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1. Introduction

The Bram–Halmos criterion of subnormality [1] states that an operator T on a Hilbert space H is subnormal if and only
if

∑
i, j(T i x j, T j xi) � 0 for all finite collections x0, x1, . . . , xk ∈ H. It is easy to see that this is equivalent to the following

positivity test:⎡⎢⎢⎢⎣
I T ∗ . . . T ∗k

T T ∗T . . . T ∗k T
...

...
. . .

...

T k T ∗T k . . . T ∗k T k

⎤⎥⎥⎥⎦ � 0 (all k � 1). (1.1)

Condition (1.1) provides a measure of the gap between hyponormality and subnormality. In fact the positivity condition (1.1)
for k = 1 is equivalent to the hyponormality of T , while subnormality requires the validity of (1.1) for all k. For k � 1, an
operator T is said to be k-hyponormal if T satisfies the positivity condition (1.1) for a fixed k. Thus the Bram–Halmos
criterion can be stated as: T is subnormal if and only if T is k-hyponormal for all k � 1. The k-hyponormality has been
considered by many authors with an aim at understanding the gap between hyponormality and subnormality. For instance,
the Bram–Halmos criterion on subnormality indicates that 2-hyponormality is generally far from subnormality. There are
special classes of operators, however, for which these two notions are equivalent. For example, in [4, Example 3.1], it was
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shown that there is no gap between 2-hyponormality and subnormality for a back-step extension of the recursively gener-
ated subnormal weighted shift. The purpose of this paper is to consider a gap between hyponormality and subnormality (or
normality) for Toeplitz operators with matrix-valued symbols. We establish that there is no gap between 2-hyponormality
and normality for a certain class of block Toeplitz operators with matrix-valued trigonometric polynomial symbols and in
the extremal cases, hyponormality and normality coincide.

2. Preliminaries

Throughout this paper, let H denote a separable complex Hilbert space and B(H) denote the set of all bounded linear
operators acting on H. For an operator T ∈ B(H), T ∗ denotes the adjoint of T . An operator T ∈ B(H) is said to be normal
if T ∗T = T T ∗ , hyponormal if its self-commutator [T ∗, T ] ≡ T ∗T − T T ∗ is positive semi-definite, and subnormal if T has
a normal extension N , i.e., there is a Hilbert space K containing H and a normal operator N on K such that N H ⊆ H
and T = N|H . For an operator T ∈ B(H), we write ker T for the kernel of T . For a set M, M⊥ denotes the orthogonal
complement of M.

We review a few essential facts for (block) Toeplitz operators and (block) Hankel operators that we will need to begin
with, using [6,7] and [11]. Let L2 ≡ L2(T) be the set of square-integrable measurable functions on the unit circle T ≡ ∂D in
the complex plane and H2 ≡ H2(T) be the corresponding Hardy space. Let L∞ ≡ L∞(T) be the set of bounded measurable
functions on T and let H∞ ≡ H∞(T) := L∞(T) ∩ H2(T). For X a Hilbert space, let L2

X ≡ L2
X (T) be the Hilbert space of X -

valued norm square-integrable measurable functions on T and H2
X ≡ H2

X (T) be the corresponding Hardy space. We observe
that L2

Cn = L2(T) ⊗ C
n and H2

Cn = H2(T) ⊗ C
n . Let Mn denote the set of n × n complex matrices. If Φ is a matrix-valued

function in L∞
Mn

≡ L∞
Mn

(T) (= L∞(T) ⊗ Mn) then the block Toeplitz operator TΦ and the block Hankel operator HΦ on H2
Cn

are defined by

TΦ f = P (Φ f ) and HΦ f = J P⊥(Φ f )
(

f ∈ H2
Cn

)
, (2.1)

where P and P⊥ denote the orthogonal projections that map from L2
Cn onto H2

Cn and
(

H2
Cn

)⊥
, respectively and J denotes

the unitary operator from L2
Cn to L2

Cn given by J (g)(z) = z̄ In g(z̄) for g ∈ L2
Cn (In := the n × n identity matrix). If n = 1,

TΦ and HΦ are called the (scalar) Toeplitz operator and the (scalar) Hankel operator, respectively. For Φ ∈ L∞
Mn×m

, write

Φ̃(z) := Φ∗(z̄). (2.2)

An inner (matrix) function Θ ∈ H∞
Mn×m

(= H∞ ⊗ Mn×m) is one satisfying Θ∗Θ = Im for almost all z ∈ T, where Mn×m

denotes the set of n × m complex matrices. The following basic relations can be easily derived from the definition:

T ∗
Φ = TΦ∗ , H∗

Φ = HΦ̃

(
Φ ∈ L∞

Mn

); (2.3)

TΦΨ − TΦ TΨ = H∗
Φ∗ HΨ

(
Φ,Ψ ∈ L∞

Mn

); (2.4)

HΦ TΨ = HΦΨ , HΨ Φ = T ∗̃
Ψ

HΦ

(
Φ ∈ L∞

Mn
,Ψ ∈ H∞

Mn

)
. (2.5)

A matrix-valued trigonometric polynomial Φ ∈ L∞
Mn

is of the form

Φ(z) =
N∑

j=−m

A j z
j (A j ∈ Mn),

where AN and A−m are called the outer coefficients of Φ . For a matrix-valued function A(z) = ∑∞
j=−∞ A j z j ∈ L2

Mn
, we

define

‖A‖2
2 :=

∫
T

tr(A∗ A)dμ =
∞∑

j=−∞
tr

(
A∗

j A j
)
,

where tr(·) means the trace of the matrix and if A ∈ L∞
Mn

, we define

‖A‖∞ := sup
t∈T

∥∥A(t)
∥∥ (‖ · ‖ means the spectral norm of the matrix

)
.

The hyponormality of the scalar Toeplitz operators Tϕ was completely characterized by a property of their symbols by
C. Cowen [2] in 1988.

Cowen’s Theorem. (See [2,10].) For ϕ ∈ L∞ , write

E (ϕ) := {
k ∈ H∞: ‖k‖∞ � 1 and ϕ − kϕ̄ ∈ H∞}

.

Then Tϕ is hyponormal if and only if E (ϕ) is nonempty.
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In 2006, Gu, Hendricks and Rutherford [9] considered the hyponormality of block Toeplitz operators and characterized
the hyponormality of block Toeplitz operators in terms of their symbols. In particular they showed that if TΦ is a hy-
ponormal block Toeplitz operator on H2

Cn , then Φ is normal, i.e., Φ∗Φ = ΦΦ∗ . Their characterization for hyponormality
of block Toeplitz operators resembles Cowen’s theorem except for an additional condition – the normality of the sym-
bol.

Lemma 2.1 (Hyponormality of Block Toeplitz Operators). (See [9].) For each Φ ∈ L∞
Mn

, let

E (Φ) := {
K ∈ H∞

Mn
: ‖K‖∞ � 1 and Φ − KΦ∗ ∈ H∞

Mn

}
.

Then a block Toeplitz operator TΦ is hyponormal if and only if Φ is normal and E (Φ) is nonempty.

For a matrix-valued function Φ ∈ H2
Mn×r

, we say that Δ ∈ H2
Mn×m

is a left inner divisor of Φ if Δ is an inner matrix

function such that Φ = ΔA for some A ∈ H2
Mm×r

(m � n). We also say that two matrix functions Φ ∈ H2
Mn×r

and Ψ ∈ H2
Mn×m

are left coprime if the only common left inner divisor of both Φ and Ψ is a unitary constant and that Φ ∈ H2
Mn×r

and

Ψ ∈ H2
Mm×r

are right coprime if Φ̃ and Ψ̃ are left coprime. Two matrix functions Φ and Ψ in H2
Mn

are said to be coprime if
they are both left and right coprime.

Remark 2.2. If Φ ∈ H2
Mn

is such that detΦ is not identically zero then any left inner divisor Δ of Φ is square, i.e., Δ ∈ H2
Mn

.

Proof. Assume to the contrary that Φ = ΔA with Δ ∈ H2
Mn×r

(r < n). Then for almost all z ∈ T, rank Φ(z) � rank Δ(z) �
r < n, so that det Φ(z) = 0 for almost all z ∈ T. This shows that any left inner divisor Δ of Φ is square. �

If Φ ∈ H2
Mn

is such that det Φ is not identically zero then we say that Δ ∈ H2
Mn

is a right inner divisor of Φ if Δ̃ is a left

inner divisor of Φ̃ .
For brevity we write I for the identity matrix and

Iζ := ζ I
(
ζ ∈ L∞)

.

For Φ ∈ L∞
Mn

we write

Φ+ := PnΦ ∈ H2
Mn

and Φ− := (
P⊥

n Φ
)∗ ∈ H2

Mn
,

where Pn denotes the orthogonal projection from L2
Mn

onto H2
Mn

. Thus we can write Φ = Φ∗− + Φ+ . If Ψ is a matrix-valued
analytic polynomial then we can write

Ψ = Θ A∗ (
A ∈ H2

Mn
and Θ = IzN for some nonnegative integer N

)
. (2.6)

If Ω is the greatest common right inner divisor of A and Θ in the representation (2.6), then Θ = ΩrΩ and A = ArΩ for
some inner matrix Ωr (where Ωr ∈ H2

Mn
because detΘ is not identically zero) and some Ar ∈ H2

Mn
. Therefore we can write

Ψ = Ωr A∗
r , where Ar and Ωr are right coprime: (2.7)

in this case, Ωr A∗
r is called the right coprime decomposition of Φ .

In general, it is not easy to check the condition “Θ and A are right coprime” for the representation Φ = Θ A∗ (Θ is inner
and A ∈ H2

Mn
) even though Θ = Iθ for an inner function θ . But if Φ is a matrix-valued analytic polynomial then we have a

more tractable criterion (cf. [3, Lemma 3.10]): if A ∈ H∞
Mn

is a matrix-valued analytic polynomial and Θ = IzN , then

Θ and A are right coprime ⇔ A(0) is invertible. (2.8)

If Φ ∈ L∞
Mn

is a matrix-valued trigonometric polynomial then TΦ will be called a trigonometric block Toeplitz operator. In
Section 3 we show that there is no gap between 2-hyponormality and normality for a certain class of trigonometric block
Toeplitz operators. In Section 4, we consider the extremal cases for the hyponormality of trigonometric block Toeplitz
operators: in this case, hyponormality and normality coincide.

3. 2-Hyponormality of trigonometric block Toeplitz operators

We begin with:

Lemma 3.1. Let Φ ∈ L∞
Mn

be a matrix-valued trigonometric polynomial of the form Φ(z) = ∑N
j=−m A j z j (m � N) and write

Φ− = Θ F ∗ (right coprime decomposition).
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Suppose Iz is an inner divisor of Θ . If

(i) TΦ is hyponormal;
(ii) ker[T ∗

Φ, TΦ ] is invariant for TΦ ,

then TΦ is normal. Hence in particular, if TΦ is 2-hyponormal then it is normal.

Proof. By assumption we write Θ = IzΘ1 for some inner matrix Θ1. Suppose TΦ is hyponormal. Since Φ∗Φ = ΦΦ∗ , it
follows from (2.4) that [T ∗

Φ, TΦ ] = H∗
Φ∗ HΦ∗ − H∗

Φ HΦ . Note that by (2.8), F0 := F (0) is an invertible matrix since F and Iz
are right coprime. Since Φ∗ and Φ are trigonometric polynomials of co-analytic degrees N and m, respectively, we can see
that

ran
[
T ∗

Φ, TΦ

] = ran
(

H∗
Φ∗ HΦ∗ − H∗

Φ HΦ

) ⊆ H(IzN ). (3.1)

We now suppose that N1 is the smallest integer such that

ran
[
T ∗

Φ, TΦ

] ⊆ H(IzN1 ). (3.2)

Assume to the contrary that ran[T ∗
Φ, TΦ ] �= {0}. We choose an element B ∈ ran[T ∗

Φ, TΦ ] of the greatest analytic degree. Write

B :=
N1−1∑

j=0

B j z
j (BN1−1 �= 0).

We thus have

TΘ∗
1

T I
z−N1

TΦ∗ B = TΘ∗
1 I

z−N1 Φ∗ B

= P

(
Θ∗

1 Iz−N1

(
Φ∗+ + IzΘ1 F ∗) N1−1∑

j=0

B j z
j

)

= P

(
Θ∗

1

(
Iz−1Φ

∗+ + Θ1 F ∗) N1−1∑
j=0

B j z
−(N1−1− j)

)

= P

(
F ∗

N1−1∑
j=0

B j z
−(N1−1− j)

)
= F ∗

0 BN1−1.

But since F0 is invertible and BN1−1 �= 0, it follows that T ∗
Θ1

(T I
z−N1

TΦ∗ B) �= 0, which implies that T I
z−N1

TΦ∗ B �= 0 and in
turn,

TΦ∗ B /∈ H(IzN1 ).

But if ker[T ∗
Φ, TΦ ] is invariant for TΦ , and hence ran[T ∗

Φ, TΦ ] is invariant for T ∗
Φ , then by (3.2),

T ∗
Φ B ∈ ran

[
T ∗

Φ, TΦ

] ⊆ H(IzN1 ),

which leads a contradiction. Therefore we must have that ran[T ∗
Φ, TΦ ] = {0}, i.e., TΦ is normal. The second assertion fol-

lows from the first assertion together with the fact that every 2-hyponormal operator T ∈ B(H) satisfies that ker[T ∗, T ] is
invariant for T (cf. [5]). This completes the proof. �

Write Φ(z) ≡ ∑N
j=−m A j z j ∈ L∞

Mn
. Define

G0,r := A−m+r (r = 0, . . . ,m − 1)

and put

M0 := ker G00 (= ker A−m).

We now define, recursively, Gs,r and Ms as follows: for r = 0, . . . ,m − 1 and s = 0, . . . ,m − 1,{
Gs+1,r := Gs,r P M⊥

s
+ Gs,r+1 P Ms ,

Ms := ker Gs,0,
(3.3)

where P X denotes the orthogonal projection of C
n onto X and Gs,m is defined to be the zero matrix for all s.
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Remark 3.2. The sequence (dim Ms) is decreasing.

Proof. By definition we can write

Gs,0 =
[

Cs 0

Ds 0

]
:
[

M⊥
s

Ms

]
→

[
M⊥

s

Ms

]
.

Let

Gs,1 :=
[

E1 E2

E3 E4

]
:
[

M⊥
s

Ms

]
→

[
M⊥

s

Ms

]
.

Since

Gs+1,0 = Gs,0 P M⊥
s

+ Gs,1 P Ms =
[

Cs 0

Ds 0

]
+

[
0 E2

0 E4

]
=

[
Cs E2

Ds E4

]
,

it follows that rank Gs,0 � rank Gs+1,0, i.e., dim ker Gs,0 � dim ker Gs+1,0, giving the result. �
We note that if Gs0,0 is invertible for some s0, then Gs,r = Gs0,r for all s � s0 and 0 � r � m − 1.
We are ready for:

Theorem 3.3. Let Φ ∈ L∞
Mn

be a matrix-valued trigonometric polynomial of the form Φ(z) = ∑N
j=−m A j z j (m � N) and suppose some

Gs0,0 (0 � s0 � m − 1) defined by (3.3) is invertible. If TΦ is 2-hyponormal then TΦ is normal.

Proof. Let Gs,r be defined by (3.3) and write

G0(z) ≡
m−1∑
r=0

G0,r zr =
m−1∑
r=0

A−m+r zr . (3.4)

Put M0 := ker G00 (= ker A−m) as above. Therefore we can write

G00 =
[

C0 0

D0 0

]
:
[

M⊥
0

M0

]
→

[
M⊥

0

M0

]
.

Observe that[
C0 0

D0 0

]
=

[
C0 0

D0 0

][
1|M⊥

0
0

0 z|M0

]
,

so that

G00 = G00(P M⊥
0

+ P M0) = G00 P M⊥
0

[
1|M⊥

0
0

0 z|M0

]
(3.5)

and for 1 � r � m − 1,

G0,r zr = G0,r(P M⊥
0

+ P M0)

[
zr |M⊥

0
0

0 zr−1|M0

][
1|M⊥

0
0

0 z|M0

]
= (

(G0,r P M⊥
0
)zr + (G0,r P M0)zr−1)[

1|M⊥
0

0

0 z|M0

]
. (3.6)

Substituting (3.5) and (3.6) into (3.4), we have

G0(z) =
m−1∑
r=0

G0,r zr

= G00 P M⊥
0

[
1|M⊥

0
0

0 z|M0

]
+ (

(G0,1 P M⊥
0
)z1 + (G0,1 P M0)z0)[

1|M⊥
0

0

0 z|M0

]
+ (

(G0,2 P M⊥
0
)z2 + (G0,2 P M0)z1)[

1|M⊥
0

0
]

0 z|M0
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. . .

+ (
(G0,m−1 P M⊥

0
)zm−1 + (G0,m−1 P M0)zm−2)[

1|M⊥
0

0

0 z|M0

]

=
(

m−1∑
r=0

(G0,r P M⊥
0

+ G0,r+1 P M0)zr

)[
1|M⊥

0
0

0 z|M0

]

=
(

m−1∑
r=0

G1,r zr

)[
1|M⊥

0
0

0 z|M0

]
,

where the third equality follows from regrouping the terms and adding the term

G0,m P M0 zm−1
[

1|M⊥
0

0

0 z|M0

]
(this is equal to zero because Gs,m is defined to be the zero matrix for all s). Repeating the above argument for G1(z) ≡∑m−1

r=0 G1,r zr , we have

G1(z) =
(

m−1∑
r=0

G2,r zr

)[
1|M⊥

1
0

0 z|M1

]
.

By induction we obtain

G0(z) =
(

m−1∑
r=0

Gs,r zr

)
s∏

j=1

[
1|M⊥

s− j
0

0 z|Ms− j

]
for s = 1, . . . ,m − 1.

We now assume that Gs0,0 is invertible for some s0 (0 � s0 � m−1). Then the invertibility of Gs0,0 implies that
∑m−1

r=0 Gs0,r zr

is right coprime with Iz . We observe

Φ− = A∗−1z + · · · + A∗−mzm = zmG0(z)∗

= zm

((
m−1∑
r=0

Gs0,r zr

) s0∏
j=1

[
1|M⊥

s0− j
0

0 z|Ms0− j

])∗

= zm−s0

s0∏
j=1

[
z|M⊥

s0− j
0

0 1|Ms0− j

](
m−1∑
r=0

Gs0,r zr

)∗
.

By assumption we must have that m − s0 � 1. We claim that

Θ ≡ zm−s0

s0∏
j=1

[
z|M⊥

s0− j
0

0 1|Ms0− j

]
and F ≡

m−1∑
r=0

Gs0,r zr are right coprime. (3.7)

To see (3.7) we assume to the contrary that Θ and F are not right coprime. Then Θ̃ and F̃ are not left coprime. Thus there
exists an inner matrix function Δ̃ ∈ H2

Mn×l
such that

Θ̃ = Δ̃C1, F̃ = Δ̃C2
(
for some C1, C2 ∈ H2

Ml×n

)
,

where Δ is not unitary constant. Since Gs0,0 is invertible it follows that det F̃ is not identically zero, and hence Δ̃ ∈ H2
Mn

.
Therefore Δ becomes a common right inner divisor of Θ and F . Put

Ω :=
s0−1∏
j=0

[
1|M⊥

j
0

0 z|M j

]
.

Then Izm = ΩΘ = ΩC1Δ and F = C2Δ are not right coprime. But since F (0) = Gs0,0 is invertible, it follows from (2.8) that
Izm and F are right coprime, a contradiction. This proves (3.7). But since Θ contains an inner factor Iz , applying Lemma 3.1
with F and Θ gives the result. �

The following corollary shows that there is no gap between 2-hyponormality and normality for Toeplitz operators with
matrix-valued trigonometric polynomial symbols whose co-analytic outer coefficient is invertible.
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Corollary 3.4. Let Φ ∈ L∞
Mn

be a matrix-valued trigonometric polynomial whose co-analytic outer coefficient is invertible. If TΦ is
2-hyponormal then TΦ is normal.

Proof. Write

Φ− =
m∑

j=1

A− j z
j .

Under the notation of Theorem 3.3, we have that G00 = A−m (= the co-analytic outer coefficient). Thus the result follows at
once from Theorem 3.3. �

In Corollary 3.4, the condition “the co-analytic outer coefficient is invertible” is essential. To see this, let

Φ :=
[

z + z̄ 0

0 z

]
.

Then

TΦ =
[

T z + T ∗
z 0

0 T z

]
.

Thus TΦ is subnormal (and hence 2-hyponormal). Clearly, TΦ is neither normal nor analytic even though the analytic outer

coefficient
[ 1 0

0 1

]
is invertible. Note that the co-analytic outer coefficient

[ 1 0

0 0

]
is singular.

Of course, the assumption of Corollary 3.4 is superfluous. For example, if Φ = ∑N
j=−m A j z j is a matrix-valued trigono-

metric polynomial of the form

A−m =
[

1 0
0 0

]
and A−m+1 =

[
0 0

0 1

]
.

Then by Theorem 3.3, the conclusion of Corollary 3.4 is still true even though A−m is not invertible.

4. Extremal cases

It was known [8] that if ϕ is a trigonometric polynomial of the form ϕ(z) = ∑N
n=−m anzn then ‘|a−m| � |aN |’ is a necessary

condition for Tϕ to be hyponormal. In this sense, the condition ‘|a−m| = |aN |’ is an extremal case for Tϕ to be hyponormal:
in particular, in this case, Tϕ is hyponormal if and only if the Fourier coefficients of ϕ have a symmetric relation, i.e., there
exists θ ∈ [0,2π) such that (cf. [8, Theorem 1.4])⎡⎢⎢⎢⎢⎣

a−1

a−2

...

a−m

⎤⎥⎥⎥⎥⎦ = eiθ

⎡⎢⎢⎢⎢⎣
āN−m+1

āN−m+2

...

āN

⎤⎥⎥⎥⎥⎦ for some θ ∈ [0,2π).

We now consider the extremal cases for hyponormal Toeplitz operators with matrix-valued trigonometric polynomial
symbols. What is a matrix version of the extremal condition ‘|a−m| = |aN |’ for a matrix-valued trigonometric polynomial
Φ(z) = ∑N

j=−m A j z j (where each A j is an n × n matrix and AN is invertible)? We may suggest the following conditions as
the corresponding matrix version of the extremal case:

A∗−m A−m = AN A∗
N ; (4.1)

|det A−m| = |det AN |; (4.2)

‖A−m‖2 = ‖AN‖2. (4.3)

Evidently, (4.1) ⇒ (4.2) and (4.3). However (4.2) is independent of (4.3). In [9], the authors established the hyponormality
of TΦ with symbol Φ satisfying the condition (4.1): indeed, there is a symmetric relation such as

A−m+ j = U A∗
N− j with a constant unitary matrix U ( j = 0,1, . . . ,m − 1).

In this section, we consider the cases (4.2) and (4.3): in fact, we get to the same conclusion.
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Theorem 4.1. Let Φ ∈ L∞
Mn

be a matrix-valued trigonometric polynomial of the form Φ(z) = ∑N
j=−m A j z j (AN is invertible). If TΦ is

hyponormal then

|det A−m| � |det AN |. (4.4)

Moreover if |det A−m| = |det AN |, then TΦ is hyponormal if and only if Φ∗Φ = ΦΦ∗ and there exists a constant unitary matrix U
such that

A−m+ j = U A∗
N− j for each j = 0,1, . . . ,m − 1. (4.5)

Proof. Suppose TΦ is hyponormal. Then by Lemma 2.1, there exists a matrix function K ∈ H∞
Mn

such that ‖K‖∞ � 1 and
Φ∗− − KΦ∗+ ∈ H∞

Mn
, i.e.,

−1∑
j=−m

A j z
j − K

N∑
j=1

A∗
j z− j ∈ H∞

Mn
. (4.6)

Since AN is invertible, we can write K = zN−m ∑∞
j=0 K j z j and A−m = K0 A∗

N . On the other hand, since ‖K0‖ � 1 (because
‖K‖∞ � 1) and

‖K0‖ = max
{√

λ j: λ j is an eigenvalue of K ∗
0 K0

}
,

we have 0 � λ j � ‖K0‖2 � 1 for each j. Thus

|det K0|2 = det K ∗
0 K0 = λ1λ2 · · ·λn � 1, (4.7)

which implies |det K0| � 1. Thus we have

|det A−m| = |det K0||det AN | � |det AN |,
giving (4.4). For the second assertion, we assume that

|det A−m| = |det AN | �= 0,

so that λ1λ2 · · ·λn = |det K0|2 = 1. Since 0 � λ j � 1 for each j, it follows that λ j = 1 for all j = 1, . . . ,n. Thus K ∗
0 K0 is

unitarily equivalent to I , so that K0 is unitary. On the other hand,

1 = 1

n
‖K0‖2

2 � 1

n

∞∑
j=0

‖K j‖2
2 = 1

n
‖K‖2

2 � ‖K‖2∞ � 1,

which implies that K1 = K2 = · · · = 0. Hence U ≡ K0 = ∑∞
j=0 K j z j is unitary. In particular, from (4.6),

−1∑
j=−m

A j z
j − U

N∑
j=N−m+1

A∗
j zN−m− j ∈ H∞

Mn
,

giving (4.5). The converse is similar. �
Theorem 4.2. Let Φ ∈ L∞

Mn
be a matrix-valued trigonometric polynomial of the form Φ(z) = ∑N

j=−m A j z j (AN is invertible). If TΦ is
hyponormal then

‖A−m‖2 � ‖AN‖2. (4.8)

Moreover if ‖A−m‖2 = ‖AN‖2 , then TΦ is hyponormal if and only if Φ∗Φ = ΦΦ∗ and there exists a constant unitary matrix U such
that

A−m+ j = U A∗
N− j for each j = 0,1, . . . ,m − 1. (4.9)

Proof. Suppose TΦ is hyponormal. Thus by Lemma 2.1, there exists a matrix function K ∈ H∞
Mn

such that ‖K‖∞ � 1 and
Φ∗− − KΦ∗+ ∈ H∞

Mn
, i.e.,

−1∑
A j z

j − K
N∑

A∗
j z− j ∈ H∞

Mn
.

j=−m j=1



I.S. Hwang et al. / J. Math. Anal. Appl. 382 (2011) 883–891 891
Thus we can write K = zN−m ∑∞
j=0 K j z j and A−m = K0 A∗

N . Observe that

‖AN‖2
2 − ‖A−m‖2

2 = tr
(

AN A∗
N

) − tr
(

A∗−m A−m
) = tr

(
AN

(
I − K ∗

0 K0
)

A∗
N

)
� 0 (4.10)

because K0 is a contraction. This gives (4.8). For the second assertion we assume that ‖A−m‖2 = ‖AN‖2. By (4.10), we have

tr(AN (I − K ∗
0 K0)A∗

N) = 0, so that AN(I − K ∗
0 K0)

1
2 = 0. But since AN is invertible it follows that K0 is unitary. Now the same

argument as the proof of Theorem 4.1 gives the result. �
We conclude with the following observation which shows that hyponormality and normality coincide for the extremal

cases.

Corollary 4.3. Let Φ ∈ L∞
Mn

be a matrix-valued trigonometric polynomial of the form Φ(z) = ∑N
j=−N A j z j (AN is invertible) satisfying

either |det A−N | = |det AN | or ‖A−N‖2 = ‖AN‖2,

then TΦ is hyponormal if and only if TΦ is normal.

Proof. In this case, Theorems 4.1 and 4.2 give that Φ+ − Φ(0) = Φ−U for some constant unitary matrix U . Further since
AN is invertible, det (Φ+ − Φ(0)) is not identically zero. Thus the result follows at once from Theorem 4.3 of [9]. �
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