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Abstract

This paper deals with one-dimensional bidirectional sequences a : Z→ V , V a 4nite set, such
that any p-decimation (|p|¿2) of the sequence reproduces the sequence (modulo a certain shift).
We develop a procedure for solving the underlying decimation-invariance (DI) equations and
4nd that the number of solutions is always 4nite. Conditions for equivalency among solutions
of di8erently parametrized DI-problems, and for possible periodicity and symmetry of solutions,
are derived. It is shown that the set of all possible p-based decimations of a such a DI sequence
(the so-called full kernel of the sequence) is 4nite. This implies 4niteness of the kernel for
the separate right and left parts of the sequence, and also |p|-automaticity of these parts. An
algorithm is presented that constructs the kernel and associated |p|-automaton of a DI-sequence
explicitly. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

A p-decimation of a (one-dimensional) sequence is the operation that produces a
new sequence by taking every pth element in the original sequence (and so there
are |p| di8erent decimations). Such decimations are central in the study of so-called
p-automatic sequences (or uniform tag sequences): these are sequences whose nth en-
try can be obtained as the output of a 3nite automaton that is fed with the p-adic
representation of n (using standard representation, see [10, 9, 1]; for two-dimensional
sequences, see [13]; using more exotic numeration systems, see [2]; for further gen-
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eralizations see [11]). Automaticity of a sequence is equivalent with 3niteness of its
associated kernel, this being the set of all possible compositions of p-decimations of
the sequence.

Decimation is also a particular way of coarse-graining an object which is de4ned
on a regular lattice, by considering the object only at the sites of a regular sub-
lattice, deleting all the rest, and then performing a proper rescaling of this sublat-
tice. Coarse-graining, and so decimation, is a standard rescaling operation in what is
known as renormalization, a common procedure in statistical physics for the analy-
sis of critical phenomena (percolation, ferromagnetism; : : :[15; 14 Chapters 2, 5]). At
some critical parameter value, the geometrical structure of the object on the lattice
typically lacks a characteristic scale: it is an object (mostly fractal-like) which is in-
variant under coarse-graining (mostly in a statistical sense). A certain decimation
invariance is also exhibited by the so-called fractal matrices, deterministic fractal ob-
jects de4ned by an arithmetically based substitution system [3]. For other examples
of particular coarse-graining and decimation-invariant objects de4ned on the N × Z-
and on the N × Z2-lattices, consider the cellular automaton related orbits presented
in [4–6, 8].

In this paper, we study one-dimensional bidirectionally in3nite sequences a :Z→V ,
where V is a 3nite set, such that these sequences are invariant under any p-decimation.

Here follows a brief overview of the paper. The de4nition of p-decimation invariance
(DI) is introduced in Section 2, where DI-equations are derived whose solutions are
DI-sequences. Section 3 deals with the procedure for solving the DI-equations. Possible
periodicity of solutions is discussed in Section 4. p-Automaticity of DI-sequences is
the subject of Section 5: here we present a way for the explicit determination of the
kernel and associated automaton.

2. Complete p-decimation invariance

Let a denote the bidirectionally in4nite sequence (a(k))k∈Z which maps the integer
set Z into a 4nite symbol set V . For convenience, the kth element of a will usually
be denoted by a(k) instead of by a(k).

De�nition 1. Let p∈Z, |p|¿2 and �∈[|p|] def= {0; 1; : : : ; |p|−1}. The (p; �)-decimation
of a, symbolized by D�

pa, is the subsequence (a(kp + �))k∈Z. That is, with D�
pa(k)

denoting the kth element of the sequence D�
pa, we have

∀k ∈Z: D�
pa(k) = a(kp + �): (1)

De�nition 2. Let 
∈Z. The 
-shift of sequence a, denoted by 
a, is the sequence
(a(k + 
))k ∈Z, that is

∀k ∈Z: 
a(k) = a(k + 
): (2)
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De�nition 3. Let p∈Z; |p|¿2 and let � def= [
0; 
1; : : : ; 
|p|−1] be a set of |p| shift-
parameters, then a is (complete) [p; �]-decimation invariant (DI) i8

∀�∈ [|p|]: D�
pa= 
�a (3)

or, using (1), (2)

∀�∈ [|p|]; ∀k ∈Z: a(kp + �) = a(k + 
�): (4)

Eq. (4) are called the (complete) decimation-invariance equations (DI-equations).

Remark 1. [p; �]-DI for p¿2 means that all decimated sequences D�
pa (meaning over

all �∈{0; 1; : : : ; p − 1}, hence the adjective complete) are identical to the original
sequence a modulo a shift 
�. This is also the case for p6−2, but only after a (left–
right) reversal of the decimated sequences. In order to emphasize this di8erence, the
[p; �]-DI with negative p will be called reverse decimation invariance, while [p; �]-DI
with positive p will sometimes be called direct DI.

3. Solving the [p; �]-decimation invariance equations

First observe that any constant sequence [i.e. (a(k))k∈Z≡ constant ∈V ] is a trivial
solution of the DI-equations. In this section, it will be shown how the DI-equations
can be solved for nontrivial solutions, starting from a 4nite set of initial a(k)-values,
the so-called seed. This seed will have to be determined 4rst. It will become clear that
the solution procedure will di8er for direct and reverse decimations.

De�nition 4. The (equivalent) standard form of the DI-equations (4) is

∀k ∈ Z: a(k) = a
(
k − �
p

+ 
�

)
; for k ≡ �mod |p|; �∈ [|p|]: (5)

The induced integer mapping

k 
→ Res(k) def=
k − �
p

+ 
�; k ≡ �mod |p|; �∈ [|p|] (6)

will be called the rescaling map.
We will further need the aGne contractions

Res�(x) =
x − �
p

+ 
�; x∈R; �∈ [|p|]: (7)

The way to solve the DI-equations (5) is suggested by considering the graphs asso-
ciated with the rescaling maps. We present two generic examples of such graphs, one
for the direct case and one for the reverse case.
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Fig. 1. Graphs of the mappings k �→ Res(k) and x �→ Res�(x) for the direct [p; �]-decimation invariance
problem (p¿2), with p= 4; �= [2; 3;−2; 1]. The core C is the interval I [−3; 3]. There are two classes of
loop-equivalent points in the core. The points inside each class are connected by dashed lines [connecting k
to Res(k)], thus producing the following chains:
1st chain: −1 �→ 0 �→ 2 �→ −2 �→ −3 ( �→ 2).
2nd chain: 1 �→ 3 ( �→ 1).

3.1. Solving direct [p; �]-DI equations (case p¿2)

Example 1. Take p= 4, �= [
0; 
1; 
2; 
3] = [2; 3;−2; 1].
Fig. 1 shows the graphs of Res(k) versus k (the big dots), and Res�(x) versus x

(the straight lines connecting the dots associated with a 4xed �).
The 4xed point of the map Res� is the point

x� =
p
� − �
p− 1

: (8)

(This is the x-coordinate of the intersection point A� of the line Res�(x) with the diag-
onal line d.) Let x= min� x�; Hx= max� x� (see Fig. 1), and de4ne k = �x�; Hk =  Hx�,
with  � and � � the Ioor and ceiling functions, respectively. For calculations, one can
use the equivalent expressions

k = min
�

�x��; Hk = max
�

x��: (9)

Since the slope of the Res�-lines is 1=p, the next lemma follows.

Lemma 1. With k and Hk as de3ned in (9) above; and I [k; Hk] denoting the integer
interval {k; k + 1; · · · ; Hk}; the following properties hold:

a: k6Hk;
b: k¡k⇒ k¡Res(k)6Hk;
c: k¿Hk⇒ k¿Res(k)¿k;
d: k ∈ I [k; Hk]⇒Res(k)∈ I [k; Hk]:

(10)
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Remark 2. When 
� = 
= constant and p − 1 does not divide 
, then k = Hk. When

� depends on �, then it is always true that k¡Hk.

De�nition 5. A (4nite) sequence s : I [k; Hk]→V is [p; �]-DI on I [k; Hk] if s(kp + �) =
s(k +
�) for all �∈ [p] and for all k such that both sides of this equation are de4ned;
or equivalently, if

s(k) = s(Res(k)); (11)

where both k and Res(k)∈ I [k; Hk].

We will now describe the set of all [p; �]-DI sequences s on I [k; Hk]. Consider the
map Res (formula (6)) restricted to I [k; Hk]. According to Lemma 1d: Res(I [k; Hk])⊆
I [k; Hk], and since I [k; Hk] is 4nite, any sequence k, Res(k), Res2(k), Res3(k); : : : that
starts with k ∈ I [k; Hk] must necessarily enter a loop (Resn means the nth iterate of Res).

De�nition 6. • k ′; k ′′ ∈ I [k; Hk] are loop-equivalent if there are n; m∈N such that
Resn(k ′) = Resm(k ′′), meaning that the Res-iterations of k ′ and k ′′ ultimately enter
the same loop. (Or: k ′ and k ′′ are connected to the same loop). We write k ′ ∼= k ′′.

Let Nl denote the number of equivalence classes of I [k; Hk] with respect to this
loop-equivalence, that is: Nl is the number of di8erent loops.
• Let b and b′ be two sequences de4ned on some set Z ⊆Z, having values in V ,

that is b :Z →V and b′ :Z →V . Then b and b′ are called symbolically equivalent (SE)
when there exists a bijection F :V →V such that b=Fb′ (or: if both sequences are
equivalent under a 1–1 replacement of symbols).

De4nitions 5 and 6 lead to the following lemma.

Lemma 2. (a) The sequence s : I [k; Hk]→V is a solution of a [p; �]-DI problem on
I [k; Hk] if and only if s(k ′) = s(k ′′) for k ′ ∼= k ′′.

(b) The number of di>erent [p; �]-DI sequences on I [k; Hk] is |V |Nl . When |V |¿Nl;
the number of di>erent (modulo SE) [p; �]-DI sequences equals B(Nl); where B(Nl)
is the so-called Bell-number of Nl; which is the number of partitions of a set of
Nl elements. The number of di>erent (mod SE) [p; �]-DI sequences with N (6Nl)
di>erent symbols equals S(Nl; N ); a Stirling number of the second kind [12].

Obviously, when a :Z→V is a [p; �]-DI sequence then a|I [k; Hk] is [p; �]-DI on
I [k; Hk].

Lemma 3. Let s : I [k; Hk]→V be [p; �]-DI on I [k; Hk]. Then there is a unique [p; �]-DI
sequence a :Z→V such that a(k) = s(k) for k ∈ I [k; Hk].

Proof. We have to prove that there is a unique extension a :Z→V of the sequence
s : I [k; Hk]→V and that this extension is a [p; �]-DI sequence.
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Let k ∈Z; k¡k. Lemma 1b implies that there is a number n0 ∈ N such that
Resn0 (k)∈ I [k; Hk]. Then de4ne

a(k) = s(Resn(k)); where n¿n0:

This de4nition is correct: s(Resn(k)) does not depend on the number n (when n¿n0),
because of Lemma 1d and because s is [p; �]-DI on I [k; Hk]. This can be interpreted
in the sense that if Resn(k)∈ I [k; Hk], then a(k) = s(Resn(k)), which in its turn implies
that a(k) = s(Resn−1(Res(k)) = a(Res(k)).

For k¿Hk, we use Lemma 1c and de4ne a(k) in the same way. It then follows that
the sequence a :Z→V satis4es a(k) = a(Res(k)) for all k ∈Z, that is, it is [p; �]-DI.
Moreover, it follows from the construction that such an extension is unique.

Remark 3. Observe that the de4nitions of a(k) for k¡k and k¿Hk are independent.
As a consequence of Lemma 1b, the practical way to extend the restricted [p; �]-DI
solution s to the full solution a, is to propagate the solution recursively to the left
using the DI-equation (5) for k¡k. In the same way, the solution can be propagated
independently to the right for k¿Hk, as a consequence of Lemma 1c. Later on, we will
see that this left–right independency no longer holds for reverse DI-sequences.

De�nition 7. The interval C def= I [k; Hk] will be called the core (-interval) for the under-
lying DI-equations, and any particular DI-solution s on it will be called a seed (from
which the whole solution can be grown). Eqs. (11), which de4ne the seed, will be
called the seed-internal equations.

Remark 4. Because a seed extends in a unique way to a full DI-sequence, Lemma 2b
concerning the number of seeds also applies to the full DI-sequences.

Example 1 (Continued). For the [p= 4; �= [2; 3;−2; 1]]-DI problem, Nl = 2. With
V = {0; 1; 2; 3}, there are 42 = 16 solutions, four of which are trivial. The number of
di8erent symbolically equivalent solutions is B(2) = 2, one of which is trivial. Part of
the nontrivial solution is graphically represented in Fig. 2.

3.2. Solving reverse [p; �]-DI equations (case p6−2)

The next example will show that reverse decimation-invariant equations cannot be
propagated separately to the left and to the right from a seed as was the case for the
direct DI-equations. Another procedure is proposed.

Example 2. Take p= −4 and �= [−3; 1; 2; 4]. Fig. 3 shows the graphs of Res(k) and
Res�(x) associated with the mappings (6), (7).
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Fig. 2. Graphical representation of the two-valued nontrivial solution of the [p= 4; �= [2; 3;−2; 1]]-DI prob-
lem introduced in Example 1 (display range from k = − 4500 to 4500).

Fig. 3. Graphs of the mappings k �→Res(k); x �→Res�(x) for the inverse decimation invariance problem
with p=−4; �= [−3; 1; 2; 4]. The core C is the interval I [4; 5]. The three loop-equivalent classes in the
core correspond to the following chains:
1st chain: −1 �→ 5 �→ 0 �→−3 �→ 2 (�→ 2)
2nd chain: 1 ( �→ 1)
3d chain: −4 �→−2 �→ 3 �→ 4 ( �→−4).
This DI-problem has B(3) = 5 di8erent symbolically equivalent solutions, one of which is the trivial solution.



386 A. Barb7e, G. Skordev / Theoretical Computer Science 259 (2001) 379–403

Let � and H� be the �-values corresponding respectively to the lowest and highest
Res�(x)-line, i.e.

H�= arg max
�

{� − p
�}; �= arg min
�

{� − p
�}:

Then, it is always possible to 4nd a unique square ABCD (see Fig. 3), with vertices
A and C on the Res H�(x) and Res�(x)-lines respectively, and with B and D on the
diagonal line d. (The existence of such a square follows from the following geomet-
rical argument: this square is symmetric with respect to the diagonal d. So C is the
unique intersection point of the diagonal-symmetric image of the Res H�(x)-line with the
Res�(x)-line. C completely de4nes the square.) With Hx and x the x-coordinates of B,
C and A, D, respectively, these satisfy Hx=Res H�(x), x=Res�( Hx), or

Hx=Res H�(Res�( Hx)); x=Res�(Res H�(x)):

Using (7), this produces the explicit solutions

x=
p2
� + p
 H� − p� − H�

p2 − 1
and Hx=

p2
 H� + p
� − p H� − �

p2 − 1
: (12)

From this construction, it is clear that x∈ [x; Hx]⇒Res�(x)∈ [x; Hx] for all �∈ [|p|].
Restricting this property to k ∈Z and Res(k), and de4ning

k = �x� and Hk =  Hx�; (13)

this leads to point a. in the following lemma.

Lemma 4 (Reverse decimation). Let k and Hk be de3ned by Eqs. (12) and (13). Then
a. k ∈ I [k; Hk]⇒Res(k)∈ I [k; Hk].
b. For k¡k: Resn(k)∈ I [k; Hk] after n6(k − k) steps.
c. For k¿Hk: Resn(k)∈ I [k; Hk] after n6(k − Hk) steps.

Proof (Of points b and c). Start from a k-value to the left of k, that is k−k¿0. When
Res(k) =∈ I [k; Hk], it follows from the contractivity of the Res�-mappings (see Fig. 3),
that x − k¿Res(k) − Hx¿0, implying that

k − k¿Res(k) − Hk ¿ 0 when ¬(k − k = 1 & k ≡ H�mod [|p|]): (14)

When k − k = 1 and k ≡ H�mod [|p|], then Res(k) =Res H�(k) = Hx + 1=p¿Hk, and as Hx +
1=p6Hk+1, it necessarily follows that Res(k) = Hk+1. (This is the case for the example
shown.) Anyhow, Res(k) is located to the right of I [k; Hk] when k¡k.

With a starting point k ′¿Hk and Res(k ′) =∈ I [k; Hk], it holds that

k ′ − Hk ¿ k − Res(k ′) ¿ 0 when ¬(k − Hk = 1 & k ≡ �mod [|p|]): (15)

(k − Hk = 1 & k ≡ �mod [|p|] implies that Res(k) = k − 1.)
Eqs. (14) and (15) imply that, when starting from k¡k or from k¿Hk, there is an

n∈N such that Resn(k) enters I [k; Hk] after at most k− k, respectively k− Hk steps.
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Like in the previous section (dealing with the case p¿2), the map Res : I [k; Hk]→
I [k; Hk] de4nes here also a loop-equivalence relation on the set I [k; Hk]. Let Nl also here
denote the number of such equivalence classes (loops). Then Lemma 2 concerning
DI-solutions s restricted to I [k; Hk] also holds for p6−2.

So does Lemma 3 for the extension of s to a. Its proof for p6−2, which goes
along the same lines as the one for p¿2 (de4ne a(k) = s(Resn(k)), n such that
Resn(k)∈ I [k; Hk]), will now invoke Lemma 4b and c, instead of Lemma 1b and c.
This implies that the extension of s to a can no longer be done independently for k¡k
and for k¿Hk.

Also here it is appropriate to call C = I [k; Hk] the core and any [p; �]-DI solution s
on C a seed for the underlying [p; �]-DI equations.

Remark 5. In itself, generating the address-sequence (Resn(k))k ∈N until Resn0 (k)∈C,
memorizing these addresses and putting all elements at these addresses equal to a(Resn0

(k)), is a workable but ineGcient procedure to generate the sequence a. A more eGcient
“inverse” procedure grows the solution starting from the seed in a way that will be
explained now. It uses the mappings

U� :Z→Z : k→p(k − 
�) + �;

which are somehow the inverse of the Res(k)-mapping de4ned in (6), and goes back
to the original DI-equation (4), which can now be written as

∀k ∈Z;∀�∈ [|p|]: a(U�(k)) = a(k):

Let U (k) def= {U�(k) | �∈ [|p|]}. Then a(k) can be propagated stepwise from the
seed by generating the address-set E1 =U (C)\C and attributing to each element of
E1 the value associated with its preimage. Then produce E2 =U (E1)\E1 and attribute
to each element of E2 the value associated with its preimage. The whole sequence a
is then generated by continuing this procedure, whereby at step n + 1 the address-set
En+1 =U (En)\En is determined, while attributing to each element of En+1 the value
associated with its preimage.(This procedure actually also works for solving direct
DI-equations.)

Remark 4 concerning the number of solutions also holds for negative p. This allows
us to end this section on solving the DI-equations by concluding that we have proved
the following:

Theorem 1. Let p∈Z; |p|¿2; �= [
0; 
1; : : : ; 
|p|−1]⊂Z. The number of [p; �]-
DI solutions (modulo symbolic equivalence) is B(Nl); the Bell-number of Nl; where
Nl is the number of di>erent loops (equivalence classes) with respect to the map
Res : I [k; Hk]→ I [k; Hk] de3ned by (6); where k and Hk are de3ned by (9) for p¿2; and
by (12); (13) for p6−2. The number of di>erent (mod SE) [p; �]-DI sequences with
N (6Nl) symbols is S(Nl; N ) (Stirling-number of the second kind).
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De�nition 8. A solution to a [p; �]-DI problem is a solution of maximal diversity
when it is obtained by attributing di8erent values to the di8erent loop-equivalence
classes in the core.

4. Periodicity of DI-sequences

If a is a [p; �]-DI sequence,what about the reverse sequence? What are the conditions
for a DI-sequence to be periodic? These are the questions dealt with in this section.
The answers will be used in the next section on automaticity of DI-sequences.

De�nition 9.
• Let a; p∈Z. The integer quotient – ap is de4ned through

a= –
a
p
×p + amod |p|; with amod |p| ∈ [|p|]: (16)

• Let a= (a(k))k∈Z be a sequence, then the reverse sequence of a is a− def= (a(−k))k∈Z.

Theorem 2. Let a= (a(k))k∈Z be a [p; �]-DI sequence (|p|¿2). Then the reverse
sequence a− is [p; �−]-DI; where


−
0 = − 
0 and 
−

� = sign(p) − 
|p|−� for �∈ [|p|]\{0} (17)

with sign(p) = 1 when p¿0; sign(p) = − 1 when p¡0.

Proof.
a−(kp + �) = a(−kp− �)

(4)
= a

(
−k + –

−�
p

+ 
−� mod |p|

)

= a−
(
k − –

−�
p

− 
−� mod |p|

)
:

Identifying −–−�
p − 
−� mod |p| with 
−

� , which ultimately leads to expressions (17),
and invoking De4nition 3, establishes the theorem.

Before formulating a theorem concerning the possible periodicity of DI-sequences,
we need a few lemmas 4rst. The development that follows goes along the same lines
as the ones leading to periodicity conditions for solutions of the so-called more general
coarse-graining invariant equations that appear in cellular automata de4ned over a 4nite
4eld (see [5]). Lemma 5 follows directly from the de4nition of Res(k) [Eq. (6)].

Lemma 5.
(a)

∀k; s∈Z: Res(k + sp) = Res(k) + s: (18)

(b)
{Res(k0 + sp)|s∈Z}=Z; {Res(k) | k ∈Z}=Z: (19)
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(c) ∀k ∈Z :
(i) when � (def= k mod |p|)∈{0; 1; : : : ; |p| − 2} :

Res(k + 1) − Res(k) = 
�+1 − 
�; (20)

(ii) when � (def= k mod |p|) = |p| − 1:

Res(k + 1) − Res(k) = 
0 − 
|p|−1 + sign(p): (21)

Lemma 6. Suppose that a is [p; �]-DI with minimal period P; then
(a) ∀k ∈Z: a(Res(k)) = a(Res(k + P))
(b) when ∀k ∈Z: a(Res(k)) = a(Res(k + #)) for some #∈N; then P divides #.

Proof. (a) a(k + P) − a(k)
(5;6)
= a(Res(k + P)) − a(Res(k)) = 0.

(b) From the premises, it follows that ∀k; s; l; ∈Z:

a(Res(k)) = a(Res(k + sp#))
(18)
= a(Res(k) + s#) = a(Res(k) + lP):

As Lemma 5(b) says that {Res(k) | k ∈Z}=Z, it follows by letting Res(k) =m, that

∀m; s; l∈Z: a(m) = a(m + s#) = a(m + lP):

This means that the sequence a has two periods: # and P. As P is the minimal period,
P must divide #.

Lemma 7. A necessary condition for P to be a possible minimal period of a [p; 
]-DI
solution is that

∀k ∈Z: P divides p[Res(k + 1) − Res(k)] − 1: (22)

Proof. From (18), it follows that

∀k ∈Z: Res(k + p[Res(k + 1) − Res(k)]) = Res(k + 1);

and, as a consequence:

∀k ∈Z: a(Res(k + 1 + p[Res(k + 1) − Res(k)] − 1)) = a(Res(k + 1)):

Apply Lemma 6b to conclude that (22) holds.

Theorem 3. A necessary condition for a solution a of a [p; �]-DI problem to be
periodic with minimal period P is that

∀�∈{0; 1; : : : ; |p| − 2}: P divides p(
�+1 − 
�) − 1: (23)

Proof. We will show that (23) is equivalent to (22).
(a) Combine (22) and (20) to conclude that
∀k ∈Z such that k ≡ �mod |p|, with �∈{0; 1; : : : ; |p| − 2}:

P divides p[Res(k + 1) − Res(k)] − 1
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is equivalent to

∀�∈{0; 1; : : : ; |p| − 2}: P divides p(
�+1 − 
�) − 1: (24)

(b) From (24) it follows that P divides

−
|p|−2∑
�=0

p(
�+1 − 
�) − 1 = −p(
p−1 − 
0) + (|p| − 1)

= p[
0 − 
p−1 + sgn(p)] − 1
(21)
= p[Res(k + 1) − Res(k)] − 1 for all k

for which �= k mod |p|= |p| − 1:

So, when (24) is satis4ed, (22) is also automatically satis4ed for those k for which
k mod |p|= |p| − 1.

(c) From (a) and (b) together,it follows that (23) is equivalent to (22).

Corollary 1. A periodic solution to a [p; �]-DI problem cannot have a minimal period
P which has a factor in common with p.

Proof. Assume that P =p1l and p=p1m, with p1 �= 1. According to Theorem 3,
p1l must divide p1m[
�+1 − 
�] − 1, for all �∈ [|p| − 1]., i.e. p1m[
�−1 − 
�] −
1 =p1lz; l∈Z, or p1[m(
�−1 − 
�) − lz] = 1. This implies that the product of two
integers, one being di8erent from 1, should equal 1. As this is impossible, the starting
assumption cannot be true, and so, P and p cannot have a common factor.

5. Automaticity of DI-sequences

A one-dimensional unidirectional sequence (a(k))k∈N is said to be p-automatic, when
a(k) can be obtained from a 4nite automaton whose input is the p-adic representation of
k. It is known [10, 9] that p-automaticity is equivalent to the sequence being generated
by a p-substitution system, and to 4niteness of the set of all possible pn-decimations
(n∈N) of (a(k))k∈N (the so-called kernel).

In this section, we will prove automaticity of [p; �]-DI sequences by explicit con-
struction of the kernel.

De�nition 10. Let a= (a(k))k∈Z be a bidirectionally in4nite sequence, then
Ra def= (a(k))k∈N is the righ-half in4nite part of a,
La def= (a(−k))k∈N = Ra− is the left-half in4nite part of a.

Let a be a [p; �]-DI-sequence. This section considers the |p|-automaticity of the
sequences Ra and La. For an explicit determination of the |p|-kernel, we will have
to distinguish between direct and reverse DI-sequences, for reasons that are similar to
those appearing in the solution procedure of the DI-equations.
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Applying (1) consecutively, one obtains

Lemma 8.

D�n−1
p D�n−2

p : : : D�1
p D�0

p a(k) = a(kpn + �n−1pn−1 + �n−2pn−2 + · · · + �1p + �0):

(25)

Remark 6. When p¿2, the right-hand side of (25) also equals Dm
pn , with m=�n−1pn−1

+ �n−2pn−2 + · · · + �0 ∈ [pn] (the string �n−1 : : : �0 being the n-digit p-adic represen-
tation of m). It will sometimes be convenient to represent Dm

pn as D�n−1 :::�0
pn .

5.1. p-automaticity of direct [p; �]-DI sequences (p¿2)

De�nition 11. Let a be a bidirectional sequence, then its full (direct) p-kernel, denoted
by FKp(a), is the set consisting of a itself and of all its pn-decimations (see [2, Section
2.2]):

FKp(a) = {a; Dm
pna | n∈N0; m∈ [pn]}: (26)

Its full reverse kernel, denoted by FK−
p (a), is given by

FK−
p (a) = FKp(a−) = {a−; Dm

pna− | n∈N0; m∈ [pn]}: (27)

Remark 7. Recall Theorem 2, stating that when a is a [p; �]-DI solution, then a− is a
solution of a related [p; �−]-DI problem. Because of this and because FK−

p (a) = FKp

(a−), considering the reverse kernel in the [p; �]-DI problem is equivalent to consid-
ering the direct kernel in the related [p; �−]-DI problem. The implication of Theorem
2 is that it suGces to study the properties concerning direct kernels (and associated
automata).

5.1.1. Finding FKp(a):
Let s∈{0; 1; : : : ; p − 1}∗ = [p]∗ be a string of p-adic digits and �∈ [p]; then �s

represents the string obtained from s by extending it to the left with �. & represents
the empty string, so �&= �.

Theorem 4 (p¿2). Let a be a [p; �]-DI sequence. Then

Dm
pna= (a(k + a�n−1�n−2 :::�0 ))k∈Z; (28)

where �n−1�n−2 : : : �0 is the n-digit p-adic representation of m; and where a�n−1�n−2 :::�0

∈Z is obtained from the recursion

a�js =F�j (as)
def= –

as + �j
p

+ 
(as+�j) mod p; (29)

starting with a& = 0.
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Proof (By induction). (A) Let s= �j−1�j−2 : : : �0 and suppose that (28) is satis4ed

for n= j, that is Ds
pja= (a(k + as))k∈Z

def= (a′(k))k∈Z. Then (28) is also satis4ed for
n= j + 1, where a�js is related to as through (29).

Indeed,

D�js
pj+1a=D�j

p a′
(1)
= (a′(kp + �j))k∈Z

= (a(kp + �j + as))k∈Z

=
(
a
([

k + –
as + �j

p

]
p + (as + �j) mod p

))
k∈Z

(4)
=

(
a
(
k + –

as + �j
p

+ 
(as+�j) mod p

))
k∈Z

:

Using (29) transforms this into

D�js
pj+1a= (a(k + a�js))k∈Z: (30)

(B) Eq. (28) is obtained by starting the induction from s= 0, with as = a& = 0.
Indeed, this yields

D�0
p a= (a(k + a�0 ))k∈Z; with a�0 = 
�0

which is seen to be correct from comparison with the DI-equations (3; 4).

Corollary 2. The kernel FKp(a) of a [p; �]-DI sequence a consists of the following
shifted versions of a:

FKp(a) = {(a(k + as))k∈Z | s∈ [p]∗}; (31)

where as ∈Z is generated through recursion (29); and this for all p-adic strings s
(including the empty string &).

Remark 8. By induction with respect to the length |s| of the word s, it can be proven
that |as|61+(p=(p−1)) max� |
�|. This implies that the full kernel is 3nite. We shall
now derive the exact information concerning the as-values appearing in (31).

In Theorem 4, the following discrete mappings from Z× [p] into Z were de4ned

∀�∈ [p]: F� : as 
→ a�s = –
as + �
p

+ 
(as+�) mod p: (32)

These mappings can be graphically represented in an (as; a�s)-diagram. From the struc-
ture of this diagram, and from the fact that the initial condition a& = 0, it will follow
that the 4nite set {as | s∈ [p]∗} appearing in (31) can be constructed easily. This will
be illustrated now, using a generic example that leads to the statement of some general
results.
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Fig. 4. The F�(as)- and F�;as (x)-diagrams for the DI-problem with p= 3; �= [3; 5; 13].

Example 3. Take p= 3; �= [3; 5; 13]. The corresponding F�(as)-diagrams are shown
in Fig. 4.

It is easily derived from (50), when as is restricted to [p] (� always being restricted
to [p]), that

F�(as) =

{

�+as when � + as¡p;

1 + 
�+as−p when � + as¿p:
(33)

It also follows from (32) that

∀l∈Z : F�(as + pl) =F�(as) + l: (34)

Fix as ∈ [p]; �∈ [p], then the last equality implies that all points {(as + pl; F�(as +
pl) | l∈Z} in the (as; F�(as))-diagram are collinear. The line connecting these points
is the graph of the function

F�;as(x)
def=

F�(as + p) − F�(as)
p

(x − as) + F�(as) (x; F�;as(x)∈R);

or, using (34)

F�;as(x) =
x − as
p

+ F�(as): (35)
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There are p2 such lines: one for each couple (as; �)∈ [p]2. Some of these lines may
coincide.

Referring to Fig. 4 again, let A Hx and Ax be the intersection points of the highest and
lowest of these lines with the diagonal line d. x and Hx are the respective abscissas.
Then it is easily found that

Hx= max
(�;as) ∈ [p]2

pF�(as) − as
p− 1

;

x= min
(�;as) ∈ [p]2

pF�(as) − as
p− 1

:

Let

Has =  Hx� and as = �x�; (36)

then it is clear from the graph that when as ∈ I [as; Has], then F�(as)∈ I [as; Has] (i.e.
the integer set {as; as + 1; : : : ; Has}). Or I [as; Has] is invariant under the mappings F�.
According to the previous development, we have to apply these mappings recursively
over all possible �-strings, starting from as = 0. Three di8erent possibilities have to be
distinguished:
1. 0¡as (like in the example). As F�(as)¿as when as¡as, as must eventually enter

the invariant set I [as; Has] and stay there
2. 0∈ I [as; Has] : as never leaves the invariant set
3. 0¿ Has : as decreases until it enters the invariant set and stays there.
As an intermediate conclusion, we are now able to formulate the following lemma.

Lemma 9. With as and Has de3ned in (36); the range of as in the kernel FKp(a) of
the DI-sequence a as given by (31) is restricted to the 3nite set

A= I [0; Has] when 0¡as

= I [as; 0] when 0¿ Has

= I [as; Has] when 0∈ I [as; Has]: (37)

For Example 3, it is easily seen from the diagram in Fig. 4 that as = 5; Has = 19, and
so A= I [0; 19]. The transition table as

�
→ a�s =F�(as) is

as ∈A
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 3 5 13 4 6 14 5 7 15 6 8 16 7 9 17 8 10 18 9 11
� 1 5 13 4 6 14 5 7 15 6 8 16 7 9 17 8 10 18 9 11 19

2 13 4 6 14 5 7 15 6 8 16 7 9 17 8 10 18 9 11 19 10
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Observe that the elements 1, 2, 12 do not appear inside the transition table: a�s never
takes these values when starting from as = 0. So, not all elements in A are reachable
from as = 0. Which elements are reachable or not can be derived from inspection of
the table.

De�nition 12. An unreachable element in A is any element that is not reached under
the mappings F�(as) when starting from as = 0. Call this set of unreachable elements
Anreach. The reachable set (from as = 0) is Areach =A\Anreach.

As a consequence of Lemma 9, and using the concept of the set of reachable states,
we formulate

Proposition 1. The FKp(a)-kernel of a [p; �]-DI sequence a is the following 3nite set
of shifted versions of a:

FKp(a) = {(a(k + as))k∈Z | as ∈Areach}: (38)

De�nition 13. Areach will be called the formal kernel-de3ning shift-set.

Remark 9. I [as; Has]; A; Areach ; Anreach depend on p and � in the DI-problem, and
not on the particular solution a itself (hence the adjective “formal” in the previous
de4nition). Dependent on the solution however, it might happen, for as �= as′ , that
(a(k + as))k∈Z ≡ (a(k + as′))k∈Z.

De�nition 14. The equivalence relation R over Areach which makes

as
R∼= as′ i8 (a(k + as))k∈Z ≡ (a(k + as′))k∈Z; (39)

de4nes the set of equivalence classes Areach=R, and depends on the particular solution
considered. De4ne Ared ⊆Areach as a set of representatives of these equivalence classes,
and call it the reduced kernel-de3ning shift-set. Then

FKp(a) = {(a(k + as))k∈Z | as ∈Ared}: (40)

Remark 10. The original transition table as 
→F�(as), with as ∈Areach, reduces in an
obvious way to a smaller table for as restricted to Ared under this equivalence relation.

5.1.2. Deriving the p-automaton for Ra:
We recall 4rst that a sequence b :N→V is generated by a reverse-reading p-

automaton A= (A; s0; T; V; *) with states si ∈A, initial state s0, state transition func-
tion T :A×V →A, output function *: A→V ; if b(m); m∈N is found as output of
the automaton starting in state s0 and state transitions determined by the sequence
�0; �1; : : : ; �n−1 where �n−1�n−2 : : : �0 is the p-adic representation of m with �n−1 �= 0
(see, for example, [1]).
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Theorem 5. (A) The formal automaton Areach = (Areach ; 0; F�; V; *) with states as ∈
Areach ; initial state 0; state transition function F�: as 
→ a�s for all �∈ [p]; output map
* :Areach →V : as 
→ a(as) is a reverse-reading p-automaton for Ra.

(B) The reduced automaton Ared = (Ared ; 0; F�; V; *) with reduced state set Ared

(which depends on the speci3c DI-solution considered); is also a p-automaton for
Ra.

Proof. (A) (a). Observe that a(0) = a(a&), and so the automaton starts in the right
state.

(b). Let m¿0 and m= �n−1pn−1 + �n−2pn−2 + · · · + �0; (�n−1 �= 0). Then

a(m) =Dm
pna(0)

(28)
= a(a�n−1�n−2 :::�0 )

(29)
= a(F�n−1 (: : : F�1 (F�0 (a&)) : : :)

and so a(m) is indeed generated from the given automaton with input sequence �0;
�1; : : : ; �n−1.

(B) Is a direct consequence of (A) and of the equivalency de4nition (39).

Proposition 2. For all nonperiodic solutions to a [p; �]-DI problem; the formal and
reduced kernel-de3ning shift sets and the corresponding automata are equal (or: the
formal kernel and the formal automaton are irreducible):

Areach =Ared ; Areach =Ared :

Proof. The condition for e8ective reducibility of Areach and Ared is that there are dif-
ferent as ans as′ such that (a(k + as))k∈Z ≡ (a(k + as′))k∈Z (see Remark 8). This is
clearly a periodicity condition for a, implying a period length (as − as′). So Areach is
not reducible to a smaller Ared-set for nonperiodic solutions.

As a consequence of the periodicity Theorem 3 and the previous Proposition 2, it is
possible to formulate

Corollary 3. When gcd{p(
j+1 − 
j) − 1 | j∈ [p − 1]}= 1; then Areach =Ared and
Areach =Ared for any nontrivial (i.e. nonconstant) solution. For the trivial solutions;
Ared = {0}.

Remark 11. Because of the isomorphism between as
�
→ a�s =F�(as) and (a(k+as))k∈Z

�
→ (a(k + a�s))k∈Z
(28)
= D�

p (a(k + as))k∈Z, one could as well consider (a(k + as))k∈Z; as
∈Areach (or as ∈Ared) as states of the formal or reduced automaton of Ra, while the
state transition under � is de4ned as the D�

p -decimation.

Until now, we have related the automaticity of the unidirectional sequence Ra, in
which a is a bidirectional [p; k]-DI sequence, to the so-called full p-kernel of a. In
doing so, we obtained the related automaton Ared. Is this the automaton with a minimal
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number of states? Note that, traditionally (see e.g., [1]), automaticity of Ra is related
to a kernel of decimated sequences involving only Ra itself (to be called standard
kernel in the present context). Therefore, it is important to investigate the relationship
between the automata based on both the full and the standard kernel. This will answer
the minimality question.

De�nition 15.
• Let SKp(a) denote the standard p-kernel of R[FKp(a)], that is: SKp(a) = {Ra; Dm

pn

(Ra) | n∈N0; m∈ [pn]}. (see [1]).

• Let R[FKp(a)] def= R{c | c∈FKp(a)} (i.e. the set of right in4nite parts of all se-
quences in FKp(a), starting from k = 0).

Proposition 3. SKp(Ra) = R[FKp(a)] = {(a(k + as))k∈N | as ∈Ared}.

Proof. Observe that, because m¿0, Dm
pn(Ra) = R[Dm

pn(a)].

Remark 12. Ared need not be the minimal standard kernel-de4ning shift-set, as (a(k +
as))k∈N might be identical to (a(k + as′))k∈N , even when (a(k + as))k∈Z �≡ (a(k +
as′))k∈Z. But again, by constructing the set of equivalence classes over Ared, such
that as ∼= as′ whenever (a(k + as))k∈N≡ (a(k + as′))k∈N; (as; as′ ∈Ared), Ared reduces
to Amin, the minimal kernel-de4ning shift-set for the standard kernel SKp(Ra) . The
transition table for as

�
→ a�s =F�(as) becomes a minimal one under this equivalence
relation, and the corresponding p-automaton Amin = {Amin ; 0; F�; V; *} is the minimal
p-automaton for Ra.

Proposition 4. For any solution of a [p; �]-DI problem which is not periodic to the
right; it holds that Amin =Ared =Areach ; and Amin =Ared =Areach.

Proof. The condition for reducibility of Ared is that there are di8erent as and as′ ∈Ared

such that (a(k + as))k∈N = a(k + as′))k∈N. This implies periodicity to the right of a, a
condition which is not satis4ed. (The equality of Areach and Ared was already established
in Proposition 2).

As a consequence of the periodicity Theorem 3, which can be shown to hold also
for ultimate periodicity to the right (or to the left), it is possible to formulate

Corollary 4. When gcd{p(
j+1−
j)−1 | j∈ [p−1]}= 1; the minimal kernel-de3ning
shift set and the minimal p-automaton for nontrivial Ra coincide with the formal
kernel-de3ning shift set and with the formal p-automaton:

Amin =Areach ; and Amin =Areach :
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5.2. |p|-automaticity of reverse [−|p|; �]-DI sequences (p= − |p|6− 2)

The following theorem is the counterpart of Theorem 4 for direct DI-sequences (its
proof proceeds along the same lines as the one for Theorem 4).

Theorem 6 (p6− 2). Let a be a [−|p|; �]-DI sequence. Then

Dm
|p|na= (a((−1)nk + a�n−1�n−2···�0 ))k ∈Z; (41)

where �n−1�n−2 · · · �0 is the n-digit |p|-adic representation of m; and where
a�n−1�n−2···�0 ∈Z is obtained from the recursion

a�js =Gj
�j (as)

def= –
as + (−1)j�j

p
+ 
(as+(−1)j�j) mod |p|; (42)

starting with a& = 0.

Corollary 5. The kernel FK|p|(a) of a [−|p|; �]-DI sequence a consists of the fol-
lowing shifted versions of a :

FK|p|(a) = {(a((−1)|s|k + as))k∈Z | s∈ [|p|]∗}; (43)

where as is generated through recursion (42); and this for all |p|-adic strings s
(including the empty string). |s| represents the length of string s).

Remark 13. By induction with respect to the length |s| of the string s, it can be proven
that |as|61+[|p|=(|p|−1)] max� |
�|, which again implies that the full-kernel is 4nite
(cf. Remark 9).

Just like in the case of direct DI-sequences (Section 5:1), we will derive the kernel-
de4ning shift-sets Areach ; Ared ; Amin and their associated |p|-automata for reverse
[−|p|; �]-DI sequences from considerations concerning the (as; G

j
�j (as))-diagrams de-

4ned in (42). Because j a8ects Gj
�j (as) only through (−1)j, there is only need to

distinguish between the two cases in which j is either even or odd. When the value as
is obtained from a string with length |s|= even, we denote this value by a+

s , otherwise
by a−s . The following |p| × 2 mappings then replace the Gj

�j (as)-mappings in (42):

G+
� : a+

s 
→ a−�s = –
a+
s + �j
p

+ 
(a+
s +�j) mod |p| (44)

and

G−
� : a−s 
→ a+

�s = –
a−s − �j

p
+ 
(a−s −�j) mod |p|: (45)

These mappings have to be applied recursively and alternatively, starting with a+
& = 0+

(|&|= 0 = even, so we start with a +-sign).
Again, we proceed with a generic example.
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Fig. 5. The G∗
� (as)- and G∗

�;a∗s
(x)-diagrams for the reverse DI-problem with p= − 3; �= [3; 5; 13].

Example 4. Take the counterpart of the problem introduced in Example 3: p= − 3;
�= [3; 5; 13]. Fig. 5 shows the discrete G∗

� (a∗s )-mappings, and their R-extensions
G∗

�;a∗s
(x) (∗∈ {−;+}; �∈ [|p|]; a∗s ∈ [|p|]).

For a∗s restricted to [|p|], it follows from (44,45) that

G+
� (a+

s ) =
{

a+

s +� when a+
s + � ¡ |p|;

−1 + 
a+
s +�−|p| when a+

s + �¿|p| (46)

and

G−
� (a−s ) =

{

a−s −� when a−s − �¿0;
1 + 
a−s −�+|p| when a−s − � ¡ 0:

(47)

As it also follows from (44,45) that

∀l∈Z; ∀ ∗ ∈ {−;+} : G∗
� (a∗s + |p|l) =G∗

� (a∗s ) − l; (48)

one 4nds that the lines connecting all points {(a∗s ; G∗
� (a∗s )) | (�; ∗) 4xed} satisfy

G∗
�;a∗s

(x) =
x − a∗s
−|p| + G∗

� (a∗s ): (49)

There are 2p2 such lines: one for each triple (∗; a∗s ; �)∈{−;+}× [|p|]2.
Let (H∗; a∗s ; H�) and (∗; a∗s ; �) be the (∗; a∗s ; �)-triples corresponding to the highest and

lowest of these lines, i.e.

(H∗; a∗s ; H�) = arg max
[
a∗s
|p| + G∗

� (a∗s )
]
; (50)
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(∗; a∗s ; �) = arg min
[
a∗s
|p| + G∗

� (a∗s )
]
: (51)

Just like in Section 3.2 where the procedure for 4nding the core of the solution of
reverse DI-sequences was discussed, it is possible to 4nd a square ABCD (see Fig. 5),
with vertices A and C on the G H∗

H�;a∗s
(x) and G∗

�;a∗s
(x)-lines respectively, and with B and

D on the diagonal line d.
With x and Hx the x-coordinates of A, D and B, C respectively, x and Hx satisfy

x=G∗
�;a∗s

( Hx); Hx=G H∗
H�;a∗s

(x): (52)

Let

a∗s = �x� and Ha∗s =  Hx�; (53)

then I [a∗s ; Ha∗s ] is an attracting invariant set under the alternating recursion (44), (45)
(same arguments as developed in Section 3.2).

As the recursion has to start with a+
& = 0+, this leads again to a lemma, which is

actually similar to Lemma 9:

Lemma 10. With a∗s and Ha∗s de3ned in (53); (52); the range of as in the kernel
FKp(a) of a [−|p|; �]-DI sequence a as given by (43) is restricted to the 3nite set

A = I [0; Ha∗s ] when 0 ¡ a∗s
= I [a∗s ; 0] when 0 ¿ Ha∗s
= I [a∗s ; Ha∗s ] when 0∈ I [a∗s ; Ha∗s ]:

(54)

Example 4 (Continued). Continuing the previous example (p= − 3; �= [3; 5; 13]), it
is readily seen from Fig. 5 that the top line corresponds to

G H∗
H�;a∗s

(x) =G−
2;1(x) =

x − 1
−3

+ 14;

G∗
�;a∗s

(x) =G−
2;1(x) =

x − 1
−3

+ 2:

Solving Hx and x from (52) gives Hx= 15:25; x= − 2:75, and so the invariant set is
I [−2; 15], implying that A= I [−2; 15] too.

The transition table for G+
� (a+

s ) : a+
s 
→ a−�s and G−

� (a−s ) : a−s 
→ a+
�s restricted to

as ∈A is

a∗s | as ∈A
−2− −2+ −1− −1+ 0− 0+ 1− 1+ 2− 2+ 3− 3+

0 6+ 6− 14+ 14− 3+ 3− 5+ 5− 13+ 13− 2+ 2−

� 1 4+ 14− 6+ 3− 14+ 5− 3+ 13− 5+ 2− 13+ 4−

2 15+ 3− 4+ 5− 6+ 13− 14+ 2− 3+ 4− 5+ 12−
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a∗s | as ∈A
4− 4+ 5− 5+ 6− 6+ 7− 7+ 8− 8+ 9− 9+

0 4+ 4− 12+ 12− 1+ 1− 3+ 3− 11+ 11− 0+ 0−

� 1 2+ 12− 4+ 1− 12+ 3− 1+ 11− 3+ 0− 11+ 2−

2 13+ 1− 2+ 3− 4+ 11− 12+ 0− 1+ 2− 3+ 10−

a∗s | as ∈A
10− 10+ 11− 11+ 12− 12+ 13− 13+ 14− 14+ 15− 15+

0 2+ 2− 10+ 10− −1+ −1− 1+ 1− 9+ 9− −2+ −2−

� 1 0+ 10− 2+ −1− 10+ 1− −1+ 9− 1+ −2− 9+ 0−

2 11+ −1− 0+ 1− 2+ 9− 10+ −2− −1+ 0− 1+ 8−

Actually, this is a transition table from A∗ def= {a+
s ; a

−
s | as ∈A} into A∗ itself. In-

spection of this table shows that here also, there is a set of elements that cannot be
reached from 0+ :A∗nreach = {−2+; 6−; 7−; 7+; 8+; 15−}. The set of reachable elements
is A∗reach =A∗\A∗nreach. This set can be partitioned into A+

reach and A−
reach, containing the

reachable a+
s and a−s , respectively.

Here follows the reverse-DI equivalent of Proposition 1:

Proposition 5. The FKp(a)-kernel of a reverse [−|p|; �]-DI sequence a is the follow-
ing 3nite set of shifted versions of a :

FKp(a) = {(a(k + a+
s ))k∈Z; (a(−k + a−s ))k∈Z | a+

s ∈A+
reach ; a

−
s ∈A−

reach}: (55)

Again, the formal kernel-de4ning shift-set A∗reach need not be minimal: a reduced
kernel-de4ning shift set A∗red and standard kernel-de4ning shift set A∗min can be derived
from A∗reach, by considering the equivalence classes resulting from putting a∗s ∼= a∗′

s′

whenever (a(∗k + a∗s ))k∈Z ≡ (a(∗′k + a∗′
s′ ))k∈Z (for the reduction of A∗reach to A∗red), or

whenever (a(∗k + a∗s ))k∈N ≡ (a(∗′k + a∗′
s′ ))k∈N (for the reduction of A∗reach or A∗red to

A∗min). Observe that, when ∗= ∗′, reduction under this equivalence relationship is only
possible when a is periodic, and thus the earlier conditions for nonperiodicity can be
invoked to establish irreducibility. When ∗ �= ∗′, reducibility implies the presence of
so-called reverse symmetry in a, which has been conjectured to imply periodicity [7].

Associated with these kernel-de4ning shift-sets are the formal, the reduced and stan-
dard |p|-automata A∗

reach ; A∗
red ; A∗

min for Ra.
We state here the reverse DI-sequence counterparts of some direct DI-sequence prop-

erties.

Theorem 7 (Counterpart of Theorem 5). (A) The formal automaton A∗
reach = (A∗reach ;

0+; G∗
� ; V; *) with states a∗s ∈Areach ; initial state 0+; state transition function G∗

� : a±s 
→
a∓�s for all �∈ [|p|]; output map * :A∗reach → V : a∗s 
→ a(as) is a reverse-reading |p|-
automaton for Ra.
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(B) The reduced automaton A∗
red = (A∗red ; 0

+; G∗
� ; V; *) with reduced state set A∗red

(which depends on the speci3c DI-solution considered); is also a |p|-automaton for
Ra. So is the minimal automaton A∗

min (with state set A∗min).

Proof. (A) (a). Observe that a(0+) = a(a+
& ), and so the automaton starts in the right

state.
(b) Let m ¿ 0 and m= �n−1|p|n−1 + �n−2|p|n−2 + · · · + �0; (�n−1 �= 0). Then

a(m) =Dm
|p|na(0)

(41)
= a(a�∗n−1�n−2 :::�0 )

(44;45)
= a(G∗

�n−1
(: : : G−

�1
(G+

�0
(a+

& )) : : :);

where ∗= + when n= even, ∗=− when n= odd. So a(m) is indeed generated from
the given automaton with input sequence �0; �1; : : : ; �n−1.

(B) Is a direct consequence of (A) and of the reduction of Areach to A∗red (or A∗min)
under the proper equivalence relation.

6. Conclusion

In this paper, we have de4ned, through the basic Eq. (3), the concept of decimation-
invariant sequences. We have presented an algorithm for solving these decimation
invariance equations and for determining the number of solutions. Then we have in-
vestigated the automaticity of these sequences, and derived algorithms for 4nding the
automaton generating the right- and left-in4nite parts of decimation invariant sequences.
It is also possible to construct the automaton which generates the whole bidirectional
DI-sequence: it just extends the algorithms presented above by using numbering sys-
tems which allow the unique representation of all integers, negative as well as positive
[2]. More details can be found in [7].
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