

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

A gap between hyponormality and subnormality for block Toeplitz operators $^{\updownarrow}$

In Sung Hwang^a, Dong-O Kang^b, Woo Young Lee^{b,*}

^a Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Republic of Korea ^b Department of Mathematics, Seoul National University, Seoul 151-742, Republic of Korea

ARTICLE INFO

Article history: Received 23 February 2011 Available online 4 May 2011 Submitted by G. Corach

Keywords: Block Toeplitz operators Matrix-valued trigonometric polynomials Hyponormal 2-Hyponormal Subnormal

ABSTRACT

This paper concerns a gap between hyponormality and subnormality for block Toeplitz operators. We show that there is no gap between 2-hyponormality and subnormality for a certain class of trigonometric block Toeplitz operators (e.g., its co-analytic outer coefficient is invertible). In addition we consider the extremal cases for the hyponormality of trigonometric block Toeplitz operators: in this case, hyponormality and normality coincide.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The Bram-Halmos criterion of subnormality [1] states that an operator T on a Hilbert space \mathcal{H} is subnormal if and only if $\sum_{i,j} (T^i x_j, T^j x_i) \ge 0$ for all finite collections $x_0, x_1, \ldots, x_k \in \mathcal{H}$. It is easy to see that this is equivalent to the following positivity test:

$$\begin{bmatrix} I & T^* & \dots & T^{*k} \\ T & T^*T & \dots & T^{*k}T \\ \vdots & \vdots & \ddots & \vdots \\ T^k & T^*T^k & \dots & T^{*k}T^k \end{bmatrix} \ge 0 \quad (\text{all } k \ge 1).$$

$$(1.1)$$

Condition (1.1) provides a measure of the gap between hyponormality and subnormality. In fact the positivity condition (1.1) for k = 1 is equivalent to the hyponormality of T, while subnormality requires the validity of (1.1) for all k. For $k \ge 1$, an operator T is said to be k-hyponormal if T satisfies the positivity condition (1.1) for a fixed k. Thus the Bram–Halmos criterion can be stated as: T is subnormal if and only if T is k-hyponormal for all $k \ge 1$. The k-hyponormality has been considered by many authors with an aim at understanding the gap between hyponormality and subnormality. For instance, the Bram–Halmos criterion on subnormality indicates that 2-hyponormality is generally far from subnormality. There are special classes of operators, however, for which these two notions are equivalent. For example, in [4, Example 3.1], it was

* Corresponding author.

 $^{^{*}}$ The work of the first author was supported by National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (2010-0016369). The work of the third author was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (2010-0001983).

E-mail addresses: ihwang@skku.edu (I.S. Hwang), skylover@snu.ac.kr (D.-O Kang), wylee@snu.ac.kr (W.Y. Lee).

⁰⁰²²⁻²⁴⁷X/\$ – see front matter @ 2011 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2011.04.089

shown that there is no gap between 2-hyponormality and subnormality for a back-step extension of the recursively generated subnormal weighted shift. The purpose of this paper is to consider a gap between hyponormality and subnormality (or normality) for Toeplitz operators with matrix-valued symbols. We establish that there is no gap between 2-hyponormality and normality for a certain class of block Toeplitz operators with matrix-valued trigonometric polynomial symbols and in the extremal cases, hyponormality and normality coincide.

2. Preliminaries

Throughout this paper, let \mathcal{H} denote a separable complex Hilbert space and $\mathcal{B}(\mathcal{H})$ denote the set of all bounded linear operators acting on \mathcal{H} . For an operator $T \in \mathcal{B}(\mathcal{H})$, T^* denotes the adjoint of T. An operator $T \in \mathcal{B}(\mathcal{H})$ is said to be *normal* if $T^*T = TT^*$, *hyponormal* if its self-commutator $[T^*, T] \equiv T^*T - TT^*$ is positive semi-definite, and *subnormal* if T has a normal extension N, i.e., there is a Hilbert space \mathcal{K} containing \mathcal{H} and a normal operator N on \mathcal{K} such that $N\mathcal{H} \subseteq \mathcal{H}$ and $T = N|_{\mathcal{H}}$. For an operator $T \in \mathcal{B}(\mathcal{H})$, we write ker T for the kernel of T. For a set \mathcal{M} , \mathcal{M}^{\perp} denotes the orthogonal complement of \mathcal{M} .

We review a few essential facts for (block) Toeplitz operators and (block) Hankel operators that we will need to begin with, using [6,7] and [11]. Let $L^2 \equiv L^2(\mathbb{T})$ be the set of square-integrable measurable functions on the unit circle $\mathbb{T} \equiv \partial \mathbb{D}$ in the complex plane and $H^2 \equiv H^2(\mathbb{T})$ be the corresponding Hardy space. Let $L^{\infty} \equiv L^{\infty}(\mathbb{T})$ be the set of bounded measurable functions on \mathbb{T} and let $H^{\infty} \equiv H^{\infty}(\mathbb{T}) := L^{\infty}(\mathbb{T}) \cap H^2(\mathbb{T})$. For \mathcal{X} a Hilbert space, let $L^2_{\mathcal{X}} \equiv L^2_{\mathcal{X}}(\mathbb{T})$ be the Hilbert space of \mathcal{X} valued norm square-integrable measurable functions on \mathbb{T} and $H^2_{\mathcal{X}} \equiv H^2_{\mathcal{X}}(\mathbb{T})$ be the corresponding Hardy space. We observe that $L^2_{\mathbb{C}^n} = L^2(\mathbb{T}) \otimes \mathbb{C}^n$ and $H^2_{\mathbb{C}^n} = H^2(\mathbb{T}) \otimes \mathbb{C}^n$. Let M_n denote the set of $n \times n$ complex matrices. If Φ is a matrix-valued function in $L^{\infty}_{M_n} \equiv L^{\infty}_{M_n}(\mathbb{T})$ (= $L^{\infty}(\mathbb{T}) \otimes M_n$) then the block Toeplitz operator T_{Φ} and the block Hankel operator H_{Φ} on $H^2_{\mathbb{C}^n}$ are defined by

$$T_{\Phi}f = P(\Phi f) \quad \text{and} \quad H_{\Phi}f = JP^{\perp}(\Phi f) \quad \left(f \in H^2_{\mathbb{C}^n}\right),$$

$$(2.1)$$

where P and P^{\perp} denote the orthogonal projections that map from $L^2_{\mathbb{C}^n}$ onto $H^2_{\mathbb{C}^n}$ and $(H^2_{\mathbb{C}^n})^{\perp}$, respectively and J denotes the unitary operator from $L^2_{\mathbb{C}^n}$ to $L^2_{\mathbb{C}^n}$ given by $J(g)(z) = \bar{z}I_ng(\bar{z})$ for $g \in L^2_{\mathbb{C}^n}$ ($I_n :=$ the $n \times n$ identity matrix). If n = 1, T_{Φ} and H_{Φ} are called the (scalar) Toeplitz operator and the (scalar) Hankel operator, respectively. For $\Phi \in L^{\infty}_{M_n \times m}$, write

$$\widetilde{\Phi}(z) := \Phi^*(\overline{z}). \tag{2.2}$$

An inner (matrix) function $\Theta \in H^{\infty}_{M_{n \times m}}$ (= $H^{\infty} \otimes M_{n \times m}$) is one satisfying $\Theta^* \Theta = I_m$ for almost all $z \in \mathbb{T}$, where $M_{n \times m}$ denotes the set of $n \times m$ complex matrices. The following basic relations can be easily derived from the definition:

$$T^*_{\boldsymbol{\Phi}} = T_{\boldsymbol{\Phi}^*}, \qquad H^*_{\boldsymbol{\Phi}} = H_{\widetilde{\boldsymbol{\Phi}}} \quad \left(\boldsymbol{\Phi} \in L^{\infty}_{M_n}\right); \tag{2.3}$$

$$T_{\phi\psi} - T_{\phi}T_{\psi} = H_{\phi^*}^* H_{\psi} \quad \left(\phi, \psi \in L_{M_n}^\infty\right); \tag{2.4}$$

$$H_{\phi}T_{\Psi} = H_{\phi\Psi}, \qquad H_{\Psi\phi} = T^*_{\widetilde{\mu}}H_{\phi} \quad \left(\phi \in L^{\infty}_{M_n}, \Psi \in H^{\infty}_{M_n}\right). \tag{2.5}$$

A matrix-valued trigonometric polynomial $\Phi \in L^{\infty}_{M_n}$ is of the form

$$\Phi(z) = \sum_{j=-m}^{N} A_j z^j \quad (A_j \in M_n),$$

where A_N and A_{-m} are called the *outer* coefficients of Φ . For a matrix-valued function $A(z) = \sum_{j=-\infty}^{\infty} A_j z^j \in L^2_{M_n}$, we define

$$\|A\|_2^2 := \int_{\mathbb{T}} \operatorname{tr}(A^*A) \, d\mu = \sum_{j=-\infty}^{\infty} \operatorname{tr}(A_j^*A_j),$$

where tr(·) means the trace of the matrix and if $A \in L^{\infty}_{M_n}$, we define

 $\|A\|_{\infty} := \sup_{t \in \mathbb{T}} \|A(t)\| \quad (\|\cdot\| \text{ means the spectral norm of the matrix}).$

The hyponormality of the scalar Toeplitz operators T_{φ} was completely characterized by a property of their symbols by C. Cowen [2] in 1988.

Cowen's Theorem. (See [2,10].) For $\varphi \in L^{\infty}$, write

$$\mathcal{E}(\varphi) := \left\{ k \in H^{\infty} \colon \|k\|_{\infty} \leq 1 \text{ and } \varphi - k\bar{\varphi} \in H^{\infty} \right\}.$$

Then T_{φ} is hyponormal if and only if $\mathcal{E}(\varphi)$ is nonempty.

In 2006, Gu, Hendricks and Rutherford [9] considered the hyponormality of block Toeplitz operators and characterized the hyponormality of block Toeplitz operators in terms of their symbols. In particular they showed that if T_{Φ} is a hyponormal block Toeplitz operator on $H^2_{\mathbb{C}^n}$, then Φ is normal, i.e., $\Phi^* \Phi = \Phi \Phi^*$. Their characterization for hyponormality of block Toeplitz operators resembles Cowen's theorem except for an additional condition – the normality of the symbol.

Lemma 2.1 (Hyponormality of Block Toeplitz Operators). (See [9].) For each $\Phi \in L^{\infty}_{M_n}$, let

$$\mathcal{E}(\Phi) := \left\{ K \in H_{M_n}^{\infty} \colon \|K\|_{\infty} \leq 1 \text{ and } \Phi - K\Phi^* \in H_{M_n}^{\infty} \right\}.$$

Then a block Toeplitz operator T_{Φ} is hyponormal if and only if Φ is normal and $\mathcal{E}(\Phi)$ is nonempty.

For a matrix-valued function $\Phi \in H^2_{M_{n\times r}}$, we say that $\Delta \in H^2_{M_{n\times m}}$ is a *left inner divisor* of Φ if Δ is an inner matrix function such that $\Phi = \Delta A$ for some $A \in H^2_{M_{m\times r}}$ $(m \leq n)$. We also say that two matrix functions $\Phi \in H^2_{M_{n\times r}}$ and $\Psi \in H^2_{M_{n\times n}}$ are *left coprime* if the only common left inner divisor of both Φ and Ψ is a unitary constant and that $\Phi \in H^2_{M_{n\times r}}$ and $\Psi \in H^2_{M_{n\times r}}$ are *right coprime* if $\tilde{\Phi}$ and $\tilde{\Psi}$ are left coprime. Two matrix functions Φ and Ψ in $H^2_{M_n}$ are said to be coprime if they are both left and right coprime.

Remark 2.2. If $\Phi \in H^2_{M_n}$ is such that det Φ is not identically zero then any left inner divisor Δ of Φ is square, i.e., $\Delta \in H^2_{M_n}$.

Proof. Assume to the contrary that $\Phi = \Delta A$ with $\Delta \in H^2_{M_{n \times r}}$ (r < n). Then for almost all $z \in \mathbb{T}$, rank $\Phi(z) \leq \operatorname{rank} \Delta(z) \leq r < n$, so that det $\Phi(z) = 0$ for almost all $z \in \mathbb{T}$. This shows that any left inner divisor Δ of Φ is square. \Box

If $\Phi \in H^2_{M_n}$ is such that det Φ is not identically zero then we say that $\Delta \in H^2_{M_n}$ is a *right inner divisor* of Φ if $\widetilde{\Delta}$ is a left inner divisor of $\widetilde{\Phi}$.

For brevity we write *I* for the identity matrix and

$$I_{\zeta} := \zeta I \quad \left(\zeta \in L^{\infty}\right)$$

For $\Phi \in L^{\infty}_{M_n}$ we write

$$\Phi_+ := P_n \Phi \in H^2_{M_n}$$
 and $\Phi_- := \left(P_n^{\perp} \Phi\right)^* \in H^2_{M_n}$

where P_n denotes the orthogonal projection from $L^2_{M_n}$ onto $H^2_{M_n}$. Thus we can write $\Phi = \Phi^*_- + \Phi_+$. If Ψ is a matrix-valued analytic polynomial then we can write

$$\Psi = \Theta A^* \quad \left(A \in H^2_{M_n} \text{ and } \Theta = I_{Z^N} \text{ for some nonnegative integer } N \right).$$
(2.6)

If Ω is the greatest common right inner divisor of A and Θ in the representation (2.6), then $\Theta = \Omega_r \Omega$ and $A = A_r \Omega$ for some inner matrix Ω_r (where $\Omega_r \in H^2_{M_n}$ because det Θ is not identically zero) and some $A_r \in H^2_{M_n}$. Therefore we can write

$$\Psi = \Omega_r A_r^*$$
, where A_r and Ω_r are right coprime: (2.7)

in this case, $\Omega_r A_r^*$ is called the *right coprime decomposition* of Φ .

In general, it is not easy to check the condition " Θ and A are right coprime" for the representation $\Phi = \Theta A^*$ (Θ is inner and $A \in H^2_{M_n}$) even though $\Theta = I_{\theta}$ for an inner function θ . But if Φ is a matrix-valued analytic polynomial then we have a more tractable criterion (cf. [3, Lemma 3.10]): if $A \in H^{\infty}_{M_n}$ is a matrix-valued analytic polynomial and $\Theta = I_{z^N}$, then

$$\Theta$$
 and A are right coprime $\Leftrightarrow A(0)$ is invertible. (2.8)

If $\Phi \in L_{M_n}^{\infty}$ is a matrix-valued trigonometric polynomial then T_{Φ} will be called a *trigonometric block Toeplitz operator*. In Section 3 we show that there is no gap between 2-hyponormality and normality for a certain class of trigonometric block Toeplitz operators. In Section 4, we consider the extremal cases for the hyponormality of trigonometric block Toeplitz operators: in this case, hyponormality and normality coincide.

3. 2-Hyponormality of trigonometric block Toeplitz operators

We begin with:

Lemma 3.1. Let $\Phi \in L_{M_n}^{\infty}$ be a matrix-valued trigonometric polynomial of the form $\Phi(z) = \sum_{j=-m}^{N} A_j z^j \ (m \leq N)$ and write

$$\Phi_{-} = \Theta F^{*}$$
 (right coprime decomposition).

Suppose I_z is an inner divisor of Θ . If

(i) T_{Φ} is hyponormal;

-

(ii) ker[T_{Φ}^*, T_{Φ}] is invariant for T_{Φ} ,

then T_{Φ} is normal. Hence in particular, if T_{Φ} is 2-hyponormal then it is normal.

Proof. By assumption we write $\Theta = I_Z \Theta_1$ for some inner matrix Θ_1 . Suppose T_{Φ} is hyponormal. Since $\Phi^* \Phi = \Phi \Phi^*$, it follows from (2.4) that $[T_{\Phi}^*, T_{\Phi}] = H_{\Phi^*}^* H_{\Phi^*} - H_{\Phi}^* H_{\Phi}$. Note that by (2.8), $F_0 := F(0)$ is an invertible matrix since F and I_Z are right coprime. Since Φ^* and Φ are trigonometric polynomials of co-analytic degrees N and m, respectively, we can see that

$$\operatorname{ran}[T_{\Phi}^*, T_{\Phi}] = \operatorname{ran}(H_{\Phi^*}^* H_{\Phi^*} - H_{\Phi}^* H_{\Phi}) \subseteq \mathcal{H}(I_{\mathbb{Z}^N}).$$
(3.1)

We now suppose that N_1 is the smallest integer such that

$$\operatorname{ran}[T^*_{\phi}, T_{\phi}] \subseteq \mathcal{H}(I_{\mathbb{Z}^{N_1}}).$$
(3.2)

Assume to the contrary that $\operatorname{ran}[T_{\Phi}^*, T_{\Phi}] \neq \{0\}$. We choose an element $B \in \operatorname{ran}[T_{\Phi}^*, T_{\Phi}]$ of the greatest analytic degree. Write

$$B := \sum_{j=0}^{N_1-1} B_j z^j \quad (B_{N_1-1} \neq 0).$$

We thus have

$$T_{\Theta_{1}^{*}}T_{I_{z}-N_{1}} T\phi^{*}B = T_{\Theta_{1}^{*}I_{z}-N_{1}}\phi^{*}B$$

$$= P\left(\Theta_{1}^{*}I_{z-N_{1}} \left(\Phi_{+}^{*} + I_{z}\Theta_{1}F^{*}\right)\sum_{j=0}^{N_{1}-1}B_{j}z^{j}\right)$$

$$= P\left(\Theta_{1}^{*} \left(I_{z-1}\Phi_{+}^{*} + \Theta_{1}F^{*}\right)\sum_{j=0}^{N_{1}-1}B_{j}z^{-(N_{1}-1-j)}\right)$$

$$= P\left(F^{*}\sum_{j=0}^{N_{1}-1}B_{j}z^{-(N_{1}-1-j)}\right)$$

$$= F_{0}^{*}B_{N_{1}-1}.$$

But since F_0 is invertible and $B_{N_1-1} \neq 0$, it follows that $T^*_{\Theta_1}(T_{I_{z}-N_1}T_{\Phi^*}B) \neq 0$, which implies that $T_{I_{z}-N_1}T_{\Phi^*}B \neq 0$ and in turn,

$$T_{\Phi^*}B \notin \mathcal{H}(I_{r^{N_1}}).$$

But if ker $[T^*_{\phi}, T_{\phi}]$ is invariant for T_{ϕ} , and hence ran $[T^*_{\phi}, T_{\phi}]$ is invariant for T^*_{ϕ} , then by (3.2),

$$T_{\Phi}^* B \in \operatorname{ran}[T_{\Phi}^*, T_{\Phi}] \subseteq \mathcal{H}(I_{Z^{N_1}}),$$

which leads a contradiction. Therefore we must have that $\operatorname{ran}[T^*_{\phi}, T_{\phi}] = \{0\}$, i.e., T_{ϕ} is normal. The second assertion follows from the first assertion together with the fact that every 2-hyponormal operator $T \in \mathcal{B}(\mathcal{H})$ satisfies that ker[T^*, T] is invariant for T (cf. [5]). This completes the proof. \Box

Write
$$\Phi(z) \equiv \sum_{j=-m}^{N} A_j z^j \in L_{M_n}^{\infty}$$
. Define

$$G_{0,r} := A_{-m+r}$$
 $(r = 0, ..., m-1)$

and put

$$M_0 := \ker G_{00} (= \ker A_{-m}).$$

We now define, recursively, $G_{s,r}$ and M_s as follows: for r = 0, ..., m - 1 and s = 0, ..., m - 1,

$$\begin{cases} G_{s+1,r} := G_{s,r} P_{M_s^{\perp}} + G_{s,r+1} P_{M_s}, \\ M_s := \ker G_{s,0}, \end{cases}$$
(3.3)

where $P_{\mathcal{X}}$ denotes the orthogonal projection of \mathbb{C}^n onto \mathcal{X} and $G_{s,m}$ is defined to be the zero matrix for all *s*.

Remark 3.2. The sequence $(\dim M_s)$ is decreasing.

Proof. By definition we can write

$$G_{s,0} = \begin{bmatrix} C_s & 0 \\ D_s & 0 \end{bmatrix} : \begin{bmatrix} M_s^{\perp} \\ M_s \end{bmatrix} \to \begin{bmatrix} M_s^{\perp} \\ M_s \end{bmatrix}.$$

Let

$$G_{s,1} := \begin{bmatrix} E_1 & E_2 \\ E_3 & E_4 \end{bmatrix} : \begin{bmatrix} M_s^{\perp} \\ M_s \end{bmatrix} \to \begin{bmatrix} M_s^{\perp} \\ M_s \end{bmatrix}.$$

Since

$$G_{s+1,0} = G_{s,0}P_{M_s^{\perp}} + G_{s,1}P_{M_s} = \begin{bmatrix} C_s & 0 \\ D_s & 0 \end{bmatrix} + \begin{bmatrix} 0 & E_2 \\ 0 & E_4 \end{bmatrix} = \begin{bmatrix} C_s & E_2 \\ D_s & E_4 \end{bmatrix},$$

it follows that rank $G_{s,0} \leq \operatorname{rank} G_{s+1,0}$, i.e., dim ker $G_{s,0} \geq \operatorname{dim} \ker G_{s+1,0}$, giving the result. \Box

We note that if $G_{s_0,0}$ is invertible for some s_0 , then $G_{s,r} = G_{s_0,r}$ for all $s \ge s_0$ and $0 \le r \le m - 1$. We are ready for:

Theorem 3.3. Let $\Phi \in L_{M_n}^{\infty}$ be a matrix-valued trigonometric polynomial of the form $\Phi(z) = \sum_{j=-m}^{N} A_j z^j$ $(m \leq N)$ and suppose some $G_{s_0,0}$ $(0 \leq s_0 \leq m-1)$ defined by (3.3) is invertible. If T_{Φ} is 2-hyponormal then T_{Φ} is normal.

Proof. Let $G_{s,r}$ be defined by (3.3) and write

$$G_0(z) \equiv \sum_{r=0}^{m-1} G_{0,r} z^r = \sum_{r=0}^{m-1} A_{-m+r} z^r.$$
(3.4)

Put $M_0 := \ker G_{00}$ (= ker A_{-m}) as above. Therefore we can write

$$G_{00} = \begin{bmatrix} C_0 & 0 \\ D_0 & 0 \end{bmatrix} : \begin{bmatrix} M_0^{\perp} \\ M_0 \end{bmatrix} \rightarrow \begin{bmatrix} M_0^{\perp} \\ M_0 \end{bmatrix}.$$

Observe that

$$\begin{bmatrix} C_0 & 0 \\ D_0 & 0 \end{bmatrix} = \begin{bmatrix} C_0 & 0 \\ D_0 & 0 \end{bmatrix} \begin{bmatrix} 1|_{M_0^{\perp}} & 0 \\ 0 & z|_{M_0} \end{bmatrix},$$

so that

$$G_{00} = G_{00}(P_{M_0^{\perp}} + P_{M_0}) = G_{00}P_{M_0^{\perp}} \begin{bmatrix} 1|_{M_0^{\perp}} & 0\\ 0 & z|_{M_0} \end{bmatrix}$$
(3.5)

and for $1 \leq r \leq m - 1$,

$$G_{0,r}z^{r} = G_{0,r}(P_{M_{0}^{\perp}} + P_{M_{0}}) \begin{bmatrix} z^{r}|_{M_{0}^{\perp}} & 0\\ 0 & z^{r-1}|_{M_{0}} \end{bmatrix} \begin{bmatrix} 1|_{M_{0}^{\perp}} & 0\\ 0 & z|_{M_{0}} \end{bmatrix}$$
$$= \left((G_{0,r}P_{M_{0}^{\perp}})z^{r} + (G_{0,r}P_{M_{0}})z^{r-1} \right) \begin{bmatrix} 1|_{M_{0}^{\perp}} & 0\\ 0 & z|_{M_{0}} \end{bmatrix}.$$
(3.6)

Substituting (3.5) and (3.6) into (3.4), we have

$$\begin{aligned} G_{0}(z) &= \sum_{r=0}^{m-1} G_{0,r} z^{r} \\ &= G_{00} P_{M_{0}^{\perp}} \begin{bmatrix} 1|_{M_{0}^{\perp}} & 0 \\ 0 & z|_{M_{0}} \end{bmatrix} \\ &+ \left((G_{0,1} P_{M_{0}^{\perp}}) z^{1} + (G_{0,1} P_{M_{0}}) z^{0} \right) \begin{bmatrix} 1|_{M_{0}^{\perp}} & 0 \\ 0 & z|_{M_{0}} \end{bmatrix} \\ &+ \left((G_{0,2} P_{M_{0}^{\perp}}) z^{2} + (G_{0,2} P_{M_{0}}) z^{1} \right) \begin{bmatrix} 1|_{M_{0}^{\perp}} & 0 \\ 0 & z|_{M_{0}} \end{bmatrix} \end{aligned}$$

$$+ \left((G_{0,m-1}P_{M_0^{\perp}})z^{m-1} + (G_{0,m-1}P_{M_0})z^{m-2} \right) \begin{bmatrix} 1_{M_0^{\perp}} & 0\\ 0 & z|_{M_0} \end{bmatrix}$$

$$= \left(\sum_{r=0}^{m-1} (G_{0,r}P_{M_0^{\perp}} + G_{0,r+1}P_{M_0})z^r \right) \begin{bmatrix} 1_{M_0^{\perp}} & 0\\ 0 & z|_{M_0} \end{bmatrix}$$

$$= \left(\sum_{r=0}^{m-1} G_{1,r}z^r \right) \begin{bmatrix} 1_{M_0^{\perp}} & 0\\ 0 & z|_{M_0} \end{bmatrix},$$

where the third equality follows from regrouping the terms and adding the term

$$G_{0,m}P_{M_0}z^{m-1}\begin{bmatrix}1_{M_0^{\perp}}&0\\0&z_{M_0}\end{bmatrix}$$

(this is equal to zero because $G_{s,m}$ is defined to be the zero matrix for all *s*). Repeating the above argument for $G_1(z) \equiv \sum_{r=0}^{m-1} G_{1,r} z^r$, we have

$$G_1(z) = \left(\sum_{r=0}^{m-1} G_{2,r} z^r\right) \begin{bmatrix} 1|_{M_1^{\perp}} & 0\\ 0 & z|_{M_1} \end{bmatrix}.$$

By induction we obtain

$$G_0(z) = \left(\sum_{r=0}^{m-1} G_{s,r} z^r\right) \prod_{j=1}^s \begin{bmatrix} 1|_{M_{s-j}^\perp} & 0\\ 0 & z|_{M_{s-j}} \end{bmatrix} \text{ for } s = 1, \dots, m-1.$$

We now assume that $G_{s_0,0}$ is invertible for some s_0 ($0 \le s_0 \le m-1$). Then the invertibility of $G_{s_0,0}$ implies that $\sum_{r=0}^{m-1} G_{s_0,r} z^r$ is right coprime with I_z . We observe

$$\begin{split} \varPhi_{-} &= A_{-1}^{*}z + \dots + A_{-m}^{*}z^{m} = z^{m}G_{0}(z)^{*} \\ &= z^{m} \left(\left(\sum_{r=0}^{m-1} G_{s_{0},r}z^{r} \right) \prod_{j=1}^{s_{0}} \begin{bmatrix} 1_{|M_{s_{0}-j}^{\perp}} & 0 \\ 0 & z|_{M_{s_{0}-j}} \end{bmatrix} \right)^{*} \\ &= z^{m-s_{0}} \prod_{j=1}^{s_{0}} \begin{bmatrix} z_{|M_{s_{0}-j}^{\perp}} & 0 \\ 0 & 1|_{M_{s_{0}-j}} \end{bmatrix} \left(\sum_{r=0}^{m-1} G_{s_{0},r}z^{r} \right)^{*}. \end{split}$$

By assumption we must have that $m - s_0 \ge 1$. We claim that

$$\Theta \equiv z^{m-s_0} \prod_{j=1}^{s_0} \begin{bmatrix} z|_{M_{s_0-j}^{\perp}} & 0\\ 0 & 1|_{M_{s_0-j}} \end{bmatrix} \text{ and } F \equiv \sum_{r=0}^{m-1} G_{s_0,r} z^r \text{ are right coprime.}$$
(3.7)

To see (3.7) we assume to the contrary that Θ and F are not right coprime. Then $\widetilde{\Theta}$ and \widetilde{F} are not left coprime. Thus there exists an inner matrix function $\widetilde{\Delta} \in H^2_{M_{n\times l}}$ such that

$$\widetilde{\Theta} = \widetilde{\Delta}C_1, \qquad \widetilde{F} = \widetilde{\Delta}C_2 \quad (\text{for some } C_1, C_2 \in H^2_{M_{l \times n}}),$$

where Δ is not unitary constant. Since $G_{s_0,0}$ is invertible it follows that det \tilde{F} is not identically zero, and hence $\tilde{\Delta} \in H^2_{M_n}$. Therefore Δ becomes a common right inner divisor of Θ and F. Put

$$\Omega := \prod_{j=0}^{s_0-1} \begin{bmatrix} 1_{|_{M_j^\perp}} & 0\\ 0 & z_{|_{M_j}} \end{bmatrix}.$$

Then $I_{z^m} = \Omega \Theta = \Omega C_1 \Delta$ and $F = C_2 \Delta$ are not right coprime. But since $F(0) = G_{s_0,0}$ is invertible, it follows from (2.8) that I_{z^m} and F are right coprime, a contradiction. This proves (3.7). But since Θ contains an inner factor I_z , applying Lemma 3.1 with F and Θ gives the result. \Box

The following corollary shows that there is no gap between 2-hyponormality and normality for Toeplitz operators with matrix-valued trigonometric polynomial symbols whose co-analytic outer coefficient is invertible.

Corollary 3.4. Let $\Phi \in L_{M_n}^{\infty}$ be a matrix-valued trigonometric polynomial whose co-analytic outer coefficient is invertible. If T_{Φ} is 2-hyponormal then T_{Φ} is normal.

Proof. Write

$$\Phi_- = \sum_{j=1}^m A_{-j} z^j \,.$$

Under the notation of Theorem 3.3, we have that $G_{00} = A_{-m}$ (= the co-analytic outer coefficient). Thus the result follows at once from Theorem 3.3. \Box

In Corollary 3.4, the condition "the co-analytic outer coefficient is invertible" is essential. To see this, let

$$\Phi := \begin{bmatrix} z + \bar{z} & 0 \\ 0 & z \end{bmatrix}.$$

Then

$$T_{\Phi} = \begin{bmatrix} T_z + T_z^* & 0 \\ 0 & T_z \end{bmatrix}.$$

Thus T_{Φ} is subnormal (and hence 2-hyponormal). Clearly, T_{Φ} is neither normal nor analytic even though the analytic outer coefficient $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ is invertible. Note that the co-analytic outer coefficient $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ is singular.

Of course, the assumption of Corollary 3.4 is superfluous. For example, if $\Phi = \sum_{j=-m}^{N} A_j z^j$ is a matrix-valued trigonometric polynomial of the form

$$A_{-m} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \text{ and } A_{-m+1} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

Then by Theorem 3.3, the conclusion of Corollary 3.4 is still true even though A_{-m} is not invertible.

4. Extremal cases

It was known [8] that if φ is a trigonometric polynomial of the form $\varphi(z) = \sum_{n=-m}^{N} a_n z^n$ then ' $|a_{-m}| \leq |a_N|$ ' is a necessary condition for T_{φ} to be hyponormal. In this sense, the condition ' $|a_{-m}| = |a_N|$ ' is an extremal case for T_{φ} to be hyponormal: in particular, in this case, T_{φ} is hyponormal if and only if the Fourier coefficients of φ have a symmetric relation, i.e., there exists $\theta \in [0, 2\pi)$ such that (cf. [8, Theorem 1.4])

$$\begin{bmatrix} a_{-1} \\ a_{-2} \\ \vdots \\ a_{-m} \end{bmatrix} = e^{i\theta} \begin{bmatrix} \bar{a}_{N-m+1} \\ \bar{a}_{N-m+2} \\ \vdots \\ \bar{a}_{N} \end{bmatrix} \text{ for some } \theta \in [0, 2\pi).$$

We now consider the extremal cases for hyponormal Toeplitz operators with matrix-valued trigonometric polynomial symbols. What is a matrix version of the extremal condition $|a_{-m}| = |a_N|$ for a matrix-valued trigonometric polynomial $\Phi(z) = \sum_{j=-m}^{N} A_j z^j$ (where each A_j is an $n \times n$ matrix and A_N is invertible)? We may suggest the following conditions as the corresponding matrix version of the extremal case:

$$A_{-m}^* A_{-m} = A_N A_N^*; (4.1)$$

$$|\det A_{-m}| = |\det A_N|; \tag{4.2}$$

$$\|A_{-m}\|_2 = \|A_N\|_2. \tag{4.3}$$

Evidently, $(4.1) \Rightarrow (4.2)$ and (4.3). However (4.2) is independent of (4.3). In [9], the authors established the hyponormality of T_{Φ} with symbol Φ satisfying the condition (4.1): indeed, there is a symmetric relation such as

 $A_{-m+j} = U A_{N-j}^*$ with a constant unitary matrix U (j = 0, 1, ..., m - 1).

In this section, we consider the cases (4.2) and (4.3): in fact, we get to the same conclusion.

Theorem 4.1. Let $\Phi \in L_{M_n}^{\infty}$ be a matrix-valued trigonometric polynomial of the form $\Phi(z) = \sum_{j=-m}^{N} A_j z^j$ (A_N is invertible). If T_{Φ} is hyponormal then

$$|\det A_{-m}| \leqslant |\det A_N|. \tag{4.4}$$

Moreover if $|\det A_{-m}| = |\det A_N|$, then T_{Φ} is hyponormal if and only if $\Phi^* \Phi = \Phi \Phi^*$ and there exists a constant unitary matrix U such that

$$A_{-m+j} = UA_{N-j}^* \quad \text{for each } j = 0, 1, \dots, m-1.$$
(4.5)

Proof. Suppose T_{Φ} is hyponormal. Then by Lemma 2.1, there exists a matrix function $K \in H_{M_n}^{\infty}$ such that $||K||_{\infty} \leq 1$ and $\Phi_{-}^* - K \Phi_{+}^* \in H_{M_n}^{\infty}$, i.e.,

$$\sum_{j=-m}^{-1} A_j z^j - K \sum_{j=1}^{N} A_j^* z^{-j} \in H_{M_n}^{\infty}.$$
(4.6)

Since A_N is invertible, we can write $K = z^{N-m} \sum_{j=0}^{\infty} K_j z^j$ and $A_{-m} = K_0 A_N^*$. On the other hand, since $||K_0|| \leq 1$ (because $||K||_{\infty} \leq 1$) and

$$||K_0|| = \max\{\sqrt{\lambda_j}: \lambda_j \text{ is an eigenvalue of } K_0^*K_0\},\$$

we have $0 \leq \lambda_j \leq ||K_0||^2 \leq 1$ for each *j*. Thus

$$|\det K_0|^2 = \det K_0^* K_0 = \lambda_1 \lambda_2 \cdots \lambda_n \leqslant 1, \tag{4.7}$$

which implies $|\det K_0| \leq 1$. Thus we have

 $|\det A_{-m}| = |\det K_0| |\det A_N| \leq |\det A_N|,$

giving (4.4). For the second assertion, we assume that

$$|\det A_{-m}| = |\det A_N| \neq 0,$$

so that $\lambda_1 \lambda_2 \cdots \lambda_n = |\det K_0|^2 = 1$. Since $0 \le \lambda_j \le 1$ for each j, it follows that $\lambda_j = 1$ for all $j = 1, \dots, n$. Thus $K_0^* K_0$ is unitarily equivalent to I, so that K_0 is unitary. On the other hand,

$$1 = \frac{1}{n} \|K_0\|_2^2 \leq \frac{1}{n} \sum_{j=0}^{\infty} \|K_j\|_2^2 = \frac{1}{n} \|K\|_2^2 \leq \|K\|_{\infty}^2 \leq 1,$$

which implies that $K_1 = K_2 = \cdots = 0$. Hence $U \equiv K_0 = \sum_{j=0}^{\infty} K_j z^j$ is unitary. In particular, from (4.6),

$$\sum_{j=-m}^{-1} A_j z^j - U \sum_{j=N-m+1}^{N} A_j^* z^{N-m-j} \in H_{M_n}^{\infty},$$

giving (4.5). The converse is similar. \Box

Theorem 4.2. Let $\Phi \in L_{M_n}^{\infty}$ be a matrix-valued trigonometric polynomial of the form $\Phi(z) = \sum_{j=-m}^{N} A_j z^j$ (A_N is invertible). If T_{Φ} is hyponormal then

$$\|A_{-m}\|_2 \leqslant \|A_N\|_2. \tag{4.8}$$

Moreover if $||A_{-m}||_2 = ||A_N||_2$, then T_{Φ} is hyponormal if and only if $\Phi^* \Phi = \Phi \Phi^*$ and there exists a constant unitary matrix U such that

$$A_{-m+j} = UA_{N-j}^* \quad \text{for each } j = 0, 1, \dots, m-1.$$
(4.9)

Proof. Suppose T_{Φ} is hyponormal. Thus by Lemma 2.1, there exists a matrix function $K \in H_{M_n}^{\infty}$ such that $||K||_{\infty} \leq 1$ and $\Phi_{-}^* - K \Phi_{+}^* \in H_{M_n}^{\infty}$, i.e.,

$$\sum_{j=-m}^{-1} A_j z^j - K \sum_{j=1}^{N} A_j^* z^{-j} \in H_{M_n}^{\infty}$$

Thus we can write $K = z^{N-m} \sum_{j=0}^{\infty} K_j z^j$ and $A_{-m} = K_0 A_N^*$. Observe that

$$\|A_N\|_2^2 - \|A_{-m}\|_2^2 = \operatorname{tr}(A_N A_N^*) - \operatorname{tr}(A_{-m}^* A_{-m}) = \operatorname{tr}(A_N (I - K_0^* K_0) A_N^*) \ge 0$$
(4.10)

because K_0 is a contraction. This gives (4.8). For the second assertion we assume that $||A_{-m}||_2 = ||A_N||_2$. By (4.10), we have $\operatorname{tr}(A_N(I - K_0^*K_0)A_N^*) = 0$, so that $A_N(I - K_0^*K_0)^{\frac{1}{2}} = 0$. But since A_N is invertible it follows that K_0 is unitary. Now the same argument as the proof of Theorem 4.1 gives the result. \Box

We conclude with the following observation which shows that hyponormality and normality coincide for the extremal cases.

Corollary 4.3. Let $\Phi \in L_{M_n}^{\infty}$ be a matrix-valued trigonometric polynomial of the form $\Phi(z) = \sum_{i=-N}^{N} A_j z^j (A_N \text{ is invertible})$ satisfying

either $|\det A_{-N}| = |\det A_N|$ or $||A_{-N}||_2 = ||A_N||_2$,

then T_{Φ} is hyponormal if and only if T_{Φ} is normal.

Proof. In this case, Theorems 4.1 and 4.2 give that $\Phi_+ - \Phi(0) = \Phi_- U$ for some constant unitary matrix *U*. Further since A_N is invertible, det $(\Phi_+ - \Phi(0))$ is not identically zero. Thus the result follows at once from Theorem 4.3 of [9].

References

- [1] J. Bram, Sunormal operators, Duke Math. J. 22 (1955) 75-94.
- [2] C. Cowen, Hyponormality of Toeplitz operators, Proc. Amer. Math. Soc. 103 (1988) 809-812.
- [3] R.E. Curto, I.S. Hwang, W.Y. Lee, Which subnormal Toeplitz operators are either normal or analytic?, preprint, 2010.
- [4] R.E. Curto, W.Y. Lee, Joint Hyponormality of Toeplitz Pairs, Mem. Amer. Math. Soc., vol. 712, Amer. Math. Soc., Providence, RI, 2001.
- [5] R.E. Curto, W.Y. Lee, Towards a model theory for 2-hyponormal operators, Integral Equations Operator Theory 44 (2002) 290-315.
- [6] R.G. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press, New York, 1972.
- [7] R.G. Douglas, Banach Algebra Techniques in the Theory of Toeplitz Operators, CBMS Regional Conf. Series Math., vol. 15, Amer. Math. Soc., Providence, RI, 1973.
- [8] D.R. Farenick, W.Y. Lee, Hyponormality and spectra of Toeplitz operators, Trans. Amer. Math. Soc. 348 (1996) 4153-4174.
- [9] C. Gu, J. Hendricks, D. Rutherford, Hyponormality of block Toeplitz operators, Pacific J. Math. 223 (2006) 95–111.
- [10] T. Nakazi, K. Takahashi, Hyponormal Toeplitz operators and extremal problems of Hardy spaces, Trans. Amer. Math. Soc. 338 (1993) 753-769.
- [11] N.K. Nikolskii, Treatise on the Shift Operator, Springer, New York, 1986.