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ABSTRACT 

The following problems are solved in this paper: (1) characterization of the 
behavior of invariant factors of (generally rectangular) ‘%-matrices under adjunction 
of rows; (2) characterization of the invariant factors of a square submatrix of a square 
%-matrix; (3) characterization of the relationship between the similarity invariad~ of 
a square S-matrix and those of a principal submatrix. Here ‘%. is a commutative 
principal ideal ring, 9 a field. 

1. INTRODUCTION 

The symbol % will denote a principal ideal ring, that is, a commutative 
integral domain in which every ideal is principal An important and well- 
known theorem [4, p. 621 asserts that a unimodular m X 12 matrix A over 3, 
in which m < n, may always be augmented with a single row to obtain a 
unimodular (m + 1) x n matrix B. Here A unimodular means that the greatest 
common divisor of its m x m subdeterminants is 1. This theorem is some- 
times stated in the equivalent form that unimodular A may always be 
completed to a square unimodular matrix. Of course, not every m X n matrix 
A is unimodular. In general, a matrix over ?i?, (whether rectangular or 
square) possesses invariant factors, namely, its diagonal elements when 
reduced under equivalence to Smith canonical form. Unimodularity occurs 
precisely when all invariant factors are 1. A natural question, therefore, is to 
determine the relationship between the invariant factors of a matrix A and 
those of a one row prolongation B. The first objective of this paper is to give 
the complete identificaiton of this relationship. As a special case we recover 
the results just stated concerning unimodular prolongations. 

Two consequences flow easily from our identification of the behavior of 
invariant factors under a one row prolongation. The first of these is the 

LZNEARALGEBZUANDZT5'APPLZCATZONS 24:1-31( 1979) 1 

0 Elsevier North Holland, Inc., 1979 0024-3795/79/cr2Ooo1+31$01.75 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82020736?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 R. C. THOMPSON 

characterization of the complete relationship between the invariant factors 
of a square %-matrix and those of a submatrix. A second consequence, 
evolving out of the first, is the complete solution of a question in linear 
algebra that has been unresolved since the inception of elementary divisor 
theory in the 1800s. Let 5 be a field, let C be an n X n matrix over 5, and 
let A be a principal (n - 1) X (n - 1) submatrix of C. This long outstanding 
question is the determination of the relation between the similarity in- 
variants of C and those of A. Several attempts to answer this question have 
been made in recent years, notably by de Oliviera [2]. We are able to answer 
this question in full, and indeed able to answer it for principal submatrices 
having deficiency higher than one. 

An altogether unexpected and surprising feature of our results is a 
striking analogy between our invariant factor theorems on the one hand and 
the interlacing inequalities for eigenvalues of Hermitian matrices and singu- 
lar values of arbitrary matrices on the other. [Recall that the singular values 
of a complex matrix A are the eigenvalues of the semidefinite Hermitian 
matrix (AA*)‘/‘.] Because of this striking analogy, we have incorporated the 
word “interlacing” in the title of this paper. 

We remark that a recent most interesting paper of Carlson [l] gives a 
result rather closely related to our Theorems 1 and 2. Indeed, it is possible to 
deduce our Theorems 1 and 2 from Carlson’s results by considering the 
matrix of relations on a finitely generated module. 

2. ONE ROW PROLONGATIONS 

LetAbeanmxnmatrixandBan(m+l)Xnmatrix,bothover%,with 
B containing A as its first m rows. We wish to identify the relationship 
between the invariant factors of A and those of B. We do not assume m < n; 
indeed, we will allow m > n. However, our discussion splits into two cases 
according as B has rank equal to or one more than the rank of A. In the first 
case we assume that rank B = rankA + 1, and in the second that rankB = 
rankd. 

LEMMA 1.. Let rankA = k and rank B = k + 1. Denote by 

and by 
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the (nonzero) invariant factors of A and B, respectively, where the bar 1 
denotes divides. (We include trivial invariant factors, i.e., those equal to 1.) 
Then if B is a m row prolongation of A, the following “interlacing 
inequalities” must hold: 

h,(B)lh,(A)lh,(B)lh,(A)I.. . IhdA)h+@). 

Proof We have 

B= 2 , i 1 
where b is a single row. After an equivalence we may diagonalize A; hence 
assume that B has the form 

h,(A) 

MA) 
0 0 . . . 0 0 . . . 0 

6 
brl 

(2) 

After an equivalence on the last n - k columns, we may take bk+2 = * * - = b,, 
=O. Because rankB=rankA + 1 we then see that bk+l#O. 

Let p be a fixed prime element of CFL, and consider A and B as matrices 
over the ring $I$, consisting of fractions with denominator prime to p. Under 
this localization of CiL, all primes other than p become units, with the effect 
that A and B acquire new invariant factors comprising precisely the powers 
of p in the original invariant factors. This technique was used, for example, 
by Gerstein in [3]; effectively it permits the passage from invariant factors to 
elementary divisors. After this localization and trivial elementary operations 
on B to remove factors which now are units, we may assume that 

hi(A)=p4, l<i<k, 

h,(B)=p”, l<i<k+l, 
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To prove (1) it will suffice to prove that 

&<ai< ,&<a,<‘** < &<(Y,< &+I. (4) 

For 1< i < k + 1 let cZi (B) be the ith determinantal divisor of B, namely 
the greatest common divisor of the ix i subdeterminants of B. It is well 
known that di(B)=h,(B)*--hi(B); hence here 

qB)=pPl+-‘+Pz, l<i<k+l. 

Evidently there is only one nonzero (k + 1) X (k + 1) minor, whence we may 

take 

b k+l=p 
p,+“‘+&+,-Q,...-a& 

For fixed i, 1 < i < k, the calculation of the i-rowed minors is straightfor- 
ward. Rejecting minors obviously divisible by other minors, we find that 

P 
p,+...+fl, = ( pa,+...+4,pP,+...+P*+l-4-...-~,blpa2+”’+4, 

b2P 
a*+OL3+ ... +a, ,...,b,p 

a,+...+q-, 

bi+, P 
a,+ .” +q-, ,...,b,P a,+ “. +q_, 

1. (5) 

Th e parentheses on the right hand side here denote greatest common divisor. 
Ignoring units, we may take bi = p c, 1 < i < k, where ti = + 00 if bi should be 
zero. In order for the relation (5) to hold, it is necessary and sufficient that 
the following inequalities all hold, with at least one inequality being equality. 

a,+-.. +ai, lsa)i 
pl+*.. +pk+l-ai-*-- -cQ, Csb)i 

t,+a,+*.- +ai, ('*l)i 
a,+t,+a,+..* +aj, Cee2)i 
. . . 
al+... +“i_1+tj, (6.i)i 
. . . 

a,+.-- +“i_l+tk. (64, 
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Denote these inequalities collectively as (6)i. We first note that & < o1 
follows immediately from (6a),. Let 1< i G k; we wish to prove that pi G q. 
To do so, we exploit the equality in (6) i _ 1 and the corresponding inequality 
in (6)i. 

If (6a)i_l is equality, we obtain Pi+.** +&r=c~,+.** +‘Yi-1; in 
combination with (Sa),, namely pi + . . . + pi < (or + . . . + o+ we see that 

Pi < ai. 

If (6b)i_, is equality, we obtain &+**+ +&+i=+r+*** +a,. From 
(6b)iwegetPi+,+...+Pk+l>(Yi+...+(Yk,whencePi<cu,_l<LYi. 

If (6.1),-i is equality, we obtain Pi+*.. +&_,=t,+as+.** ++I, 
and from (6.1)i we have pi+. * * +& < t,+a,+ . . . +q. Hence pi < oi. 
Similarly we treat equality (6.2),-i and inequality (6.2),, equality (6.3)i_, 
and inequality (6.3)i, etc. Certain of these steps go by the route pi < q_ r < 
(Yi. 

This completes the proof that pi < air i = 1,. . . , k. Next, we prove that 
~yi< &+r, for i=l,..., k. For i = k this follows from (6b),. Therefore, 
suppose that 1 < i < k. We shall exploit the equality in (6)i + I and the 
corresponding inequality in (6)i. 

lf (6a)i+i is equality, we have Pi+... +&+r=oi+.*. +‘~~+i. From 
(6a), weget/?,+..* +&<a,+..* +a,, whenceai<ai+i< &+i. 

If (6b)i+i isequality,wehaveai+l+~~~+o~=/3i+2+...+&+l.From 
(6b)iwegetai+*..+a,<&+,+***+Pi,whenceoi</?i+l. 

lf (6*l)i+ i is equality, we have Pi+*** +&+r=ti+os+.*. +‘~~+r. 
From (6.1)i we have j3r+*.. +&<t,+a,+... +a,, whence ai<~i+i< 
pi + i. Similarly we handle equality (6. i) i + 1 and inequality (6.i) i for i = 2, . . . , k. 

n 

The lemma is now proved. Returning to matrices over ‘%, we next have 

LEMMA 2.. Assume that (1) holds. Then the matrix (2) with 

h,(B). . . hi(B) 

4= h,(A)-hi_l(A)’ 
j=l ,...,k+l, 

bj=O for j>k+l 

is integral, and its invariant factors are precidy h,(B) for i = 1,. . . , k + 1. 

Proof. That B is integral is obvious from the divisibility conditions (1). 
Evidently the (k + 1)st determinantal divisor of (2) is h,(B)* . . hk+l(B). For 
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fixed i, 1 < i < k, the ith determinantal divisor of (2) is 

hl (A). . . hi (A), 
WV -hk+lP) 

hi(A). . . h,(A) 
,h,(B)h,(A)...hi(A), 

W+-hdB) 
h,(B)h,(B)h,(A)“‘hi(A),“‘,h,(B)“’hi(B),”’y hi(A)...h _ (A) * 

k 1 

All terms in this gcd being divisible by h,(B). . . hi(B), and one term 
equaling h,(B)*. . hi(B), we see that the ith determinantal divisor of (2) is 
precisely h,(B) . . . hi(B), 1 < i < k. From this it is clear that (2) has the 
claimed invariant factors. n 

Lemmas 1 and 2 together prove the following theorem. 

THEOREM 1 (Interlacing inequalities for invariant factors). An m X rr 
%-matrix A of rank k< n and invariant factors h,(A)] * * * (h,(A) may be 
augmented with a single TOW to obtain an CR-matrix B of rank k + 1 and 
invariant factors h,(B)I. . . 1 hi+,(B) if and only if the interlacing inequalities 
(1) hold. 

Next, we consider the case in which rankA =rankB. Setting bk+l =0, 
hk+l(B)=O [or deleting bk+l and hk+l (B) if k = n], and also deleting (Sb), 
for all i, the above arguments go through without change to establish 

THEOREM 2. An CiL-matrix A of rank k and invariant factors 

h,(A)I. * * Ih,(A) my b e augmented with a single row to obtain an 6% 
matrix B of rank k and invariant factors h,(B)I. . . I h,(B) if and only if 

(7) 

REMARK. The condition (7) may be incorporated under (1) by taking 
hk+l(B) =O. Indeed, by giving any %-matrix A an infinite set of invariant 
factors h,(A)/ h,(A)1 . . . , only finitely many of which are nonzero, all refer- 
ence to rank in Theorems 1 and 2 may be deleted, and (1) and (7) simply 
stated as 

h(B)Ih(A)Ih+l(B)~ i=l,2, . . . . 
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3. SUBMATRICES OF DEFICIENCY 1 IN A SQUARE MATRIX 

Let C be an n x n %-matrix with invariant factors hi(C . . [h,(C), 
some of which may be zero. Take A be to an (n - 1) X (n - 1) ‘%-matrix with 
invariant factors h,(A)]. . . [h,_,(A), some of which may also be zero. We 
ask: When can Cbe constructed such that A is a submatrix? 

THEOREM 3. An n-square %-matrix C with invariant factors 

h,(C)I.. . Ihn(C) exists containing as a submatrix an (n- 1)-squure ?iL 
matrix A with invariant factors h,(A)1 * * * h,_,(A) if and only if 

wMl@M3(cL 
W~Ih,@)lk(C)~ 
. . . 
h,-2(C)lh,-2(A)lh,(C), 
L,W)lhn-,(A). 

(f-9 

Proof Suppose that C exists, containing A. Take B to be the n X (n - 1) 
submatrix of C containing A. By Sec. 2 we have 

The inequalities (9) and (10) clearly imply (8). 
Now suppose that A is given, with its prescribed invariant factors, and 

that prescribed invariant factors for C are given such that (8) holds. We must 
demonstrate that C can be constructed. For this purpose we first specify 
elements h,(B) ,..., h,_,(B) of 3. Set 

hi(B)=lcm(hi(C),h,-,(A)), l<i<n-1, 

where lcm denotes least common multiple, and h,(A) is understood to be 1. 
The properties of the least common multiple immediately show that 
h,(B)lh,(B)I . . * Ih,_,(B), that hi(C)lhi(B) for 1 < i < n- 1, and that 
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hi_,(A)lhi(B) for i=2 ,...,n-1. Using h,_,(A)lh,+,(C), we see that 

l<i<n-1, andusinghi(C)lhi(A) weobtain 

Thus h,(B),...,h,_,(B) constitute a divisibility chain for which (9) and (10) 
hold. By Sec. 2 we may now prolong A by one row to obtain an n X (n - 1) 
matrix B, and then prolong B by one column to obtain the desired matrix C. 
This completes the proof. W 

4. SIMILABITY INVABIANTS OF PRINCIPAL SUBMATFUCES OF 
DEFICIENCY 1 

Let ‘?? be a field, and C an n X n matrix over ‘3. The similarity invariants 
of C are then the invariant factors of the polynomial matrix XI- C. Let A be 
an (n - 1) X (n - 1) matrix over 9. 

THEOREM 4. Let the n in 4-matrix C have (similarity) invariant 

factors WMdC)l. . . P,(C), including trivial invariant factors. Let the 
(n - 1) X (n - 1) T-matrix A have (similarity) invariant factors 

W)I. . . IL,(A)> g a ain including trivial invariant factors. Then A is a 
principal submatrix of some 9 similarity transform of C if and only if 

wmGw3(C)~ 
MC)lh2(A)lh4(C)~ 
. . . 
h,-2(C)lh,~,(A)lh,(C), 
L(Wn-,(4~ 

(11) 

and 

degree(hi(A)***h,_i(A))=n-1, 

degree(h,(C)...h,,(C))=n. 
(12) 
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Proof. Suppose that A is a principal submatrix of C. Then the character- 
istic matrix AZ, _ i - A of A is a submatrix of the characteristic matrix hZ, - C. 
Applying Theorem 3, with 9 = %[A], we see that the conditions (11) are 
necessary. By definition of invariant factors, (12) holds. 

Now suppose that A is given, with its prescribed invariant factors. We 
wish to construct C such that it contains A as a principal submatrix and has 
the prescribed invariant factors. Take % = ‘%[A], and apply Theorem 3 to 
XI - A. Because the conditions (11) hold, we obtain an rz X rr %[A]-matrix 
C(h) containing hZ- A as the leading (n - 1)-square principal submatrix, 
with C(h) having invariant factors h,(C)] . . * /h,(C). By elementary opera- 
tions on C(A), adding polynomial multiples of columns 1,2,. . . , n - 1 to 
column rr, and adding polynomial multiples of rows 1,2,. . . , n - 1 to row n 
(these operations do not change the invariant factors), we may step by step 
eliminate powers of X in the last row and column, in descending order, and 
hence assume that 

where x1, . . . , q-13 yl, . . . , yn-l, are constants. Since det C(X) = 
h,(C). . . h,(C) has degree n, and is manic, it now follows that x(h) = A - z’ 
with z’ constant. Thus C(A) = AZ - C, where C is an y-matrix with A as the 
leading principal submatrix. Since C(A) has h,(C), . . . , h,,( C) as its invariant 
factors, evidently we have constructed the required matrix C. This ends the 
proof. n 

5. COMPARISON WITH INTERLACING INEQUALITIES FOR EI- 
GENVALUES AND SINGULAR VALUES 

Let B be an n x n Hermitian matrix with eigenvalues & > . . * > &, and 
let A be an (n - 1) X (n - 1) principal submatrix with eigenvalues cxi > * . . > 

a n-1. The Cauchy interlacing inequalities assert that 

It is further known that this set of inequalities comprises all generally valid 
relations between the eigenvalues of B and A. The resemblance of (13) to (1) 
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is altogether striking. Now let C be an n X n complex matrix with singular 
values y1 > * * * > y,,, and let A be an (n - 1) X (n - 1) submatrix (not neces- 
sarily principal) with singular values (pi > . + . > a,_ 1. Then it is known [6] 
that 

Y1 >a, >Y3> 

Ys!>%>Y‘l> 
. . . (14) 
Y”-z)%-z>Y”> 

Y,-1 >‘y,l-l. 

It is further known that this set of inequalities comprises all generally valid 
relations between the singular values of C and those of A. We next remark 
that even more striking than the resemblance of (1) to (13) is the resemb- 
lance of (11) to (14). It would be of interest to explain these extraordinary 
analogies as two special cases of a theory sufficiently general to cover both. 

6. SUBMATIUCES OF DEFICIENCY MORE THAN 1 IN A SQUARE 
MATRIX 

Let C be an tr x n %-matrix with invariant factors h,(C)]. . . Ii+,(C), 
some of which may be zero. Let A be an (n - k) X (n - k) %-matrix with 
invariant factors h,(A)]. * * ]/z,_~(A), some of which also may be zero. We 
now extend the results in Sec. 3 by assuming that 1~ k < n - 1 and asking: 
When can C be constructed such that A is a submatrix? 

Assume first that C exists, containing A as a submatrix. Select a nested 
chain of submatrices of C, 

A .-k~A,_~+ic... CA,, 

with A,, _ k = A and A,, = C. Take the invariant factors of Ai to be 

hI(A . . Ihi( 

and set hi+ ,(Ai) = hj+,(Ai) = . . . = 0, i = n - k, n - k + 1, . . . , n. Then 
hr(Ai), . . . > hi (AJ interlace hl(Ai+ J, . . . , hi + l(Ai+ J in the sense specified by 
Eq. (8) in Theorem 3: hj(A,+,)]hj(A,)]hi+z(Ai+J. From this it easily follows 
that 

hl(C)lhl(A)lhl+2k(C), 
h,(C)lh,(A)Ih,+,,(C), (15) 

h,-t(C)l%‘-;(A)l~“+~(C), 
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with 

11 

h,+,(C)=h,+,(C)=-* =h,+,(C)=O. (16) 

The inequalities (15) [subject to (IS)] therefore are a necessary condition for 
the existence of an n-square matrix C containing A as a submatrix of 
deficiency k such that both C and A have prescribed invariant factors. It 
turns out that these conditions are also sufficient. 

Pace The proof Is by i~d~~~o~ on k, the case k= 1 being Theorem 3, 
isle k> 1. We are given hr(Af/* ’ + [?z~_~(A) and ia,(C * - /h,(C), ?% 
wish to construct elements A,(B)/*+* /k,,_,+,(R) of 6x such that (take 

~~~-&~~(~)=o) 

If these ~n~~o~s can be ~tis~e~, we may (by ~~~~rn 3) embed A in 
an (ra.--kt-1)x( rs-k+l) ~,-rna~ B having h,(B)/** - I~~_~~~~~~ as its 
~~~~~~~ factors, and by the case k- 1 of Theorem 5 embed I.3 in an s X n 
~~~rnat~x C having ~~~a~t factors h,(C)/ 9 * f /h,(C). The proof, therefore, 
is simply a matter of speci&ing h,(B)]. . + Jhn_k+rjB) such that (17) and (18) 
hold, 

Using Icm to signify least common multiple, set 

where it is unde~t~ that li._ ,(A) f= ~~~(A~ = 1. It is a s~ple matter to check 
that h,(B)/. * f i&__ k+,(B) and that (17) and (1.6) both hold. It is necessary to 
use (15) in this ve~~ca~o~. This completes the proof of Theorem 5, 8 
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7. A LEMMA INVOLVING A SYSTEM OF LINEAR INEQUALITIES 

Before generalizing Theorem 4 in the same way that Theorem 5 gener- 
alizes Theorem 3, we give a lemma that will be needed in the proof. 

Let n and k be positive integers, with 2 < k< n, and suppose that 

%+1(p)>...> a,(p) and Y~(P)~...~ y,(p) are real numbers for finitely many 
values of a parameter p such that 

Yl(P)%(P)~... <Y,(P) for each p, 

%+I( P) N+z.(Pb ... WI(P) for each p, 

5 {YAP)+Y2(P)+... +Y”(P)l=n, 

T {%+l(P)+%+dP)+..* +~“(PH=n-k, 

Yi(P) G %+k( P)7 i=l,2 ,..., n-k, andallp, 

%( PI (Yi+d PL i=k+l ,...,n- k, and all p. 

[The condition (24) will be vacuous if k + 1 > n - k.] Then we have 

LEMMA 3. Under the ubove conditions, 

09) 

(20) 

(21) 

(22) 

(23) 

(24 

=( 
n-k+1 

YJP)+Yz(P)+ lx mz(Y,(p),ai+k-2(P)) (n-k+l. (25) 

P i=3 I 

Proof. The proof is somewhat lengthy. We first reformulate the conclu- 
sion to be established, then organize a number of cases to be considered, and 
finally attack these cases one by one. 

For fixed p, let Sf( p) b e a collection of distinct indices chosen from 
3,4,..., n - k + 1. The indices and indeed the number of indices in 4 ( p) will 
generally be different for different p. It may happen that g(p) is empty. 
Furthermore the sets g(p) f or different values of p do not need to be 
disjoint. We are going to prove that 

n-k+1 n-k+1 

Yl(p)+YZ(p)+ X Yi(P)+ 22 (lLi+kpZ(P) ‘n-k+1* (26) 
i=3 i=3 

iEii(p) ielf I 
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By taking g(p) to be those indices for which yj(p)>q+k_2(p), 3<i<n-k 
+ 1, it is clear that (25) is a consequence of (26). It therefore suffices to 
prove (26). 

We next write down an equality to be used in the proof of (26). 

x( 
n--k+1 

YI(P)+YZ(P)+ iz3 -Ii(P)+ i: Yi(P) 
P i=n-k+Z 1 

zy n-k+1 
= 

I2 %+k-B(P)+%(P) +k.(27) 

P i=3 I 

This equality follows from (21) and (22), each side equaling n. Rewriting 
(22), we have 

c 
P 

n--k+1 n-k+1 

2 “i+k-2(1?)+ iF3 %+k-Z(P)+%(r)) 
i=3 

iEg(P) i@s(P) 

=n-k. 

Using this, the left hand side of (26) equals 

n-k+1 n-k+1 

Yl(P)+YZ(P)+ 2 Vi(P)- 2 1 ai+k-2(P)-an(P) +?Imk’ 
i=3 i=3 

iES(P) ie$(P) 

To prove (26) therefore amounts to proving that 

J 

and this inequality we shall deduce as a consequence of (27). More precisely, 
we are going to prove (28) by using (27), (19), (20), (23), and (24) in the 
following way. We shall add some of the inequalities (23) to (27), thereby 
obtaining an inequality with an increased number of terms, and also add 
some of the inequalities (24), thus causing cancellation of certain terms. In 
the inequality so obtained, we shall collapse clusters of terms into single 
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terms by using (19) and (20), in such a manner that after this collapse we 
obtain k times the inequality (28). Cancellation of k will then yield (28). 

As a first step, we fix p and organize those integers from 3,4,. . . , n - k + 1 
which are not in 4 (p) into “almost consecutive” strings, that is, strings of 
integers that would be consecutive except for isolated omissions of an 
integer, i.e., gaps of length one. Different almost consecutive strings of 
integers not in 4 ( p) thus are to be separated by gaps of length at least two. 
An almost consecutive string therefore has the form 

1+1,z+2 ,...) z+i,-1, 

z+i,+1,z+i,+2 )...) z+i,-1, 

z+i,+1,z+i,+2 )..., z+i,-1, (2% 

z+i,-, +1,z+i,_,+2 ,..., z+i,-1. 

No row of integers in (29) is to be vacuous, none of the integers (29) is in 
4 (p), and all of the integers (29) lie between 3 and n - k+ 1 (inclusive). 
However, the integers 

Z-l and I (30’) 

are in 4(p)U {1,2}, and the gaps in (29), namely, 

z+i,,z+i, )...) z+i,_,, 

are all in 6f ( p). Furthermore, the almost consecutive string (29) cannot be 
lengthened by addition of terms not in 4(p), gaps of length at most one 
permitted. Note that we form almost consecutive strings for each fixed p. 
Furthermore, an almost consecutive string (29), unless it is the highest (i.e., 
involving the largest integers), is separated from the following almost con- 
secutive string by a gap of at least two, so that 

I+$ and I+&+1 (30”) 

are both in 4 ( p). 

For an almost consecutive string (29), therefore, the terms yi with i equal 
to the values (30’) and (30) all occur on the left hand side of (28), and the 
terms ai+k-e with i equal to the values (30) and (30”) all occur in the right 
hand side of (28), except perhaps in the case of the highest almost consecu- 
tive string. For the highest almost consecutive string, the last sentence is still 
valid, except that the term with i = Z + is + 1 will not be present on the right 
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hand side of (28) in just one case: that for which Z + iS - 1 = n - k + 1. 
We now have described indices belonging to an almost consecutive 

string. Next, we examine indices between almost consecutive strings. With 
(29) denoting a typical almost consecutive string, other than the last almost 
consecutive string, let 

_Z+ 1, .Z+2, etc., 

be the integers in the immediately following almost consecutive string. Then 

z+i,,z+i,+l,...,J (31) 

is a string of at least two consecutive integers, all in 4 ( p). The terms yi with 
i ranging over 

z+i,,z+i,+l,...,J-2 (32’) 

all occur on the left hand side of (28) as terms between almost consecutive 
strings and not attached to such a string, i.e., are not terms yi with i of the 
forms (30’) or (30). Furthermore, the terms ~yi + k_2 with i ranging over 

Z+iS+2,Z+&+3,...,J (32”) 

all occur on the right hand side of (28), also as terms between almost 
consecutive strings and not attached to such a string, i.e., are not terms 
(~~+~_s with i of the forms (30) or (30”). Note that (32’) and (32”) comprise 
the same number of terms. Next, we consider indices preceding the first 
almost consecutive string. If the first almost consecutive string begins with 
i =3 (i.e., Z=2), then no terms in (28) precede the terms associated as in (30), 
(30’) with this first almost consecutive string. If, however, the first almost 
consecutive string has Z > 2, then on the left hand side of (28) initial terms yi 
occur for i equal to 

1,2 ,...) z-2, (33’) 

and on the right hand side initial terms ai + k_2 occur for i equal to 

3,4 )...) I. (33”) 

Note that (33’) and (33”) comprise the same number of terms. 
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Next, we examine trailing terms. Let now (29) be the last almost 
consecutive string. If Z + i, - 1 < n - k + 1, then the terms yi in the left hand 
side of (28) with i following the last almost consecutive string are those for 
which i ranges over 

and 

Z+i,,Z+i;.+l,...,n-k (34’) 

n-k+l, (35’) 

whereas those terms (Y~ + k _ a on the right hand side of (28) for which i follows 
and is not associated [as in (30”)] with the last almost consecutive string are 
those having i ranging over 

Z+is+2,Z+is+3 ,..., n-k+2. (34”) 

Note that (34’) and (34”) comprise the same number of terms (possibly zero 
terms). However, if Z + i,7 - 1= n - k + 1, then (34’) and (34”) do not occur as 
values of i yielding terms in (28). 

We have now organized (for fixed p) the terms on the left hand side of 
(28) into sets, and as well organized the terms on the right hand side of (28) 
into sets. The unions of these sets cover all terms in (28) for this fixed p, each 
term covered just once (ignoring the + 1 term). 

We are now going to take the terms appearing in (27), and apply the 
procedures described below (28), in such a manner that we obtain k times 
the various terms just described in (28). We continue to hold p fixed. For 
notational simplicity we shall suppress dummy variable p. 

Terms in (27) between almost consecutive strings are: on the left hand 
side terms yi with i given by (32’), and on the right hand side terms oi +k_2 
with i given by (32”). Th ese terms in (27) may be written as 

with x ranging over the indices (32’). Using (23), add y, < CY~+~ a total of 
k-l times for each X, thereby obtaining 

. . . +xy,+.- <--.+&x+,+--, (35) 
x x 

. . . + x ky,+ . . . < . . . + 2 ka,+k+. . . , (36) 
x x 
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that is, we have succeded in obtaining the terms in (28) between almost 
consecutive strings times k. 

Terms in (27) preceding the first almost consecutive string are: on the left 
hand side terms yi with i given by (33’), and on the right hand terms (Y~+~_~ 
with i given by (33”). Th ese terms again have the form (35), x now ranging 
over (33’). Adding y, < q + k a total of k - 1 times for each X, we again obtain 
(36), i.e., we obtain the terms in (28) preceding the first almost consecutive 
string times k. 

Next, we examine trailing terms. First assume that in the last almost 
consecutive chain we have Z+ i, - 1< n - k + 1. The trailing terms on the 
left hand side of (27) are terms yi with i ranging over the values (34’) and 
also terms yi with i ranging over 

n-k+l,n-k+2 ,..., 12. 

On the right hand side of (27) the trailing terms are terms (~~+~_a with i 
ranging over (34”). We may write these as 

. . . +xy,+ i: yY+“. G*** +&+k+..., 
x y=n-k+l x 

x ranging over (34’). Adding y, B ax+ k a total of k - 1 times for each X, and 
usmg Yy > x-k+1 for each of the k values of y, we obtain 

that is, we obtain all trailing terms in (28) times k. We postpone until below 
the treatment of the trailing terms in the case in which the last almost 
consecutive chain has I+$-l=n-k+l. 

Next we take terms from (27) associated with an almost consecutive 
chain; if the almost consecutive chain is the last one, assume for the moment 
that Z + is - 1 < n - k + 1. The terms from (27) to be considered are 

... +yz-1+(Yz +x+1 +-. 
+ (YZ+i, +YZ+i,+l +” 
+ . . . 

+(YI+is_, +YZ+ig_,+l+.’ 

<-.. +(‘yr+k-1 +LYl+k +‘. 

+(az+k+i,-z +az+k+i +.. I 
+.._ 

+(az+k+is_,-z+az+k+is_,+~~ 

+yr+i,-1) 

+ YZ+i,-1) 

+Yz+i,-l)+..- 

+ ‘yl+k++d 

+az+k+i,-2 ) 

+az+k+is-2)+Lyr+k+is-1+..* . (37) 
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The numbers of terms within each bracketed cluster on each side are 
. . . . . . 
~1~~2-~1,~3-a2,...,a,-a,~1, respectively, corresponding bracketed clusters 
on opposite sides of the inequality sign having like numbers of terms. Since 
each row in (29) has at least one entry, we have 

i, > 2, i,-i,>2, i,-i,>2, ..., i,-isp1>2. 

The terms (37) all occur in (27). We wish to modify (37) to obtain the terms 
in (28) associated with this almost consecutive chain. That is, we wish to 
perform legitimate operations on (37) and obtain k times 

‘.. +y,-I+(YI) + (YI+i,) +... +(YI+i8_,) + . . 

6 ‘.. +(a, +k+i,-2)+(cYl+k+i,-2)+... +(‘Yl+k+i;-z)+(Yl+k+i,-l+... . (38) 

TERMINOLOGY “Sliding” or “collapsing” downwards will mean replacing 
a term 7, with a smaller term y,, i.e., one having y Q X; and “sliding” or 
“collapsing” upwards will mean replacing a term ~yx with a larger term (Ye, 
i.e., one having y > x. We shall often slide terms within the bracketed 
clusters in (37), and sometimes slide terms from one bracket into another 
bracket. 

Generally speaking, some of the bracketed clusters in (37) have k or 
fewer terms and some more than k terms. A pair of corresponding bracketed 
clusters, e.g., 

Q .‘. +(aI+k+i,-I+‘.’ +al+k+i,-2 ) + . . . ) (39) 

having k or fewer terms in each cluster (so that i, - i, < k) is to be handled as 
follows: add the valid inequality 

YI+i, < aI+i,+k 

to (39) exactly k - (i2 - iJ times, the y-term going into the left hand 
displayed cluster and the a-term into the right hand displayed cluster. Note 
that I + i, + k < I + k + i, - 2. The displayed clusters after incorporating these 
added terms contain exactly k terms (each). Collapse the terms in the left 
hand side cluster into the initial term ~r+~,, and collapse the terms in the 
right hand cluster onto the trailing term ~yr+ k+i,_2, thereby obtaining the 
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desired part 

of (28) [or (38)] times k. 
In this manner we handle any pair of corresponding clusters having k or 

fewer terms in each cluster. These pairs of corresponding clusters may 
therefore be ignored, and will be ignored, in the discussion of (37) to follow. 

If every one of the clusters of terms shown in (37) has k or fewer terms, 
we complete the analysis pertaining to these terms by adding to (37) the 

inequahty YZ-I< aZ+k+ib-l p recisely k - 1 times, thereby obtaining the re- 
maining two terms shown in (38) times k. Note that this step is valid because 
(I-l)+k<Z+k+$-1. 

Suppose now that some of the clusters in (37) have more than k terms, 
and let these clusters be the following (the vertical line is inserted for 
typographical clarity to separate the two sides of the inequality): 

YI-1 < 

+... 
+ CR+&?, + . . . + Yl+&-l) “’ +(‘Y~tk+~,-1 +*” +"I+k+,y2) 

+... + h+pg + . . . + Y1+p4-1) +... +(aI+k+p3-1 +“- +aI+k+p,-2) 
+... +... +... +... 
+... +(Yz+~~~+~+**’ +y~+~~~--l)+‘.* +“’ +(al+k+p2t_,-l +‘-- +aZ+k+pz,-2) 

+.-* +a Z+k+j-1 +-*. . (40) 

The numbers of terms in the individual clusters here are p2 - p1 > k, p4 - p3 > 
k ,a.., p2t-p2t-1> k. Also p2< p3, p4( p5,..., p2t-2 (p2t-1. Perhaps pl=O.) 
Some of the clusters shown in (40) may even have 2k or more terms, and our 
first step will be to cancel enough terms in any such cluster to reduce it to 
precisely 2k - 1 terms. As a typical case, consider the first cluster pair shown 
in (40): 

<-.* +("Z+k+p,-l+--- +aZ+k+p,-2)+-' ’ (41) 

We have LU, < y,, whenever y > x + k; this follows from (24), (19), (20). By 
adding the inequality 4 < y, to (40) [or (41)], one succeeds in canceling oX 
from the right hand side and y,, from the left hand side. Thus we may cancel 
any a-term against any desired y-term that is at least k levels higher. We 
shall now use this device to cancel terms from (41) whenever pz - p1 > 2k, in 
such a manner that exactly 2k - 1 terms remain in each of the two clusters 
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shown. Specifically: 

cancel ‘yr+k+p,-1 against Yl+2k+p,-1, 

. . . 

%k+p,pl against Yl+ppplT 

thereby obtaining the following pair of corresponding clusters: 

... +(yl+p,+-. + YI+p,+2k-2) + . . . 

(-.. + ((YI-_k+p,+ ’ ‘. +‘yI+k+p,-2) + ’ ’ * ’ (42) 

The clusters shown in (42) each have 2k- 1 terms. Do this cancellation on 
each cluster pair in (40) for which the clusters have 2k or more terms. Upon 
completion of this process, those cluster pairs to which this process did not 
apply are still as shown in (40), the remaining cluster pairs now take the form 
shown in (42), and always the number of terms in the clusters now at hand is 
k + 1 or more, but not exceeding 2k - 1. 

At this point we have converted (40) into the following: 

... +yr_,+"' +(S,) < . . . + (6,) 
+ . . . + (6,) + . . . 

+ (62) 

+ +... . . . +... +... 

+(a,) +... +*.. +(a,)+.*. +a,+k+iA_l+... , (43) 

the symbols 6,) a,, . . . , 8, here indicating the number of terms in each cluster: 
k<Si<2k-1, i=1,2 ,..., t. 

Our next step is to cancel a-terms in one cluster of (43) against y-terms in 
the immediately subsequent cluster, in such a way that every a-cluster 
(except the last a-cluster) comes to have exactly k terms. There are four 
cases to be considered here. 

Case (i). We have in (43) an a-cluster and an immediately subsequent 
y-cluster as displayed in (40), i.e., neither were involved in the canceling 
process above that reduced to 2k - 1 terms: 

. ..+(yl+p.+...+Yr+p,~l)+... 
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Herek<pa-pl<2k-1,k<p,-pa(2k-I, ~3)~2,~1=P2-P1~62=p4-p3. 

We cancel 

aZ+k+p,-l against Yz+p,-_pz+p,+k, 
. . . 

%+p,-2 against Yz+p,-1 

[Note that (Z+k+p,-I)+k<Z+pQ-p2+p1+k, Z+p,-ps+pz+k>Z+ 
ps, Z+p,-p2+p,+k<Z+p,-1.1 The effect of this is to reduce the 6, on 
the right hand side of (43) to k and the 6, on the left hand side to 6, - 6, + k. 
(Note: 0 < 6, - 6, + k, since 6, < 2k - 1, 6, > k.) 

Case (ii). In (43) we have an a-cluster as displayed in (40), i.e., not 
involved in the canceling process that reduced to 2k- 1 terms, and a 
y-cluster that was involved in this canceling process: 

Hence 6, = p2 - pl, k <?I, < 2k - 1, S, =2k - 1. Cancel as follows: 

aZ+k+p,-l 

. . . 

az+pz-2 

against Yz+P3-PZ+P,+3k-1’ 

against %+p,+2k-2’ 

[Note that (Z+k+p,-l)+k<Z+p,-p2+pl+3k-1, Z+k+p,---lGZ+p, 
-2, Z+p,<Z+p,-p2+pl+3k-1.1 The effect of this is to replace the 6, on 
the right hand side of (43) by k and the 6, on the left hand side by 
a,-6,+k. 

Case (iii). The a-cluster in (43) participated in the reduction process to 
2k- 1 terms, but the y-cluster did not: 

Q.*. +(aI-k+pp+“. +aI+k+pp-2)+.*. 

I 

... +(Yz+p,+. . . +Yz+p,-l)+.-. 



22 R. C. THOMPSON 

Here k<p,-p,<2k-1, 6,=2k-1, &=p4--p3. Cancel as follows: 

%k+p, 

. . . 

%-2+pz 

against 

against 

YI+p3) 

YI+p,+k--8’ 

(Note: I + p3 + k - 2 < I + p4 - 1.) Again the effect is to replace the 6, in the 
right hand side of (43) by k and the 6, on the left hand side by 6, - 6, + k. 

Case (iv). The a-cluster and the y-cluster both participated in the 
reduction to 2k- 1 terms. Here we have 

Here 6,=2k-1, 6,-2k-1. Cancel 

aI-k+p, 

. . . 

c+2+p, 

against 

against 

YI+p3> 

%+pJ+k-2’ 

Once more, the effect is to replace the 6, on the right hand side of (43) by k 
and the 6, on the left hand side by 6, - 6, + k. 

After these cancellations, the chart (43) indicating the numbers of terms 
in the clusters becomes 

‘.. +y,_l+“- +(I$) < ... +(k) 
+..- +(a,--6,+k) +... +qc) 
+... +(6,-6,+k) +... +(k) 
+... +... +... +... 

+... +(S,_,-6,_,+k) +... +(k) 
+ . . . +(6,-6t_,+k)+“’ +“’ +(8t)+~[+k+i,T-_I+e” . (44) 

Here, of course, k < Si < 2k - 1 for each i. 
Our next step is to diminish some of the terms indicated on the left hand 

side of (44), in particular sliding terms in some of the clusters [except cluster 
(S,)] down into earlier clusters. We do this whenever a cluster on the left 
hand side has more than k terms, sliding some terms in it down into the 
immediately preceding cluster so that precisely k terms remain, repeating 
this process perhaps several times until no cluster [except (a,)] on the left 
hand side has more than k terms. To illustrate: if 6, - 6, > 0, then we slide 
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terms so that 

and if 6, - 6, > 0 we slide further to convert 

&d,+k) 
&-a,+ k) 

(k) 

into 
kb+k) 

6) 

(k) 

If 6, - 6, > 0, further sliding converts (6,) to (6,) and (6, - 6, + k) to (k). 
In this way, by sliding y-terms downwards, some of the clusters shown on 

the left hand side come to have exactly k terms, and the rest [except the 
cluster that was (S,)] h ave fewer than k terms. Not writing out explicitly all 
those now having exactly k terms, (44) becomes 

..- +yr_l+-. 

+*. 

+-. 

+*. 

+-- 

+ l&l) < . . +W 
+ (4, - $, + k) + . . +@I 
+... +... 

+ (ST,_, - h~z + 4 + . . +&I 
+(k,-4_,+N +. . +@I 
+(k)+. . * +. * +(st)+aI+k+i~--l+*~~ . (45) 

Here ri, . . . , r, are a subset of l,..., t with rT = t, and (S,, - &_, + k) is either 
opposite to or earlier than (8,). (Only the “earlier” case is displayed.) We 
assume that further sliding on the left is not possible. This means that 

Now slide 4, - k terms y from (a,,) down onto yr _ i, and if (&, - S,,_ 1 + k) 
is earlier than (6,) slide a-terms upwards onto q+ k + ia _ i, as follows: 

slide S7, - Sr2 terms (Y from the second cluster (k) upwards, 
slide c$, - aT3 terms (Y from the third cluster (k) upwards, 
. . . 

slide 8, _ - 8,; terms (Y from the 7th cluster (k) upwards, 
slide 6;’ k terms (Y from (6,) upwards. 
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This converts the chart (45) into the following: 

... +-y-1 (8,,-k+l times)+... +(k) < . 
+... +(8,Tp-SrI+k) +. 

+... 
+... +(4-4_,+4 +. 
+...+(k)+... +. 

+. 

+(k) 
+ (f& - 4, + 4 
+... 
+(Qk_,+k) 
+(k) 
+ al+k+i*-l (S,, - k + 1 times). 

(46) 

However, if (8, - Sr,-, + k) is opposite (a,), slide a?1 - k terms y downwards 
from (a,,) as before, and slide a-terms onto (Y~+~+ i _ 1 in this manner: Slide s 

Sr, - S,, terms (Y from the second cluster (k) upwards, 
. . . 

6 Ti_z - Sr,_, terms from the (7 - 1)st cluster (k) upwards, 
6 ,,~, - k terms from the 7th cluster (6,) upwards. 

This converts (45) into the same chart (46), with the next to last displayed 
line absent. 

We next argue as before. Each pair of corresponding clusters now has the 
same number of terms, precisely k, or less than k [see (46)]. We may 
augment clusters having fewer than k terms until the number of terms is 
precisely k, as in the earlier part of the proof, then in every y cluster slide 
down to the first y-term in the cluster (thereby obtaining this term times k), 
or slide in each a-cluster up to the last a-term (thereby also obtaining this 
term times k). Since S,, - k + 1 < k (because 4, < 2k - l), we may add the 
inequality 

exactly k - (Sri - k + 1) times so as to obtain these two terms times k. After all 
this effort we obtain terms in (28) times k. 

The only cases remaining in the proof of the lemma are (i) the examina- 
tion of the trailing terms when for the last almost consecutive chain the 
equality 

Z+is-l=n-k+l (47) 

holds, and (ii) the passage from (37) to k times (38) for the last almost 
consecutive chain when (47) holds. [When (47) holds, the term (Y~+ k+ i, _ 1 is 
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absent in (37) and (38).] We combine these two cases into a single case; thus 
in place of (37) we have 

“’ +yr_l+(yr+“m +YI+i,-1) Q ... +(ar+k-l+*.. +ar+k+i,-2) 
+... +(yr+i,+‘*’ +yr+i,-1) +‘.’ +(aI+k+i,-l+‘*’ +al+k+ip-2) 

+... +... 

+... +cyr+i*_,+.. . +yr+& +... +(ar+k+is_,-l+... +%+k+i;--2) 
+.._ +(Yn-k+P+... +ud (48) 

Note that yr+iS_-l=~n_-k+l, 01+k+iS_2=s. Our objective is to add terms, 
cancel terms, and slide terms in (48) so as to obtain k times 

If every paired cluster of y-terms and a-terms in (48) has k or fewer 
terms in each cluster, then we augment the clusters in each pair until k 
terms are enclosed, then slide the y-terms in each such cluster onto its lowest 
y-term, slide the o-terms in each such cluster onto its highest a-term, and 
finally slide the k - 1 terms in the unpaired cluster ( y,,_ k+2 + * * . + y,) into 
yr_ 1. We then have obtained k times (49). 

Thus assume that some of the clusters have k + 1 or more terms. Set aside 
and treat as above pairs of clusters having k or fewer terms in each cluster. 
This leads us [in place of (40)] to 

“’ +y,_l+.” +(YI+pI+... +YI+pp--L) < ..’ +(al+k+p,-l +.” +aI+k+02-2) 

+“’ +(Y*+p3+." +Yl+p4-l) +“’ +(aI+k+&,-, +“’ +al+kfp4-2) 
+... +... 

f”’ +(Y,+P*t_-I+... +YI+p*t-l) f... +(aI+k+pp,_,--l +“’ +al+k+p*1-2) 

f. ” +(Yn-k+Z + ” + ,‘,), 

where pz-pl>k,..., pzt-p2t-1>k. 
As before, we cancel in corresponding clusters when there are 2k or 

more terms in a cluster. Then [in place of (43)] we convert (50) to 

. .. +yr_l+” +(S,) < *** +(6,) 
+ . . . +(a,) +... +(6,) 

+... . . 

+**a +(sJ + . . . &) + . . . + (k - l), (51) 
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the quantities shown in the parentheses being the numbers of enclosed 
terms. Here k < Si < 2k - 1 for each i. Next we cancel a-terms in a cluster on 
the right in (51) against Y-terms in the next cluster, so as to make each 
a-cluster have exactly k terms. The new feature here is that we do this 
cancellation as well on the last a-cluster (6,) and the trailing unpaired 
Y-cluster (k- 1). That this new cancellation is possible is seen by examining 
two cases. 

(i) Cluster (8,) did not part’ rcipate in the reduction to 2k - 1 terms, i.e., 
k<pzt-pzt_l <2k-1: 

<.-. +h+k+p,,_,-1+ . . . + %+k+p*,-2) 
I 

.-. +(y”-k+z+..* + Yn)l 

Here we cancel 

%+k+pZf_,-1 

. . . 

%2+pp, 

against 

against 

Y,- Pz~+Pz,--l+k+r7 

Y”. 

Note that (Z+k+p,,_,-l)+k<n-p,,+p,,_,+k+l, since this amounts 
to Z+p,,-l<n-k++, which follows from (47). Also n-p,,+p,,_,+k+l 
< n, because pzt - pzt_ 1 > k+l, and n-p2,+p2,_,+k+1>n-k+2, since 
p2t-~2t-1~2k-1. 

(ii) Cluster (6,) did part’ rcipate in the reduction to 2k - 1 terms. Here we 
must cancel in [see (42)] 

Q..- +(al-k+pp, + ‘. ’ + %+k+p2,-2) 

I 

We cancel 

%k+p2, 

. . . 

aI-2+p2, 

against Yn-k+2, 

against Y ll* 

Note that (I-k+p,,)+k<n-k+2, sinceZ+p,,-11n-kkl. 
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In either case, therefore, we convert (51) to 

*** +yr_l+“’ +(6,) < .** +(k) 
+ * * * +(I?,-t&+k) +-** +(k) 

+ . . . 

+ *** +(a,-a,_,+k) +-** + . . . + (2k - 1 - 6,) (52) 

the symbols in the parentheses again indicating the numbers of terms 
enclosed. Now we slide y-terms downwards as follows: from 

(4-4-1+k) 
+(2k-l-6,), 

slide to get 

((2k-l-&,)+k) 

+ (0). 

Since2k-l-&,_,>O,wemayshde2k-1-6,_,termsydowntothenext 
cluster to get 

((2k - l- a,_,) + k) 

+ (k) 
+ (0). 

We may continue sliding this way, using 2k - 1 - Si > 0 for each i, so finally 
reaching 

... +~y~__~+... +(2k-l)< +.. +(k) 
+..a +(k) + ... +(k) 

+... . . . 

+... +(k) + . . . l(k). 
+ . * * + (0) 

Finally, sliding k - 1 terms y down onto yI- 1, we get 

kyI_,+... +(k) <... +(k) 
+... +(k)+ ... +(k) 

+ . . . + . . . 
+... +(k)+ ... +(k). 
+*.* +(o) 
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Collapsing y-terms downwards within each y-cluster (k) in (53), and collaps- 
ing o-terms upwards within each a-cluster in (53), we obtain k times (49). 

We have now succeeded in modifying (27) so that the y- and a-terms 
remaining are precisely the y- and o-terms in (28) times k. Canceling k, we 
obtain (28), as desired. The proof of Lemma 3 is now complete. n 

8. SIMILARITY INVARIANTS OF PRINCIPAL SUBMATRICES OF 
DEFICIENCY EXCEEDING 1 

Let ‘?? be a field, C an Nan matrix over 9, and A an (n-k)x(n-k) 
matrix, also over 9, with 1 < k < n - 1. We now state a generalization of 
Theorem 4. 

THEOREM 6. Let the Nan T-matrix C have (similarity) invariant 

factors h,(C)]. . . h,(c), including trivial invariant factors. Let the (n - k) X 
(n-k) ‘??-matrix A have (similarity) invariant factors h,(A)I* * * Ih,_k(A), 
again including trivial invariant factors. Then A is a principal submatrix of 
same 3 similarity transfnm of C if and only if the divisibility relations (15) 
hold (under the convention (16)) and 

degree(h,(C)...h,(C))=n, degree(h,(A)***h,_,(A))=n-k. (54) 

Proof Since AI - A is a principal submatrix of Al - C whenever A is a 
principal submatrix of C, an application of Theorem 5 shows that the 
conditions (15) are indeed necessary. Obviously (54) must hold. 

Conversely, suppose polynomials h,(C), . . . , h, (C), h,(A), . . . , h, _k (A) are 
given satisfying the stated conditions. We must show that a matrix C exists 
with a matrix A as principal submatrix such that C and A have these given 
polynomials as invariant factors. The proof imitates that given for Theorem 
5, and is by induction on k. The case k = 1 is Theorem 4. Suppose k > 1. We 
set [taking h_,(A) = h,,(A) = l] 

hi(B)=lcm(hi(C),hi-z(A)), i=l,2 ,..., n-k+l. 

Then we know that (17) and (18) hold, precisely as in the proof of Theorem 
5. We wish to verify that 

(55) 
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If (55) can be proved, then we argue as follows. We multiply hn_k+ ,(B) 
by linear factors until the degree inequality (55) becomes equality. With this 
new choice of h,_ k+ ,(B), both (17) and (18) continue to hold [because 
h “+k-1(C)=a s ince (55) is equality and (17) and (18) hold, we can, by 
Theorem 4, construct an T-matrix A with the prescribed invariant factors 
and contained as a principal submatrix in the (n - k + 1) X (n - k + 1) ‘??- 
matrix B, and by induction on k embed B as a principal submatrix of an 
rr X n T-matrix C having the prescribed invariant factors. Thus the proof will 
be complete once (55) is verified. 

Before verifying (55), we make a notational change: In place of 
hI(A)I Ih,_,(A) write hk+l(A)I.. . Ihn(A). Then we have 

. . . 

(56) 

. . . 

We also have hk+l(A)I-. . /h,,(A), and 

hi(B)=lcm(hi(C),hi+k-I(A)), i=l,..., n-k+l, 

where it is understood that hk_l(A)= h,(A) = 1. Furthermore 

degree(hk+,(A)...h,(A))=n-k. 

Factor the polynomials h,(C) ,..., h,,(C), hk+l(A) ,..., h,,(A) into prime 
(linear) polynomials over the algebraic closure of 9, and let p be one of the 
finitely many linear polynomials appearing in these factorizations. Suppose 
that 

pappearsinhi(C)aspx, l<i<n, 
pappearsinh,(A)asp4,k+l<i<n. 

The divisibility relations satisfied by the hi(C) and the hi(A) then become 
(19), (20), (23), and (24), and the degree relations (54) are (21) and (22). 
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Because p appears in hi (B) as 

P 
max(Y,,ai+*-2) 

R. C. THOMPSON 

and because degreep = 1, the degree inequality (55) to be proved is precisely 
(25). The Lemma in Sec. 7 now shows that this degree condition is satisfied. 
The proof of Theorem 6 is complete. n 

9. COMPARISON WITH SINGULAR 
VALUE INTERLACING INEQUALITIES 
FOR MINORS OF DEFECT 1 OR MORE 

We cannot refrain from mentioning again the extraordinary and totally 
unexpected analogy between properties of invariant factors for minors and 
properties of singular values for minors. For minors of deficiency one, this 
was already noted in Sec. 5. For minors of deficiency k, we have 

Pl aa1 >P1+2kr Plbll P1+2k¶ 
Pz~%>P2+2kl Pzl%I P2+2kY 

p,:,, >(Y,_Zk >A, iLkIan-,,I P”Y 
P,- 2k+l>an--2k+l, Pn--ek+lbn--ek+D 

. . . 

I%-k >(Y,-k* i,:kbn-k* 

Singular values Invariant factors 

(57) 

Here the B’s are the singular values or invariant factors of an n X n matrix B, 
and the (Y’S are the singular values or invariant factors of an (n - k) X (n - k) 
matrix A, subject to the usual conditions B1 > . . . > p,,, a1 > * *. > an-k, Or 

&I.. ’ I/%,, all.. * 1%k. ~30th f or unitary equivalence B+UBV with U, V 
unitary, and for unimodular equivalence B-+ UBV with U, V unimodular, the 
conditions (57) are necessary and sufficient for the embeddability of A as a 
submatrix of UBV for some U, V. And, of course, for matrices over a field 
and V= U - ', the conditions (57) are necessary and sufficient subject to the 
obvious degree requirements. 

The question of studying the relationship between the %-invariant 
factors of a matrix and those of a submutrix was raised by Dr. Morris 
Newman in the course of a series of lectures in Santa Barbara in the spring 
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of 1976. I am greatly indebted to Professor Newman fm his penetrating and 
incisive suggestion, and his conjecture that the invariant factors of the 
submatrix should in some manner divide the invariant factors of the full 
matrix. 

The preparation of this paper was supported in part by Grant 77-3166, 
U.S. Air Force. 

REFERENCES 

1 D. Carlson, Inequalities for the degrees of the elementary divisors of modules, 
Linear Algebra and Appl. 5 (1972), 293-298. 

2 G. N. de OIiveira, Matrices with prescribed characteristic polynomial and pre- 
scribed submatrix III, Monufsh. Math. 75 (1971), 441-446. 

3 L. Gerstein, A multiplicative property of invariant factors, Lineur arui M&linear 
Algebra 2 (1974), 141-142. 

4 B. W. Jones, The Arithmetic Theory of Quadratic Forms, Cams Monograph No. 
10, Math. Assoc. Amer., 1959. 

5 M. Newman, Integral Matrices, Academic, 1972. 
6 It. C. Thompson, Principal submatrices IX. Interlacing inequalities for singular 

values, Linear AZgeb7a and Appl. 5 (1972), 1-12. 

Receiwd 5 August 1977 


