because the document indices of the web

sites are already created at the web server and the search en-
gine has to only create the inverted indices.

The major components of our DWCIS as shown in Figs. 2

and 3 are:

� Master Agent (MA): The MA resides at the search engine
side and performs various tasks. The major tasks of MA are

slave agents (mobile crawlers) creation; delegation of
URL’s to the SA for crawling, dispatching SA to the web
server, receiving the compressed document index from the

slave agent, decompression of document index and provide
search engine’s index with document index.
� Slave Agent (SA): It is created at the search engine side

then dispatched to reside at the web server side. It processes
the assigned URL locally as follows: requests the web pages
from the web server, generates the document index of the

web pages, detect significantly changed web pages, com-
presses the generated document index and finally moves
back to the search engine side carrying the compressed doc-
ument index of the significantly changed web pages and

sends them to the MA in an ACL message.

4.1. Work flow of DWCIS

We assumed that any web server wants to participate to our
system should first register at the Master Agent through our

administration site (Fig. 4). Then the Master agent has a
the proposed system.



Figure 3 Work flow of the proposed distributed system.

Figure 4 Administration web page to register a web site at the system.

Maintaining the search engine freshness using mobile agent 31
URL’s list of all desired web servers. At the first crawling cycle,
the MA creates and dispatches SAs to the desired web servers.

The SA contacts the web server locally using HTTP request for
all static pages and dynamic pages, indexes the crawled pages
to create the document index which is sent to the MA. Also

there is a copy of this document index saved at the web server
for using later in the upcoming crawling cycles. At the further
crawling cycle, MA dispatches a SA to a web server to start re-
crawling process.

As we mentioned above, it is our attention toward content
change of a web page, not the structural change. So it is impor-
tant firstly before starting re-crawling process to determine if

the web page which already crawled before has been changed
or not, either the change structural or content. This filtration
question saves web server’s crawling time, indexing time,
CPU cycles and memory. If the web page has not changed
since the last crawling cycle, then no need to re-crawl and in-

dex it again. We determine that through the last modification
date (LMD) of a web page which is saved in the meta-data of
the web page. If the LMD has changed, then it indicates two

probabilities, either a web page has structural change or con-
tent change. SA starts only re-crawling process for only
crawled web pages with changed LMD. SA compares the
web page’s old document index which is saved on the web ser-

ver from last crawling with the new one. If the indices of a web
page are similar, then this web page has an insignificant change
and hence no need to transmit its document index again over

the network to the search engine. But if the indices are differ-
ent, it means that a web page has actually changed in content
and its document index should be transmitted over the



32 M. Badawi et al.
network to MA. MA receives the updated document index of a
web page and replaces it with the old one in search engine’s
database. Afterwards the search engine creates the inverted in-

dex from the up-to-date document indices. The following
information are collected and stored after each crawl during
the experiment:

� Number of pages that were added/deleted/modified after
the last crawl.

� The parameters responsible for change detection-last mod-
ification date, page size in bytes, hash value, keywords
count (page index).
� The number of bytes retrieved directly by the crawler.

5. Experimental setup

A virtual environment has been setup to perform the experi-
ments. There are two machines in our virtual environment,
the first machine is Remote Site/Server (RS) that hosts a partic-

ipating web site and the second one is the Search Engine. These
machines have Pentium Dual-Core Intel processor clocked at
2.20 GHz with 2 GB of RAM and support both of java run-

time environment and Java Agent Development Framework
(JADE) [32] to develop multi-agent systems in compliance with
the FIPA specifications. Both machines have 32-bit Windows

operating system. These two machines are connected through
high-speed LAN. As a data set for our experiments, 656 HTML
web pages (about 4.95 MB total) are selected from ‘‘Sun Java
Tutorials’’ website to evaluate the performance of our system.

These web pages are selected, downloaded and stored on the
RS. Fig. 4 shows the administration web page used by a web
Figure 5 JADE Remote A
master to register his web site at DWCIS. The registration
parameters include the main URL of the web site, host ma-
chine, the change detection technique and frequency.

Both stationary manager agent (as master agent) and mo-
bile crawler agent (as slave agent) have been developed using
JADE. The manager agent resides on Client server/Search En-

gine delegates the main URL’s of participating web sites to the
mobile crawler agents for crawling. The crawler designated for
a website visited the Remote Site (RS) and analyzed the pages

for modification after the last crawl and returned only the in-
dex of those that were actually modified. Fig. 5 shows JADE
Remote Agent Management GUI that is used to manage
and visualize the existing agents and agent containers. The

agent container ’’ManagerAgent-Container’’ hosts the man-
ager agent manager and the agent container ’’Crawlers-
Container’’ hosts a pool of crawlers residing at the search engine

side. In the example at Fig. 5, The agent crawler-0 was moved
from the crawlers’ pool to the agent container ’’MyCrawler-
Container’’ hosted at the web server side to start a new crawling

cycle. Terrier [33] is an open source Information Retrieval
platform, containing common and modern statistical retrieval
models, such as TF-IDF, BM25 and Language Modeling.

In particular, it provides state-of-the-art indexing and re-
trieval functionalities, and supports the rapid development
and evaluation of large-scale retrieval applications. Terrier is
implemented in Java and was used to create both document in-

dex and inverted index. We compressed the collection using
WinZIP compression technique, and found that HTML docu-
ments are compressed approximately 70%.

Sitemaps are an easy way for webmasters to inform search
engines about the pages on their websites that are available for
crawling. By creating and submitting Sitemaps to search
gent Management GUI.



Maintaining the search engine freshness using mobile agent 33
engines, it is more likely to get better freshness and coverage in
search engines. Google Sitemap Generator is a tool installed
on the web server to generate the Sitemaps automatically [34].
6. Experimental results

The goal of our performance evaluation is firstly, to establish

the superiority of our change detection technique based on doc-
ument index over other studied change detection techniques,
like Last modification date (LMD), page size by [6,18] and hash

value by [13,14]. Secondly to establish the superiority of the dis-
tributed indexing approach against the currently centralized
indexing approach, we measure performance in terms of the

size of data transmitted across the network. As a data set for
our experiments we used the Java programming tutorial as
mentioned before in last section which is a set of 656 HTML

pages (about 4.95 MB total). It is possible to reduce the net-
work traffic further by compressing the pages before sending
them to the Client Site (search engine). The HTML page can
be compressed up to 30% of the actual size by using standard

compressing tool such as WINZIP.
We compare our proposed distributed mobile crawler based

on document index with other mobile crawlers using state-

of-the-art change detection techniques. We have implemented
the following crawler types:

� Traditional crawler (TC): It simulates a stationary crawler,
running on the search engine side without any crawling
computational load on the web server side. It downloads
all web pages residing at the web server remotely using

remote HTTP request. The search engine has the maximum
computational burden as it has to process all web pages,
create the document indices and create the inverted index

used for query search.
� Mobile crawler using LMD(MC1): It is a migrating crawler
based on Last modification date change detection tech-

nique. It migrates to the web server and filters the non-
modified pages using the comparison of last modification
dates at the time of page change detection. It sends back only

to the search engine the modified web pages compressed.
� Mobile crawler with page size (MC2): It is a mobile crawler
based on page size change detection technique. It migrates
to the web server and filters the non-modified pages using

the comparison of page sizes at the time of page change
detection. It sends back only to the search engine the mod-
ified web pages compressed.

� Mobile crawler with hash value (MC3): It is a migrating
crawler based on hash value change detection technique. It
migrates to the web server and filters the non-modified pages

using the comparison of hash values at the time of page
change detection. It sends back only to the search engine
the modified web pages compressed. A hash function is
any algorithm or subroutine that maps large message of

variable length, called keys, to smaller string of a fixed
length. The values returned by a hash function are called
hash values, hash codes, hash sums, checksums or simply

hashes.
� Mobile crawler with document index 1 (MC4): It is a mobile
crawler based on document index change detection

technique. It migrates to the web server and filters the non-
modified pages using the comparison of document indices
at the time of page change detection. It sends back only to

the search engine the modified web pages compressed.
� Mobile crawler with document index 2 (MC5): It is a mobile
crawler based on document index change detection tech-

nique. It migrates to the web server and filters the non-
modified pages using the comparison of document indices
at the time of page change detection. It sends back only
to the search engine the document indices of the modified

web pages compressed. This crawler achieves the maximum
reduction in the computational load on the search engine
side because the document indices are already created. All

what the search engine has to do afterwards is to collect
the document indices from all the participating web sites
and create the inverted index used for query-based search.

We evaluate the performance of the different above crawl-
ers through six crawling cycles. For experiment, we assume
that only one type of change will happen at each cycle. Table

1 shows the number of bytes transferred over the network be-
tween Search Engine and web Server caused by the six differ-
ent crawlers with respect to the different crawling cycles. When

mobile crawler is used, there is an overhead of 30 KB due to
the mobile crawler itself, which is negligible compared to the
data transferred by TC.

� First cycle (initial crawling): the proposed crawler has to
download the compressed indices of all web pages hosted

on the web server.
� Second cycle (No change cycle): No web pages have been
changed since the first cycle. This cycle illustrates the advan-
tage of mobile crawlers over traditional one.

� Third cycle (pages deletion cycle): In order to simulate the
page deletion case, we randomly select 10 HTML web pages
of total size 133 Kbytes and delete them from the web site.

� Fourth cycle (pages addition cycle): In order to simulate the
page addition case, we added the 10 HTML web pages,
deleted at the previous cycle, back to the web site.

� Fifth cycle (Significant change cycle): In order to simulate
the case of page content change, we change the contents
of the 10 HTML web pages, added at the fourth cycle.
The change could be in the form of changing the page title

or a sentence in a paragraph.
� Sixth cycle (Non-Significant change cycle): In order to sim-
ulate the case of insignificant page change, we change the 10

HTML web pages, added at the fourth cycle. The changes
are divided into layout or structure change (e.g., changes
in the position of HTML elements in the page, changes in

comments), and attributes change (e.g., changes in fonts
size and color, image size).

Tables 1–5 show the comparison between the traditional
stationary crawler and the different types of mobile crawlers
at different crawling cycles when 10, 20, 30, 40 and 50 HTML
pages are changed, respectively. The traditional crawler re-

trieves all the HTML pages, of total size 4.95 MB, at the six
cycles because it has no mechanism to process the web pages
without downloading them to the search engine side.

� At the initial cycle, the migrating crawlers retrieve only
1.6 MB which is the compressed contents of the 656 web

pages. We do not observe any difference between the three
change detection techniques LMD, page size and hash value



Table 1 Comparison between traditional crawler and different types of mobile crawlers at different crawling cycles when 10 randomly

selected HTML pages are changed.

Change detection technique Initial crawling cycle Further crawling cycle (10 pages)

No change Significant change Non-significant change

Delete pages Add pages Content change

Traditional (TC) 4.95 MB 4.95 MB 4.95 MB 4.95 MB 4.95 MB 4.95 MB

Mobile

LMD (MCI) 1.60 MB 0 0 32.8 KB 32.8 KB 32.8 KB

Page size (MC2) 1.60 MB 0 0 32.8 KB 32.8 KB 32.8 KB

Hash value (MC3) 1.60 MB 0 0 32.8 KB 32.8 KB 32.8 KB

Index 1 (MC4) 1.60 MB 0 0 32.8 KB 32.8 KB 0 KB

Index: (MC5) 616 KB 0 0 10 KB 10 KB 0 KB

Table 2 Comparison between traditional crawler and different types of mobile crawlers at different crawling cycles when 20 HTML

pages are changed.

Change detection technique Initial crawling cycle Further crawling cycle (20 pages)

No change Significant change Non-significant change

Delete pages Add pages Content change

Traditional (TC) 4.95 MB 4.95 MB 4.95 MB 4.95 MB 4.95 MB 4.95 MB

Mobile

LMD (MCI) 1.60 MB 0 0 47 KB 47 KB 47 KB

Page size (MC2) 1.60 MB 0 0 47 KB 47 KB 47 KB

Hash value (MC3) 1.60 MB 0 0 47 KB 47 KB 47 KB

Index 1 (MC4) 1.60 MB 0 0 47 KB 47 KB 0 KB

Index: (MC5) 616 KB 0 0 16.1 KB 16.1 KB 0 KB

Table 3 Comparison between traditional crawler and different types of mobile crawlers at different crawling cycles when 30 HTML

pages are changed.

Change detection technique Initial crawling cycle Further crawling cycle (30 pages)

No change Significant change Non-significant change

Delete pages Add pages Content change

Traditional (TC) 4.95 MB 4.95 MB 4.95 MB 4.95 MB 4.95 MB 4.95 MB

Mobile

LMD (MCI) 1.60 MB 0 0 69.3 KB 69.3 KB 69.3 KB

Page size (MC2) 1.60 MB 0 0 69.3 KB 69.3 KB 69.3 KB

Hash value (MC3) 1.60 MB 0 0 69.3 KB 69.3 KB 69.3 KB

Index 1 (MC4) 1.60 MB 0 0 69.3 KB 69.3 KB 0 KB

Index (MC5) 616 KB 0 0 24.6 KB 24.6 KB 0 KB

Table 4 Comparison between traditional crawler and different types of mobile crawlers at different crawling cycles when 40 HTML

pages are changed.

Change detection technique Initial crawling cycle Further crawling cycle (40 pages)

No change Significant change Non-significant change

Delete pages Add pages Content change

Traditional (TC) 4.95 MB 4.95 MB 4.95 MB 4.95 MB 4.95 MB 4.95 MB

Mobile

LMD (MCI) 1.60 MB 0 88.1 KB 88.1 KB 88.1 KB 1.60 MB

Page size (MC2) 1.60 MB 0 88.1 KB 88.1 KB 88.1 KB 1.60 MB

Hash value (MC3) 1.60 MB 0 88.1 KB 88.1 KB 88.1 KB 1.60 MB

Index l (MC4) 1.60 MB 0 88.1 KB 88.1 KB 0 KB 1.60 MB

Index 2 (MC5) 616 KB 0 32.1 KB 32.1 KB 0 KB 616 KB

34 M. Badawi et al.



Table 5 Comparison between traditional crawler and different types of mobile crawlers at different crawling cycles when 50 HTML

pages are changed.

Change detection technique Initial crawling cycle Further crawling cycle (50 pages)

No change Significant change Non-significant change

Delete pages Add pages Content change

Traditional (TC) 4.95 MB 4.95 MB 4.95 MB 4.95 MB 4.95 MB 4.95 MB

Mobile

LMD (MCI) 1.60 MB 0 0 110 KB 110 KB 110 KB

Page size (MC2) 1.60 MB 0 0 110 KB 110 KB 110 KB

Hash value (MC3) 1.60 MB 0 0 110 KB 110 KB 110 KB

Index 1 (MC4) 1.60 MB 0 0 110 KB 110 KB 0 KB

Index (MC5) 616 KB 0 0 41 KB 41 KB 0 KB

Figure 6 Number of bytes transferred through the network

when different number of pages are added or significantly

changed.

Figure 7 Number of bytes transferred through the network

when different number of pages are insignificantly changed.

Maintaining the search engine freshness using mobile agent 35
where the corresponding migrating crawlers (MC1, MC2
and MC3 respectively) transferred the same amount of data
which is 32.8 KB representing the size of the compressed
contents of the ten changed web pages.

� In case of no change, using the migrating crawlers the net-
work traffic can be reduced substantially compared to tra-
ditional crawler.

� In case of page deletion, themigrating crawlers returned back
to the search engine sidewith anACLmessage containing the
names of the deleted pages so that themanager agent can dis-

card them when creating the document indices or inverted
index. The size of this ACL message is negligible compared
to the size of the web contents. In case of significant content

change, we do not observe difference between MC1, MC2,
MC3 and MC4 (LMD, Page Size, Hash Value and Docu-
ment Index 1 based crawlers); they transferred 32.8 KB
which is the size of the ten HTML pages compressed;

� In case of non-significant change, both document index
based crawlers MC4 and MC5 outperform the aforemen-
tioned crawlers as they ignore the changes and do not

retrieve any bytes through the network.
� In case of page addition and significant change, document
index based crawler MC5 performs the best as it retrieves

only the compressed indices of the changed pages, with total
size 10 KB, while it still ignores the insignificant changes as
index-based crawler MC4. In other words, we can say that
the index-based crawler MC5 filters the non-modified pages

and sends lesser number of bytes to the Search Engine while
maintaining the index up-to-date.

In the last experiment, we assume that only 10 web pages
are changing. Fig. 6 shows the amount of data transferred
when we increase the number of changed pages. We can see

that the compressed index based crawler achieves the mini-
mum data transmission rate in all the investigated cases.
Fig. 6 shows the amount of data transferred by different craw-

ler types when different number of pages are added or signifi-
cantly changed. We can see that the compressed index based
crawler MC5 achieves the minimum data transmission rate
compared to the other non-index based crawlers MC1, MC2,

MC3 and MC4 where it only transmits the compressed index
of the modified pages.

Fig. 7 shows the amount of data transferred by different

types of crawlers when different number of pages is insignifi-
cantly changed. We can see that both index-based mobile
crawlers MC4 and MC5 achieve zero data transmission rate

over the network while the other crawlers adopting other
state-of-the-art change detection techniques do not differenti-
ate between significant and insignificant page changes.

7. Conclusion

This paper described a web page change detection technique
based on document index, and distributed indexing using

mobile agents in order to keep the search engine’s index an up-
to-date image to all web pages and other web resources hosted
in web servers. The proposed change detection technique sur-
passes the other studied change detection techniques, like last

modification date, page size and hash value. It considers signif-
icant web page changes which effectively reflect in the search



36 M. Badawi et al.
engine’s index, while the other change detection techniques fail
to differentiate between significant and insignificant changes.
Of course the insignificant changes result in network overload

and waste resources of both the search engine and the web ser-
ver. Also the proposed distributed indexing approach sur-
passes the centralized approach of the current web indexing

systems by distributing the data indexing on the web servers.
In particular, using mobile agents we are able to perform re-
mote operations such as data analysis, data indexing and data

compression at the data source before the data is transmitted
over the network. A virtual environment has been setup to per-
form the experiments. Experiments have shown that DWCIS
has filtered out the pages which have not been modified signif-

icantly since last crawl. It has been found that DWCIS has re-
duced the network traffic after the document index creation
and compression. It is also found that DWCIS has reduced

the computational load on the search engine side compared
to centralized traditional crawling (TC) and other mobile
crawling techniques because the pages, which are not signifi-

cantly modified, are not retrieved and the pages which are sig-
nificantly modified, only their document indices are retrieved.
References

[1] Sharma AK, Dixit A. Self-adjusting refresh time based architec-

ture for incremental web crawler. Int J Comput Sci Network Secur

(IJCSNS) 2008;8(12):349–54.

[2] Singh A, Singh K. Faster and efficient web crawling with parallel

migrating web crawler Issues. Int J Comput Sci (IJCSI)

2010;7(3):28–32 [No. 11].

[3] Artail H, Abi-Aad M. An enhanced web page change detection

approach based on limiting similarity computations to elements of

same type. J Intell Inform Syst (JIIS) 2009;32(1):1–21.

[4] Yuan X, Harms J. An efficient scheme to remove crawler traffic

from the internet. In: Proceedings of the 11th international

conferences on computer communications and, networks; 2002. p.

90–5.

[5] Castillo C. Cooperation schemes between a web server and a web

search engine. In: Proceedings of latin American conference on

world wide web (LA-WEB) IEEE; 2003. p. 212–3.

[6] Bal S, Nath R. A novel mobile crawler system based on filtering

off non-modified pages for reducing load on the network. Int

Arab J Inform Technol 2011;8(1):272–9.

[7] Thati P, Chang P, Agha G. Crawlets: agents for high performance

web search engines. In: Proceedings of the 5th IEEE conference on

mobile agents; 2001. p. 119–34.

[8] Papapetrou O, Samaras G. Minimizing the network distance in

distributed web crawling. In: Proc. of the 9th IFCIS international

conference on cooperative information systems (CoopIS); 2004. p.

581–96.

[9] Cho J, Garcia-Molina H. Parallel crawlers. In: Proceedings of the

11th international conference on World Wide Web WWW; 2002.

p. 124–35.

[10] Fiedler J, Hammer J. Using the web efficiently: mobile crawling.

In: Proc. of the seventeenth annual international conference of the

association of management on computer science; 1999. p. 324–9.

[11] Fiedler J, Hammer J. Using mobile crawlers to search the web

efficiently. Int J Comput Inform Sci 2000;1:36–58.

[12] Brandman O, Cho J, Garcia-Molina H, Shivakumar N. Crawler-

friendly web servers. In: Proceedings of the workshop on

performance and architecture of web servers; 2000. p. 9–14.
[13] Yadav D, Sharma AK, Gupta JP. Topical web crawling using

weighted anchor text and web page change detection techniques. J

WSEAS Trans Inform Sci Appl Arch 2009;6(2):263–75.

[14] Khandagale HP, Halkarnikar PP. A novel approach for web page

change detection system. Int J Comput Theory Eng

2010;2(3):1793–8201.

[15] Artail H, Abi-Aad M. An enhanced web page change detection

approach based on limiting similarity computations to elements of

same type. J Intell Information Syst (JIIS) 2009;32:1–21.

[16] Nath R, Bal S, Singh M. Load reducing techniques on the

websites and other resources: a comparative study and future

research directions. Int J Adv Res Comput Eng (IJARCE)

2007:39–49.

[17] Pahal N, Kumar S, Bhardwaj A, Chauhan N. Article: security on

mobile agent based crawler. Int J Comput Appl (IJCA)

2010;1(14):5–11.

[18] Bal S, Nath R. A novel approach to filter non-modified pages at

remote site without downloading during crawling. In: Interna-

tional conference on advances in recent technologies in commu-

nication and computing; 2009. p. 165–8.

[19] Singhal N, Agarwal RP, Dixit A, Sharma AK. Information

retrieval from the web and application of migrating crawler. In:

Proceedings of international conference on computational intel-

ligence and communication systems; 2011. p. 480–3.

[20] Duhan N, Sharma AK. A framework for utilising usage trends in

the crawling and indexing process of search engines. Int J

Knowledge Web Intell 2011;2(4):272–91.

[21] Sharma AK, Mishra A, Singh V. An intelligent mobile- agent

based scalable network management architecture for large-scale

enterprise system. Int J Comput Networks Commun (IJCNC)

2012;4(1).

[22] Pinkerton B. Finding what people want: experiences with the

webcrawler. In: The second international WWW conference

Chicago, USA, October 17–20, 1994.

[23] Cho J, Garcia-Molina H. The evolution of the web and

implications for an incremental crawler. In: Proceedings of the

26th international conference on very large data bases VLDB;

2000. p. 200–9.

[24] Sharma S, Sharma AK, Gupta JP. A novel architecture of a

parallel web crawler. Int J Comput Appl 2011;4(1):2011.

[25] Yadav D, Sharma AK, Gupta JP. Parallel crawler architecture

and web page change detection. J World Sci Eng Acad Soc

(WSEAS) Trans Comput 2008;7(7):929–40.

[26] Sharma AK, Gupta JP, Agarwal DP. Parcahyd: an architecture of

a parallel crawler based on augmented hypertext documents. Int J

Adv Technol 2010;1(2).

[27] Cho J, Garcia-Molina H. Estimating frequency of change.

Comput J ACM Trans Internet Technol 2003;3(3):256–90.

[28] Sharma DK, Sharma AK. Search engine: a backbone for

information extraction in ICT scenario. Int J Inform Commun

Technol Human Develop 2011;3(2):38–51.

[29] Agarwal A, Singh D, Pandey AK, Goel V. Design of a parallel

migrating web crawler. Int J Adv Res Comput Sci Softw Eng

(IJARCSSE) 2012;2(2).

[30] Aridor Y, Lange B. Agent design patterns: elements of agent

application design. In: Proceedings of the second international

conference on Autonomous agents; 1998. p. 108–15.

[31] Jun Su C, Ying Wu C. JADE implemented mobile multi-agent

based, distributed information platform for pervasive health care

monitoring. J Appl Soft Comput 2011;11(1):315–25.

[32] The homepage of JADE is <http://www.jade.tilab.com/>.

[33] The homepage of Terrier is <http://www.terrier.org/>.

[34] The homepage of Google Sitemap Generator <http://www.code.

google.com/p/googlesitemapgenerator/>.

http://www.jade.tilab.com/
http://www.terrier.org/
http://www.code.google.com/p/googlesitemapgenerator/
http://www.code.google.com/p/googlesitemapgenerator/

	Maintaining the search engine freshness using mobile agent
	1 Introduction
	2 An overview of traditional search engine design
	3 Related work
	4 The proposed distributed system architecture
	4.1 Work flow of DWCIS

	5 Experimental setup
	6 Experimental results
	7 Conclusion
	References


