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coefficient is invertible). In addition we consider the extremal cases for the hyponormality
of trigonometric block Toeplitz operators: in this case, hyponormality and normality
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1. Introduction

The Bram-Halmos criterion of subnormality [1] states that an operator T on a Hilbert space H is subnormal if and only
if Zi‘j(T’xj, T’x;) > 0 for all finite collections Xg, X1, ..., X, € H. It is easy to see that this is equivalent to the following
positivity test:

I T* ... T
T T*T ... T*T

>0 (@llk>1). (1.1)
Tk T*Tk L THRTE

Condition (1.1) provides a measure of the gap between hyponormality and subnormality. In fact the positivity condition (1.1)
for k=1 is equivalent to the hyponormality of T, while subnormality requires the validity of (1.1) for all k. For k > 1, an
operator T is said to be k-hyponormal if T satisfies the positivity condition (1.1) for a fixed k. Thus the Bram-Halmos
criterion can be stated as: T is subnormal if and only if T is k-hyponormal for all k > 1. The k-hyponormality has been
considered by many authors with an aim at understanding the gap between hyponormality and subnormality. For instance,
the Bram-Halmos criterion on subnormality indicates that 2-hyponormality is generally far from subnormality. There are
special classes of operators, however, for which these two notions are equivalent. For example, in [4, Example 3.1], it was
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shown that there is no gap between 2-hyponormality and subnormality for a back-step extension of the recursively gener-
ated subnormal weighted shift. The purpose of this paper is to consider a gap between hyponormality and subnormality (or
normality) for Toeplitz operators with matrix-valued symbols. We establish that there is no gap between 2-hyponormality
and normality for a certain class of block Toeplitz operators with matrix-valued trigonometric polynomial symbols and in
the extremal cases, hyponormality and normality coincide.

2. Preliminaries

Throughout this paper, let H denote a separable complex Hilbert space and B(H) denote the set of all bounded linear
operators acting on H. For an operator T € B(H), T* denotes the adjoint of T. An operator T € B(H) is said to be normal
if T*T = TT*, hyponormal if its self-commutator [T*, T]=T*T — TT* is positive semi-definite, and subnormal if T has
a normal extension N, i.e., there is a Hilbert space K containing { and a normal operator N on K such that NH € 'H
and T = N|y. For an operator T € B(H), we write ker T for the kernel of T. For a set M, M~ denotes the orthogonal
complement of M.

We review a few essential facts for (block) Toeplitz operators and (block) Hankel operators that we will need to begin
with, using [6,7] and [11]. Let L2 = L2(T) be the set of square-integrable measurable functions on the unit circle T = D in
the complex plane and H? = H?(T) be the corresponding Hardy space. Let L> = L°(T) be the set of bounded measurable
functions on T and let H*® = H>(T) := L°(T) N H*(T). For X’ a Hilbert space, let L%, = L%.(T) be the Hilbert space of X-
valued norm square-integrable measurable functions on T and HE\? = Hgf(?l‘) be the corresponding Hardy space. We observe
that L2, = L*(T) ® C" and HZ, = H*(T) ® C". Let M, denote the set of n x n complex matrices. If @ is a matrix-valued
function in L,‘f/lon = L",VI“’n (T) (= L°°(T) ® M) then the block Toeplitz operator T and the block Hankel operator Hg on Hé,,
are defined by

Tef=P(@f) and Hef=JP (@f) (feH¢), (21)

where P and PL denote the orthogonal projections that map from Lén onto Hén and (H%n)L, respectively and | denotes
the unitary operator from Lé,, to L?C,, given by J(g)(z) = zl,g(z) for g € L%:n (In := the n x n identity matrix). If n =1,
Ty and Hg are called the (scalar) Toeplitz operator and the (scalar) Hankel operator, respectively. For @ € LK/IOnxm' write

P (2) := D*(2). (2.2)

An inner (matrix) function ® € Hl?/lcnxm (= H*® ® Mpxm) is one satisfying ®*® = I, for almost all z € T, where Mpxm
denotes the set of n x m complex matrices. The following basic relations can be easily derived from the definition:

Ty =Tox, o=Hg (Pely): (2.3)
Towy —ToTy =Hg:Hy (@,¥ €L} ): (2.4)
HoTy =How, Huo=TiHe (P €Ly ¥ eHy). (2.5)

A matrix-valued trigonometric polynomial @ € L?V,On is of the form

N
P@2)= Y Ajzd (AjeMy),

j=—m

where Ay and A_,; are called the outer coefficients of @. For a matrix-valued function A(z) = Zi-ifoo Ajzj € wan, we
define

oo

A2 ::/tr(A*A)d;L: > tr(ATA)),

T J=—o0

where tr(-) means the trace of the matrix and if A € L°°”, we define

[Alloo :=sup|A®)|| (Il - || means the spectral norm of the matrix).
teT

The hyponormality of the scalar Toeplitz operators T, was completely characterized by a property of their symbols by
C. Cowen [2] in 1988.

Cowen’s Theorem. (See [2,10].) For ¢ € L°°, write

E(p):={ke H®: |klloo < 1and ¢ —kp € H®}.
Then T, is hyponormal if and only if £(p) is nonempty.
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In 2006, Gu, Hendricks and Rutherford [9] considered the hyponormality of block Toeplitz operators and characterized
the hyponormality of block Toeplitz operators in terms of their symbols. In particular they showed that if T¢ is a hy-
ponormal block Toeplitz operator on Hé,,, then & is normal, i.e,, ®*® = @P*, Their characterization for hyponormality
of block Toeplitz operators resembles Cowen’s theorem except for an additional condition - the normality of the sym-
bol.

Lemma 2.1 (Hyponormality of Block Toeplitz Operators). (See [9].) For each @ € L°M°n, let

E(@):={K e Hi} : |Klloo <1and @ — K®* € Hy }.

Then a block Toeplitz operator T is hyponormal if and only if @ is normal and £ (®) is nonempty.

For a matrix-valued function @ e H%/,W, we say that A e HZMnxm is a left inner divisor of @ if A is an inner matrix
function such that ® = AA for some A € Hﬁ/,mxr (m < n). We also say that two matrix functions @ € Hf/lm and ¥ € Hﬁ,ﬂxm
are left coprime if the only common left inner divisor of both ¢ and ¥ is a unitary constant and that @ € H%/,m and

v e Hf,,mxr are right coprime if & and ¥ are left coprime. Two matrix functions @ and ¥ in Hf,,n are said to be coprime if
they are both left and right coprime.

Remark 2.2. If @ € H%/,n is such that det @ is not identically zero then any left inner divisor A of @ is square, i.e., A € HZMH.

Proof. Assume to the contrary that @ = AA with A € H,ZV,nxr (r < n). Then for almost all z€ T, rank®(z) < rank A(z) <
r <n, so that det®(z) =0 for almost all z € T. This shows that any left inner divisor A of @ is square. O

If®e HZMH is such that det @ is not identically zero then we say that A € H,ZV,“ is a right inner divisor of @ if A is a left

inner divisor of @.
For brevity we write I for the identity matrix and

I :==¢1 (¢ el®™).
For @ e Ly we write
&, =Py eHy and ¢_:=(Pro) eHi,

where P, denotes the orthogonal projection from Lﬁ/,n onto H2Mn. Thus we can write @ = @* + @ . If ¥ is a matrix-valued
analytic polynomial then we can write

v=0A" (Ae Hf/,n and © = v for some nonnegative integer N). (2.6)

If 2 is the greatest common right inner divisor of A and ® in the representation (2.6), then ® = £2,£2 and A = A;$2 for
some inner matrix §2, (where £2, € HZMH because det ® is not identically zero) and some A; € H%,,". Therefore we can write

¥ = 2;A}, where A; and £2; are right coprime: (2.7)

in this case, $2;A; is called the right coprime decomposition of @.

In general, it is not easy to check the condition “® and A are right coprime” for the representation @ = ® A* (® is inner
and A € H%,,n) even though ® = Iy for an inner function 6. But if @ is a matrix-valued analytic polynomial then we have a
more tractable criterion (cf. [3, Lemma 3.10]): if A € Hﬁ,,on is a matrix-valued analytic polynomial and ® = I,~, then

® and A areright coprime <«  A(0) is invertible. (2.8)
If e L°o is a matrix-valued trigonometric polynomial then T4 will be called a trigonometric block Toeplitz operator. In
Section 3 we show that there is no gap between 2-hyponormality and normality for a certain class of trigonometric block
Toeplitz operators. In Section 4, we consider the extremal cases for the hyponormality of trigonometric block Toeplitz
operators: in this case, hyponormality and normality coincide.
3. 2-Hyponormality of trigonometric block Toeplitz operators
We begin with:

Lemma3.1. Let @ € L‘f\/,on be a matrix-valued trigonometric polynomial of the form & (z) = Zj_fm Aj izl (m < N) and write

®_ = OF* (right coprime decomposition).
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Suppose I is an inner divisor of ®. If

(i) T is hyponormal,
(ii) ker[T}, T¢] is invariant for T,

then T is normal. Hence in particular, if T is 2-hyponormal then it is normal.

Proof. By assumption we write ® = [0, for some inner matrix ©;. Suppose T¢ is hyponormal. Since ®*® = @P*, it
follows from (2.4) that [T}, Te] = Hj}.He+ — Hj;He. Note that by (2.8), Fo := F(0) is an invertible matrix since F and I,
are right coprime. Since @* and @ are trigonometric polynomials of co-analytic degrees N and m, respectively, we can see
that

ran[T, Te | =ran(Hj«Hes — HyHo) € H(Iw). (31)
We now suppose that N is the smallest integer such that

ran[T5, To| € H( ). (3.2)
Assume to the contrary that ran[T}, Te] # {0}. We choose an element B e ran[Tj,, To] of the greatest analytic degree. Write

Ni—1

B:= Y Bjz (Bn,_1#0).

j=0
We thus have

To;Ti _y, ToxB=To;i _y, o+B

Ni—1
=P (@);“IZN] (05 +1:01F) Y B,-z1>
j=0

Ni—1
=P (@1*(121 %+ O1F) > sz—<N1—1—;>>
j=0

Ni—1
_ P(F* S B jz—(Nl—l—D)
j=0
= F{Bn,-1-
But since Fq is invertible and By,—1 # 0, it follows that Tz)l (T, N T¢+B) # 0, which implies that T; N Te+B # 0 and in
z z

turn,

TexB ¢ H( ny).
But if ker[T}, Te] is invariant for Te, and hence ran[T}, Te] is invariant for T}, then by (3.2),

TyBeran[Ty, To| € H( ),

which leads a contradiction. Therefore we must have that ran[T}, T¢] = {0}, i.e., T¢ is normal. The second assertion fol-
lows from the first assertion together with the fact that every 2-hyponormal operator T € B(H) satisfies that ker[T*, T] is
invariant for T (cf. [5]). This completes the proof. O

Write @(2) = Y)__,, Ajz/ € L§§ . Define
Gor:=A_myr (=0,....m-—1)
and put
My :=kerGog (=ker A_p,).
We now define, recursively, G5 and M; as follows: for r=0,...,m—1and s=0,...,m—1,
[ C;s+1,r = Gs,rPMsl + Gs,r+1 PMsv (3 3)
M; :=ker G0, ’

where Py denotes the orthogonal projection of C" onto X and G, is defined to be the zero matrix for all s.
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Remark 3.2. The sequence (dim M) is decreasing.

Proof. By definition we can write
Cs 07 [M{ M;
=[5, o) L)~ L)
’ Ds O Mg M
E1 E M- ME
e=ley n)Lw ][]
E3 E4 M M;

G GsoPyi +Gs1P [CS 0]+[0 Ez] [CS Ez]
s+1,0 = Ls,0 MSL s, 1M = Ds 0 0 E4 = Ds E4 s

it follows that rank G5 o < rank Gs41,9, i.e., dimker G5 o > dimker Gs4 1,0, giving the result. O

Let

Since

We note that if G o is invertible for some sg, then G5, =Gy, r forall s>sp and 0 <r<m—1.
We are ready for:

Theorem 3.3. Let @ € Loo be a matrix-valued trigonometric polynomial of the form @ (z) = Z]_fm A]zl (m < N) and suppose some
Gsp0 0<sgp<m—1) deﬁned by (3.3) is invertible. If T is 2-hyponormal then T is normal.

Proof. Let G, be defined by (3.3) and write

m—1 m—1
Go(@)=) GorZ'=) A-muZ. (34)

Put Mg :=Kker Ggg (=ker A_;;;) as above. Therefore we can write

Co 07 M+ MZ
w={ 0 o) Lo )~ Lo |
Dg O Mo Mo
Observe that
R
Do O Do O 0 Z|m,
so that

Uyt O
Goo = Goo(P 1 + Pmy) = GooP 1 [ OMO 2l ] (3.5)
0

and for 1<r<m-1,

2|yt 0 Iy O
Goyrzr = GO,r(PMl + PMO) 0 i |: 0 i|
° 0 Z M 0 zlm

1|1 0
= ((Go,rPMé)Zr + (GorPmp)Z ") [ Mo } . (3.6)
0 Z|M0

Substituting (3.5) and (3.6) into (3.4), we have
Go(@) =) _ GosZ

1|1 0
= GooP L |: Mo ]
0 0 Z|m,

1y O
H%ﬁWW+%wwﬂ[W ]
0 0 Z| My

1yt O
+ ((Go2Pp1)Z2 + (Go2Pmy)Z") [ Mo }
0 0 Z|M0
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+ ((Go,m—1 P,\/,é)lm_l + (Gom—1 PMO)Zm_Z) [

m—1
Aty 0
= Z(GO,rPMé+GO,r+1PM0)Z 0°

r=0 Zlmo

(ZG] r2>[1|ML z|(1)wo]’

where the third equality follows from regrouping the terms and adding the term

]|M(J)_ 0 i|
0 Z| My

1|M0L 0 :|
0 Z|1\/10

Go,m PM0 Zm-1 |:

(this is equal to zero because Gsn is defined to be the zero matrix for all s). Repeating the above argument for Gi(z) =
S GirZ', we have

1 0
Gl(z):(ZGZrz>|: It . }
My

By induction we obtain

m—1 s 1 |Mi . 0
Go(2) = X:Gwzr l_[ 5= fors=1,...,m—1.
r=0 j=1 0 Z|my_
We now assume that Gy, ¢ is invertible for some sg (0 < sop <m—1). Then the invertibility of Gs, o implies that Zr 0 GSO i

is right coprime with I;. We observe

O_=A" 24 -+ A%, 2" =7"Go(2)*

m—1 1L 0 *
M
= m(( E Gso.,rzr> |: (;0 i :|)
r=0 j=1 Z|M50,j

2|y '
=ZM"% 1_[ MSO g Z GS() rZ .
j 0 1|M50 J r=0

j=1

By assumption we must have that m — sg > 1. We claim that

_ m—so %0 Z|Mslrj 0 _m ! ; . .
O=z l_[ - and F= Z Gso,rz  areright coprime. (3.7)
so—J r=0

To see (3.7) we assume to the contrary that @ and F are not right coprime. Then ® and F are not left coprime. Thus there
exists an inner matrix function A € H%/IM such that

6 = ACq, F=AC, (for some Cy, CZEHM[xn)

where A is not unitary constant. Since G, o is invertible it follows that detF is not identically zero, and hence Ae Hﬁln.
Therefore A becomes a common right inner divisor of ® and F. Put

Si—[1|:1|MJ- :|
z|m; '

Then I;m = 260 = £2C1A and F = (2 A are not right coprime. But since F(0) = Gs,o is invertible, it follows from (2.8) that
I;m and F are right coprime, a contradiction. This proves (3.7). But since @ contains an inner factor I, applying Lemma 3.1
with F and © gives the result. O

The following corollary shows that there is no gap between 2-hyponormality and normality for Toeplitz operators with
matrix-valued trigonometric polynomial symbols whose co-analytic outer coefficient is invertible.
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Corollary 34. Let @ € Li,,on be a matrix-valued trigonometric polynomial whose co-analytic outer coefficient is invertible. If T is
2-hyponormal then T¢ is normal.

Proof. Write

m
d_= Z A_ij .
j=1

Under the notation of Theorem 3.3, we have that Gog = A_p, (= the co-analytic outer coefficient). Thus the result follows at
once from Theorem 3.3. O

In Corollary 3.4, the condition “the co-analytic outer coefficient is invertible” is essential. To see this, let

z4+z 0

@ = [ ] .

0 z
Then

|:Tz +T; O i|

Te = .

0 T,

Thus T is subnormal (and hence 2-hyponormal). Clearly, T is neither normal nor analytic even though the analytic outer
. 109 . . . . . 107. .
coefficient [o 1] is invertible. Note that the co-analytic outer coefficient [0 0] is singular.
Of course, the assumption of Corollary 3.4 is superfluous. For example, if & = Z?’:_m A jzf is a matrix-valued trigono-
metric polynomial of the form

10 00
A_n= 0 0 and A_p41 = 0o 1l

Then by Theorem 3.3, the conclusion of Corollary 3.4 is still true even though A_p, is not invertible.
4. Extremal cases

It was known [8] that if ¢ is a trigonometric polynomial of the form ¢(z) = Z,’;’:_m an,z" then ‘|a_n| < |lan|’ is a necessary
condition for T, to be hyponormal. In this sense, the condition ‘la_p| = |lan|" is an extremal case for T, to be hyponormal:
in particular, in this case, T, is hyponormal if and only if the Fourier coefficients of ¢ have a symmetric relation, i.e., there
exists 6 € [0, 2mr) such that (cf. [8, Theorem 1.4])

a1 aN-—m+1
a_p " aN—m+2

=e' for some 6 € [0, 27).
a_m (_IN

We now consider the extremal cases for hyponormal Toeplitz operators with matrix-valued trigonometric polynomial
symbols. What is a matrix version of the extremal condition ‘|a_,;| = |ay|’ for a matrix-valued trigonometric polynomial
D(z) = Z?’:_m Ajzf (where each Aj is an n x n matrix and Ay is invertible)? We may suggest the following conditions as
the corresponding matrix version of the extremal case:

A% A_m = ANAR; (4.1)
etA_n| =|detAn]|; .
|det A_pn| = |det A| (4.2)
IA-mll2 = llANI2- (4.3)

Evidently, (4.1) = (4.2) and (4.3). However (4.2) is independent of (4.3). In [9], the authors established the hyponormality
of T with symbol @ satisfying the condition (4.1): indeed, there is a symmetric relation such as

A_myj=U A*ij with a constant unitary matrix U (j=0,1,...,m—1).

In this section, we consider the cases (4.2) and (4.3): in fact, we get to the same conclusion.
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Theorem 4.1. Let @ € Lﬁn be a matrix-valued trigonometric polynomial of the form ®(z) = Z?’:_m A jzj (Ap is invertible). If T is
hyponormal then

|det A_p| < |det Ay|. (4.4)

Moreover if |det A_p| = |det An|, then T¢ is hyponormal if and only if ®*® = ®P* and there exists a constant unitary matrix U
such that

A,mﬂ':UA;_j foreach j=0,1,...,m—1. (4.5)

Proof. Suppose T¢ is hyponormal. Then by Lemma 2.1, there exists a matrix function K € Hﬁn such that ||K||so <1 and
* — Kot e HY e,

Z Azl — KZA* 7 eHyy . (4.6)

j=—m

Since Ay is invertible, we can write K = zN-™ Z?io szf and A_p = KoA}. On the other hand, since ||Ko|l <1 (because
[Klloo < 1) and

[ Koll = max{,/A;: Aj is an eigenvalue of K§Ko},
we have 0 < A < [[Koll? <1 for each j. Thus

|det Ko|? = det KiKo = AAz---An < 1, 4.7)
which implies |det Kg| < 1. Thus we have

|det A_p| = |det Ko||det An| < |det An],

giving (4.4). For the second assertion, we assume that

|det A_p| = |det Ay| # 0,

so that AqApy---Ap = |det1(0|2 =1. Since 0 < Aj <1 for each j, it follows that A; =1 for all j=1,...,n. Thus K(’)"Ko is
unitarily equivalent to I, so that K is unitary. On the other hand,

1
1=—|Kol? Kil?2=-IK K
—lIKoll3 < Zu ill3 || 15 <K%

which implies that K1 =K, =---=0. Hence U =Ky = Z?io I(jzj is unitary. In particular, from (4.6),

-1 N
doAad-u Y AN eHy

j=—m j=N-m+1

giving (4.5). The converse is similar. O

Theorem 4.2. Let @ € Lﬁ,,"n be a matrix-valued trigonometric polynomial of the form & (z) = Z j=—m Ajz) (Anis invertible). If T is
hyponormal then

A-mll2 < [IANl2. (4.8)

Moreover if |A_m|l2 = ||An||2, then T is hyponormal if and only if @*® = & d* and there exists a constant unitary matrix U such
that

A,mﬂ':UA;_j foreach j=0,1,...,m—1. (4.9)

Proof. Suppose T is hyponormal. Thus by Lemma 2.1, there exists a matrix function K € H,"Vj’” such that ||K|joc <1 and
* — Kot e HY e,

Z Ajzl — KZA* i e Hy .

j=-m
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Thus we can write K =zN—"™ Z;’-io szj and A_p = Ko A}, Observe that

IANI3 = IA—m I3 = tr(ANAY) — tr(A% ,Am) = tr(An (I — KGKo)A) >0 (4.10)

because Ko is a contraction. This gives (4.8). For the second assertion we assume that ||A_p|2 = ||An|l2. By (4.10), we have

tr(An(I — K§Ko)AY) =0, so that An(I — 1(6‘1(0)% =0. But since Ay is invertible it follows that K is unitary. Now the same
argument as the proof of Theorem 4.1 gives the result. O

We conclude with the following observation which shows that hyponormality and normality coincide for the extremal
cases.

Corollary4.3. Let @ € Lf\‘jn be a matrix-valued trigonometric polynomial of the form @ (z) = Z?]:f NA jzf (Ap is invertible) satisfying

either |detA_n|=|detAn| or [lA_nl2=IAnl2,

then T is hyponormal if and only if T is normal.

Proof. In this case, Theorems 4.1 and 4.2 give that & — @ (0) = ®_U for some constant unitary matrix U. Further since
Ay is invertible, det (&4 — @(0)) is not identically zero. Thus the result follows at once from Theorem 4.3 of [9]. O
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