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Abstract In this paper, we estimate the reliability of some parallel and series multi-component

stress–strength models. We determine the reliability of a system composed of k dependent compo-

nents subjected to n dependent stresses. We study the cases, when the components are either

arranged in series or in parallel. The components strengths are assumed to have (k + 1)-parameter

multivariate Marshall–Olkin exponential distribution, while the stresses are (n+ 1)-parameter mul-

tivariate Marshall–Olkin exponentially distributed.
ª 2011 Egyptian Mathematical Society. Production and hosting by Elsevier B.V.

Open access under CC BY-NC-ND license.
1. Introduction

Estimation of the reliability of stress–strength models has been
discussed in the literature extensively. For example Hanagal

[1] obtained the estimation of the reliability of a series system
under the assumption of a multivariate Pareto distribution for
the strengths of the components and subjected to exponential

common stress. Hanagal [2] obtained the estimation of system
reliability of a stress–strength model with k components either
parallel or series. He assumed that the distributions of the
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strengths of the k components and the distribution of the com-

mon stress are all independent and are two parameter exponen-
tial. Hanagal [3] obtained the estimation of system reliability in
multi-component series stress–strength models. He considered

the estimation of R ¼ P Xkþ1 < minðX1;X2; � � � ; XkÞð Þ when
Xi, i= 1,2, . . ., k + 1, all follow independent Gamma, Weibull
and Pareto distributions. For the case of non-independent com-

ponents,Hanagal [4] estimated the reliability of a parallel system
with two components having a bivariate exponential distribu-
tion subjected to a common stress, which can be either exponen-
tial or gamma. Also Ba’akkel [5] discussed the reliability of a

system with two components with strengths having a bivariate
exponential distribution and subjected to different strategies
of stresses. Ebrahimi [6] discussed series stress–strength models

having bivariate Marshall–Olkin exponential strengths
subjected to q stresses. The stresses are independent and
exponentially distributed.

Modern engineering systems may have more than two
components. The components may fail separately or simulta-
neously. The (k+ 1)-parameter multivariate exponential distri-

bution and the absolutely continuous multivariate exponential
(ACMVE) distribution may represent the lifetimes or strengths
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of such components. Hanagal [7] discussed the reliability of an

s-out of k system. The strengths of the k-components follow
the ACMVE distribution and are subjected to a common stress
which is exponentially distributed.

In some situations the system may be imposed to different

stresses that could not be independent. Not too much work
considered this case. In the present article, we consider the prob-
lem of estimating the reliability of a system with k components

subjected to n stresses. The components could be arranged either
parallel or series. The strengths of the components and the
stresses imposed on the system are all assumed to have different

multivariate Marshall–Olkin exponential distributions (MVE)
[8]. The strengths and the stresses are independent and are
assumed to have (k + 1) and (n + 1)-parameter multivariate

Marshall–Olkin exponential distributions, respectively.
As in Proschan and Sullo [9] a set of random variables T1,

T2, . . . ,Tr is said to have an (r + 1)-parameter MVE distribu-
tion if the survival function of T1, T2, . . . ,Tr is given by

FðtÞ ¼ PðT1 > t1; � � � ;Tr > trÞ

¼ exp �
Xr

i¼1
biti � b0 max ðt1; � � � ; trÞ

h i
;

ti P 0; i ¼ 1; 2; � � � ; r; b 2 A

where b ¼ ðb1; b2; � � � ; br; b0Þ ð1:1Þ
and A ¼ fb : 0 6 bi <1 ; i ¼ 0; 1; 2; � � � ; r;

b0 þ bi > 0; i ¼ 1; 2; � � � ; rg:

This distribution will be denoted from now on as MVE(r+ 1).
The MVE(r+ 1)arises in the following context: suppose that

T1, T2, . . . ,Tr represent failure times or strengths of compo-
nents labeled 1,2, . . ., r, respectively, and {Zi(t), t � 0;b},
i= 0,1, . . ., r, be r + 1mutually independent Poisson processes

with corresponding intensities bi, b 2 A. A shock inZi(t) process
is selectively fatal to component i, i = 0,1, . . ., r, while a shock in
Z0(t) process is simultaneously fatal to all r components. Hence,

if U0, U1, U2, . . .,Ur represent the times to the first events in
Z0(t), Z1(t), . . .,Zr(t), respectively, Ti =min(U0,Ui), where U0

and Ui are independent exponential random variables. Thus, it

is evident that MVE(r+ 1)can be represented in terms of inde-
pendent exponential random variables. This property is used in
generating samples from MVE(r + 1). As mentioned by
Marshall and Olkin [8], the marginal distribution of Ti is expo-

nential with parameter c i = b0 + bi, i= 1,2, . . ., r, while the
joint marginal distribution of Ti, Tj is bivariate exponential
Marshall–Olkin distribution with parameters bi, bj, b0, where

i, j = 1,2, . . ., r and i „ j. In general the joint marginal distribu-
tion of Ti1 ;Ti2 ; � � � ;Tis is MVE(s + 1), with parameters,
bi1
; bi2

; � � � ; bis
, and b0.

2. Reliability of the system

In this section we derive the reliability of a system consisting of
k components subjected to n stresses. The strengths of the com-
ponents X1, X2, . . .Xk, have MVE(k+ 1) with parameters ki,
i= 0,1,2, . . ., k. Each component is subjected to any one of

the n stresses (Y1,Y2, . . .,Yn). The stresses (Y1,Y2, . . .,Yn), are
assumed to have MVE(n + 1) with parameters li,
i= 0,1,2, . . ., n. The stresses (Y1, Y2, . . . ,Yn)and the strengths

(X1,X2, . . .,Xk), are assumed to be independent. We determine
the reliability of the system for both parallel and series
arrangements of the components.
2.1. Reliability of the parallel system

For the parallel case, the reliability of the system is given by

R1 ¼ P½max ðX1;X2; � � � ; XkÞ > maxðY1;Y2; � � � ;YnÞ�

¼ P½Z > H� ¼
Z 1

0

FZðhÞdFHðhÞ; ð2:1:1Þ

where Z= max(X1,X2, . . .,Xk) and H =max (Y1,Y2, . . . ,Yn).
The survival function of Z is given by

FzðzÞ ¼P½Z > z�
¼PðX1 > z or X2 > z or � � � orXk > zÞ

¼
Xk

l¼1
ð�1Þlþ1

X
16i1<���<il6k

PðXi1 > z;

Xi2 > z; � � � ; Xil > zÞ: ð2:1:2Þ

Thus, using (1.1), we get

FzðzÞ ¼
Xk
l¼1
ð�1Þlþ1

X
16i1<���<il6k

expð�ðk0 þ ki1þki2þ���þkilÞzÞ:

ð2:1:3Þ

Similarly, the cumulative distribution of H is given by

FHðhÞ ¼ 1�
Xn
s¼1
ð�1Þsþ1

X
16j1<���<js6n

expð�ðl0 þ lj1þlj2þ���þljs
ÞhÞ

ð2:1:4Þ

Substituting with (2.1.3) and (2.1.4) into (2.1.1), we get

R1 ¼
Xn
s¼1
ð�1Þsþ1

X
16j1<���<js6n

ðl0 þ lj1þlj2þ���þljs
Þ
Xk
l¼1
ð�1Þlþ1

(

�
X

16i1<���<il6k
ðk0 þ ki1þki2þ���þkil þ l0 þ lj1þlj2þ���þljs

Þ�1
)
:

ð2:1:5Þ
2.2. Reliability of the series system

The reliability of the system for the series case is

R2 ¼PðminðX1; � � � ;XkÞ > HÞ ¼ P M > Hð Þ

¼
Z 1

0

FMðhÞdFHðhÞ; ð2:2:1Þ

where M=min(X1, . . . ,Xk).

Noticing thatM is exponentially distributed with parameter
k ¼

Pk
i¼0ki,the survival function of M is given by

FMðhÞ ¼ e�kh: ð2:2:2Þ

Using (2.2.2) and (2.1.4) in (2.2.1) we get

R2 ¼
Xn
s¼1
ð�1Þsþ1

X
16j1<���<js6n

ðl0 þ lj1þlj2þ���þljs
Þ

kþ l0 þ lj1þlj2þ���þljs

� � : ð2:2:3Þ
3. Special cases

In this section we consider some special cases of the results of
Section 2.
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(i) When n= 1, the k components will be subjected to a

common stress Y. This stress is distributed exponentially
with mean l�1, and independent of the strengths of the
components. According to (2.1.5) and putting (l1 = l
and l0 = 0) the reliability of the parallel system will be
R1 ¼ l
Xk
l¼1
ð�1Þlþ1

X
16i1<���<il6k

ðk0 þ ki1þki2þ���þkil þ lÞ�1:

ð3:1Þ
For the series case, according to (2.2.3) the reliability of
the system will be
R2 ¼
l

kþ l
: ð3:2Þ
(ii) When n= 2, each of the k components is subjected to
any one of two dependent stresses, say, Y1 and Y2. That
is, Y1 and Y2, are two dependent stresses having a bivar-

iate Marshall–Olkin exponential distribution (BVE),
and are independent of the strength of the system.
According to (2.1.5) the reliability of the parallel system
is given by"

R1 ¼

X2
s¼1
ðl0 þ lsÞ

Xk
l¼1
ð�1Þlþ1

�
X

16i1<���<il6k
ðk0 þ ki1þki2þ���þkil þ l0 þ lsÞ

�1

#

� l
Xk
l¼1
ð�1Þlþ1

X
16i1<���<il6k

ðk0 þ ki1þki2þ���þkil þ lÞ�1;

ð3:3Þ

here l ¼
P2

i¼0li.
According to (2.2.3) the reliability of the series system is

given by
R2 ¼
l0 þ l1

kþ l0 þ l1

þ l0 þ l2

kþ l0 þ l2

� l0 þ l1 þ l2

kþ l0 þ l1 þ l2

:

ð3:4Þ
(iii) When k= 2, n= 1 then (X1,X2) follows a bivariate

Marshall–Olkin [8] exponential distribution (BVE) and
subjected to a common stress Y, which is distributed
exponentially with mean l�1, and independent of the

strengths of the components. According to (2.1.5) the
reliability of the parallel system is given by
R1 ¼
l

k0 þ k1 þ l
þ l

k0 þ k2 þ l
� l

k0 þ k1 þ k2 þ l
;

ð3:5Þ

which is the same as the result obtained by Hanagal [4]

and Ba’akkel [5]. Similarly using (2.2.3) we get the
reliability of the series system
R2 ¼
l

k0 þ k1 þ k2 þ l
; ð3:6Þ

which is the same as the result obtained by Ba’akkel [5].

(iv) When k = 2, and n = 2, the system consists of two

components with strengths (X1,X2). Each component

is subjected to any one of two dependent stresses
(Y1,Y2). According to (2.1.5) the reliability of the paral-
lel system is given by
R1 ¼
X2
s¼1

l0 þ lsð Þ
X2
i¼1

k0 þ ki þ l0 þ lsð Þ�1 � kþ l0 þ lsð Þ�1
" #

� l
X2
i¼1

k0 þ ki þ lð Þ�1 � kþ lð Þ�1
" #

;

ð3:7Þ

here k ¼
P2

i¼0ki; l ¼
P2

i¼0li.According to (2.2.3) the reliabil-
ity of the series system is given by

R2 ¼
l0 þ l1

kþ l0 þ l1

þ l0 þ l2

kþ l0 þ l2

� l0 þ l1 þ l2

kþ l0 þ l1 þ l2

: ð3:8Þ
4. Estimation of the reliability

Appropriate non-parametric estimators ofRi, i = 1,2, could be
obtainedby estimating theprobabilityP(max(X1, X2, . . . ,Xk) >
max(Y1, Y2, . . .,Yn)), for the parallel case and estimating the
probability P(min (X1,X2, . . .,Xk) > max(Y1,Y2, . . . ,Yn)), for

the series case. Using the data of a sample of N observations
from theMVE(k + 1)andMVE(n+ 1), appropriate estimators
of Ri i= 1,2,are obtained by counting the proportion of the

sample observations such that max(x1j, x2j, . . . ,xkj) > max(y1j,
y2j, . . .,ynj) for the parallel case and min(x1j, x2j, . . .,xkj) >
max(y1j, y2j, . . . ,ynj) for the series case, to the total number of

observations in the sample, where (x1j, x2j, . . . ,xkj) and (y1j,
y2j, . . . ,ynj) are the j-th observation corresponding to the
strengths and the stresses, respectively, and j= 1, . . . ,N.

For parametric estimation, the estimation of reliability for

each model could be obtained by replacing the parameters in
the equation of Ri, i = 1,2, by their corresponding estimators.
Several estimators of the parameters of the bivariate and

multivariate Marshall–Olkin exponential distributions have
been suggested in the literature, see for example Prochan and
Sullo[9], Bhattacharyya and Johnson [10], Arnold [11], Bemis,

Bain and Higgins [12], Kundu and Kumar [13], and Karlis [14]
and others.

Here, we shall mention the estimators that we will use for

estimating Ri, i = 1,2.
Arnold [11] has suggested consistent estimators of the

parameters using the distribution properties of the model with
the form

bðAÞi ¼
ðN� 1ÞNi

N
PN

j¼1 minðt1j; t2j; � � � ; trjÞ
; i ¼ 0; 1; � � � ; r; ð4:1Þ

where Ni denotes the number of observations for which ti =

min(t1, t2, . . . ,tr), N0 denotes the number of observations for
which t1 = t2 = � � �= tr, in a sample of N observations from
the distribution given by (1.1).

For obtaining the maximum likelihood estimates (MLE) of
the parameters of MVE (r+ 1), Proschan and Sullo [9]
showed that, if(T1, . . .,Tr) is random vector having MVE
(r + 1)distribution, and n0 denotes the number of observations

for which at least ti = tj, for i „ j, ni denotes the number of
observations for which ti < max (t1, t2, . . ., tr), and n

ðcÞ
i denotes

the number of observations for which only ti =max (t1,

t2, . . ., tr), the log-likelihood function for a given sample of size
N is given by
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lðbÞ ¼
Xr
i¼0

ni logðbiÞ þ
Xr
i¼1

n
ðcÞ
i logðb0 þ biÞ

�
XN
j¼1

Xr
i¼1

bitij � b0

XN
j¼1

maxðt1j; t2j; � � � ; trjÞ: ð4:1Þ

If the usual conventions are adopted, e.g. 00 = 1,0 log(0) = 0,
etc., (4.1) is well-defined for all possible values of bi > 0, ni and

n
ðcÞ
i . The resulting system of equations cannot be solved in a
closed form. If all ni > 0 the MLE of bi > 0, exists uniquely.
If ns = 0, for some s= 0,1, . . . ,r, an explicit form of the

MLE of bi, exists (see Theorem 4.1 in [9]).
Proschan and Sullo [9] proposed simple estimators, which

they called INT estimators, defined by

bðTÞi ¼
ni

N� n
ðcÞ
i

N
XN

j¼1
tij;

.
i ¼ 1; � � � ; r; ð4:2Þ

bðTÞ0 ¼ N�
Xr
i¼1

ni

N� n
ðcÞ
i

n
ðcÞ
i

" # XN
j¼1

maxðt1j; t2j; � � � ; trjÞ:
,

These estimators are developed from intuitive considerations

of the distribution.Theyused these estimates as the first iterate in
solving the likelihood equations iteratively using the method of
successive approximations, applied by putting the likelihood
equations in the form b ¼ gðbÞ and then using the functional

iteration b(m+1) = g(b(m)), m= 0,1,2, . . . . Specifically, let

b mþ1ð Þ
i ¼ ni þ n mð Þ

i n
ðcÞ
i

h i XN

j¼1
tij;

.
i ¼ 1; � � � ; r; ð4:3Þ

b mþ1ð Þ
0 ¼ N�

Xr

i¼1
n mð Þ
i n

ðcÞ
i

h i XN

j¼1
maxðt1j; t2j; � � � ; trjÞ;

.
where

n 0ð Þ
i ¼

ni

N� n
ðcÞ
i

; i ¼ 1; � � � ; r

n mð Þ
i ¼b mð Þ

i =ðb mð Þ
i þ bðmÞ0 Þi ¼ 1; � � � ; r; m ¼ 1; 2 � � � :

The iteration is terminated when some convergence criterion is
met. Karlis [14] developed an EM type algorithm for the

computation of the MLE’s based on the multivariate reduction
technique. He used the consideration that Ti = min(U0,Ui),
i= 1, . . . ,r. According to themultivariate reduction derivation,
Table 1 System reliability under common exponential stress.

k = 3 and n= 1 N= 10 N= 3

Parallel case Series case Paralle

R 0.8513772 0.5555556 0.851

R(T) 0.8433652 0.5472533 0.848

R(I) 0.8425224 0.547117 0.847

R(EM) 0.8425224 0.547117 0.847

R(A) 0.8634436 0.5796057 0.854

R(N) 0.85155 0.55715 0.850

MSE(T) 0.00448015 0.00856184 0.001

MSE(I) 0.00447337 0.00857663 0.001

MSE(EM) 0.00447337 0.00857664 0.001

MSE(A) 0.00763443 0.01208204 0.002

MSE(N) 0.01231763 0.02561142 0.004

b(T) �0.00801209 �0.00830224 �0.003
b(I) �0.00885482 �0.00843853 �0.003
b(EM) �0.00885479 �0.00843852 �0.003
b(A) 0.01206636 0.02405013 0.003

b(N) 0.00017276 0.00159444 �0.000
themissing data consist of the non-observable random variables

Ui, i= 0, . . . ,r while the observed data are the values Ti,
i= 1, . . . ,r. The EMalgorithm proceeds by calculating the con-
ditional expectation of Ui given Ti and the current values of the

parameters bðmÞ ¼ ðbðmÞ0 ; bðmÞ1 ; � � � ; bðmÞr Þ which called the E-step,
while the M-step just calculates the MLE’s for a sample from
exponential distributions, using the expectations of the E-step.

The conditional expectations of Ui’s given the Ti’s (see

Karlis [14]) are as follow:
First case when t1 = t2 = . . . = tr.

EðU0jT1; � � �Tr; bÞ ¼t1;
EðUijT1; � � �Tr; bÞ ¼t1 þ b�1i ; i ¼ 1; � � � ; r:

Second case if some of the ti’s are equal but there are some

other with smaller values, i.e. ti1 ; ti2 ; � � � ; tik < tj1 ¼ � � � ¼
tjp ¼ tð0Þ for some k and p,

EðU0jT1; � � �Tr; bÞ ¼tð0Þ;
EðUibjT1; � � �Tr; bÞ ¼tib; b ¼ 1; � � � ; k;
EðUjbjT1; � � �Tr; bÞ ¼tð0Þ þ b�1jb ; b ¼ 1; � � � ; p:

The last case if some tj is larger than the rest,

EðU0jT1; � � �Tr; bÞ ¼tj þ
bj

bj þ b0

1

b0

;

EðUjjT1; � � �Tr; bÞ ¼tj þ
b0

bj þ b0

1

bj

;

EðUijT1; � � �Tr; bÞ ¼ti; i ¼ 1; � � � ; r; i – j:
5. Numerical illustration

For a numerical illustration of the results obtained, a simula-
tion study is performed. Two thousand samples each of size

10, 30 and 100 are generated from the strengths and stresses
distributions.

Taking k = 3, k1 = 0.06, k2 = 0.03, k3 = 0.07, and
k0 = 0.04, two cases are considered:

Case 1: the common stress (n= 1), we take l = .25.
0 N = 100

l case Series case Parallel case Series case

3772 0.5555556 0.8513772 0.5555556

2669 0.5524275 0.850093 0.5555835

9657 0.5523857 0.8500074 0.5555626

9657 0.5523857 0.8500075 0.5555626

6703 0.5627921 0.8522117 0.5580528

3833 0.5555 0.850275 0.556575

40409 0.003140519 0.00043428 0.00096121

39800 0.003142227 0.00043441 0.00096050

39800 0.003142228 0.00043441 0.00096050

90438 0.004177479 0.00084677 0.00123744

26529 0.008694198 0.00128019 0.00252636

11035 �0.003128105 �0.00128418 2.79440e-05

41151 �0.003169838 �0.00136979 7.04821e-06

41150 �0.003169835 �0.00136979 7.05479e-06

29307 0.007236515 0.00083442 0.00249727

99391 �5.55555e-05 �0.00110224 0.00101944
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Case 2: three stresses (n = 3), we take
Tabl

k=

R

R(T)

R(I)

R(EM

R(A)

R(N)

MSE

MSE

MSE

MSE

MSE

b(T)

b(I)

b(EM

b(A)

b(N)

Tabl

k=

R

R(T)

R(I)

R(EM

R(A)

R(N)

MSE

MSE

MSE

MSE

MSE

b(T)

b(I)

b(EM

b(A)

b(N)
(i) The expected value of each one of the three stres-
ses equals to the expected value of the common
stress in Case 1 (l�1 ¼ a�11 ¼ a�12 ¼ a�13 , where

ai = l0 + li), namely l0 = 0.2,l1 = 0.05, l2 =
0.05, l3 = 0.05.

(ii) The sum of the expected value of the three stresses
equals to the expected value of the common stress

in Case 1 (l�1 ¼ a�11 þ a�12 þ a�13 , where ai = -
l0 + li), namely l0 = 0.3, l1 = 0.4, l2 = 0.2,
l3 = 1.45.
It is to be noted that these values are chosen arbitrary just for

illustrating the results obtained.Tables 1–3 show the true values
of Ri, i= 1,2, and their corresponding estimates by the INT
method (RT), the iterative method (RI), the EM algorithm

(REM), Arnold’s method (RA)and non parametric method
(RN). The simulated RT, RI, REM, RAand RN are the mean of
e 2 System reliability under three stresses model when l�1 ¼ a

3 and n= 1 N= 10 N = 3

Parallel case Series case Parall

0.8217638 0.5030303 0.82

0.814075 0.4973373 0.82

0.8130545 0.4972407 0.82
) 0.8130546 0.4972407 0.82

0.8386531 0.5288856 0.81

0.82355 0.50435 0.82
(T) 0.00574701 0.00940572 0.00
(I) 0.00575849 0.0094048 0.00
(EM) 0.00575849 0.00940480 0.00
(A) 0.01062211 0.01282729 0.00
(N) 0.01482359 0.02652782 0.00

�0.00768869 �0.00569304 �0.00
�0.00870924 �0.00578965 �0.00

) �0.00870919 �0.00578965 �0.00
0.01688935 0.02585532 �0.00
0.001786233 0.00131970 0.00

e 3 System reliability under three stresses model when l�1 ¼ a

3 and n= 1 N= 10 N= 3

Parallel case Series case Paralle

0.910531 0.6710158 0.910

0.9038087 0.6561326 0.907

0.9032454 0.6566265 0.907
) 0.9032455 0.6566265 0.907

0.7999717 0.5684885 0.891

0.9125 0.67215 0.911
(T) 0.00200379 0.00736045 0.000
(I) 0.00200256 0.00730018 0.000
(EM) 0.00200256 0.00730018 0.000
(A) 0.09290336 0.06977117 0.005
(N) 0.00773762 0.02265066 0.002

�0.0067223 �0.0148832 �0.002
�0.0072856 �0.0143893 �0.002

) �0.0072856 �0.0143893 �0.002
�0.1105593 �0.1025273 �0.019
0.00196896 0.00113416 0.001
the 2000 replicates of the corresponding estimates. For comput-

ingRIandREM we used the same convergence criterion, which is
the change on the parameter values at successive iterations is less
than10�6, and the same initials which are the INT estimators.
For comparison the bias (b) andMSE, of the different estimates

in each case are calculated. Where bias (b)is the difference of the
mean of the 2000 replicates estimates from the true values of R
andMSE is themean of the squares of the differences of the 2000

replicates estimates from the true values of R.
Clearly as is known, the reliability of the parallel system is

greater than that of the series system. We find that the reliabil-

ity of the system under the common stress is greater than that
under three stresses when the expected value of each one of the
three stresses equals to the expected value of the common

stress and less than that when the sum of the expected values
of the three stresses equals to the expected value of the com-
mon stress. In general as N increases all estimates R(T), R(I),
R(EM), R(A), and R(N),converge to R and MSE decreases. All

estimates give good results even for small N(N = 10).
�1
1 ¼ a�12 ¼ a�13 .

0 N = 100

el case Series case Parallel case Series case

17638 0.5030303 0.8217638 0.5030303

05231 0.5036056 0.8219642 0.5030831

02186 0.5035475 0.8218886 0.503055

02186 0.5035475 0.8218886 0.503055

78332 0.5018213 0.8240517 0.5059867

26833 0.5065167 0.82224 0.50225

175104 0.0031197 0.00057453 0.00095941

174967 0.00312101 0.00057326 0.00095933

174967 0.00312106 0.00057326 0.00095933

438878 0.00580826 0.00113751 0.00130028

471909 0.00834135 0.00147781 0.00260054

124065 0.00057531 0.00020040 5.28411e-05

154515 0.00051717 0.00012483 2.47098e-05

154514 0.00051719 0.00012484 2.47159e-05

393052 �0.00120895 0.00228790 0.00295640

091956 0.00348636 0.00047623 �0.0007803

�1
1 þ a�12 þ a�13 .

0 N= 100

l case Series case Parallel case Series case

531 0.6710158 0.910531 0.6710158

9135 0.6691879 0.9096677 0.6686644

744 0.6692647 0.9096362 0.6687045

744 0.6692647 0.9096362 0.6687045

4304 0.6471798 0.9064146 0.6615557

6167 0.6750167 0.909295 0.66964

63014 0.00223967 0.00016482 0.00067897

62636 0.00223893 0.00016451 0.00067822

62636 0.00223892 0.00016451 0.00067822

69541 0.01171752 0.00068396 0.00286692

81345 0.00735684 0.00082498 0.00223186

6175 �0.00182795 �0.00086337 �0.00235146
7870 �0.00175116 �0.00089479 �0.00231131
7867 �0.00175115 �0.00089479 �0.00231130
1006 �0.02383599 �0.00089479 �0.00946009
08563 0.00400083 �0.00123603 �0.00137584



Table 4 Average number of iterations until convergence criterion is met.

N= 10 N= 30 N= 100

INT (1,1,1,1) INT (1,1,1,1) INT (1,1,1,1)

Iterative method 9.907 13.032 8.8915 11.392 8.044 10.5865

EM-algorithm 27.9155 77.948 21.596 32.9665 18.3155 30.065
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We see from Tables 1–3that, the iterative method and the
EM-algorithm method give the same results for estimating
the values of Ri, i= 1,2, concerning biasness and MSE’s.
However, for the same convergence criterion the average num-

ber of iterations using the iterative method is less than that
using the EM-algorithm whether using INT estimates as ini-
tials or any other initials (for example putting all initial values

equal to 1). Table (4) shows the average number of iterations
until convergence criterion is met when the initial values of
the parameters are equal to the INT estimates or all equal to 1.

Concerning biasness, we find that for a small sample size
(N= 10) the non parametric method gives the smallest bias,
and the differences in b(T), b(I) and b(EM) appear after 3-rd
decimal place. While for large samples the differences in bias

decrease. Concerning mean squared errors, we find that the
differences in MSE oF R(T), R(I) and R(EM) appear after 4-th
decimal place. For large samples the MSE are almost the same

for R(T), R(I) and R(EM). In general Arnold estimates give the
largest bias. We can say that the non-parametric method gives
acceptable results. We also see that the differences between the

R(T), R(I) and R(EM) are very small.
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