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Abstract

Tsallis relative operator entropy is defined and then its properties are given. Shannon
inequality and its reverse one in Hilbert space operators derived by Furuta [Linear Algebra
Appl. 381 (2004) 219] are extended in terms of the parameter of the Tsallis relative operator
entropy. Moreover the generalized Tsallis relative operator entropy is introduced and then
several operator inequalities are derived.
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1. Introduction

Tsallis entropy

Sq(X) = −
∑
x

p(x)q lnq p(x)

was defined in [6] for the probability distribution p(x), where q-logarithm function

is defined by lnq(x) ≡ x1−q−1
1−q for any nonnegative real numbers x and q /= 1. It

is easily seen that Tsallis entropy is one parameter extension of Shannon entropy
S1(X) ≡ −∑x p(x) logp(x) and converges to it as q → 1. The study based on
Tsallis type entropies has been developed in mainly statistical physics [7]. In the
recent work [1], Tsallis type relative entropy in quantum system, defined by

Dq(ρ|σ) ≡ 1

1 − q
[1 − T r(ρqσ 1−q)] (1)

for two density operators ρ and σ (i.e., positive operators with unit trace) and 0 �
q < 1, was investigated.

On the other hand, the relative operator entropy was defined by Fujii and Kamei
[3]. Many important results in operator theory and information theory have been
published in the relation to Golden–Thompson inequality [2,5]. We are interested
in not only the properties of the Tsallis type relative entropy but also the prop-
erties before taking a trace, namely, Tsallis type relative operator entropy which
is a parametric extension of the relative operator entropy. In this paper, we define
the Tsallis relative operator entropy and then show some properties of Tsallis rel-
ative operator entropy. To this end, we slightly change the parameter q in Eq. (1)
to λ in our definition which will be appeared in the following section. Moreover,
in order to make our definition correspond to the definition of the relative oper-
ator entropy defined in [3], we change the sign of the original Tsallis relative
entropy.

2. Tsallis relative entropy

As mentioned above, we adopt the slightly modified definition of the Tsallis
relative entropy in the following.

Definition 1. Let a = {a1, a2, . . . , an} and b = {b1, b2, . . . , bn} be two probability
vectors satisfying aj , bj > 0. Then for 0 < λ � 1

Sλ(a|b) =
∑n

j=1 a
1−λ
j bλj − 1

λ
(2)

is called Tsallis relative entropy between a and b.
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We should note that the Tsallis relative entropy is usually defined by

Dq(a|b) = 1 −∑n
j=1 a

q
j b

1−q
j

1 − q
, (3)

with a parameter q � 0 in the field of statistical physics [7]. There is the relation
between them such that Sλ(a|b) = −D1−q(a|b). However, in this paper, we adopt
the definition of Eq. (2) in stead of Eq. (3), to study of the properties of the paramet-
rically extended relative operator entropy as a series of the study of the relative oper-
ator entropy from the operator theoretical point of view. The opposite sign between
the relative entropy defined by Umegaki [8] and the relative operator entropy led us
to define the Tsallis relative operator entropy in the above.

Tsallis relative entropy defined in Eq. (2) has the following properties.

Proposition 1. We have the following (1) and (2).

(1) Sλ(a|b) �
n∑

j=1

aj log
bj

aj
for 0 < λ � 1.

(2) lim
λ→0

Sλ(a|b) =
n∑

j=1

aj log
bj

aj
.

Proof. (1) Since tλ − 1 � log tλ, we have

∑n
j=1 a

1−λ
j bλj − 1

λ
=

n∑
j=1

aj

(
bj
aj

)λ − 1

λ
�

n∑
j=1

aj log
bj

aj
.

(2)

lim
λ→0

∑n
j=1 a

1−λ
j bλj − 1

λ
= lim

λ→0

∑n
j=1 aj

(
bj
aj

)λ − 1

λ

=
n∑

j=1

aj

(
bj

aj

)λ
log

bj

aj

∣∣∣
λ=0

=
n∑

j=1

aj log
bj

aj
. �

Proposition 2

0 � Sλ(a|b) �

(∑n
j=1

a2
j

bj

)−λ − 1

λ
.
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Proof. Since

n∑
j=1

a1−λ
j bλj �

n∑
j=1

{(1 − λ)aj + λbj } = (1 − λ)

n∑
j=1

aj + λ

n∑
j=1

bj = 1,

we have

Sλ(a|b) � 0.

We also give another inequality. Since

n∑
j=1

a1−λ
j bλj =

n∑
j=1

(
aj

bj

)−λ
aj �

n∏
j=1

(
aj

bj

)−λaj

=
(

n∏
j=1

(
aj

bj

)aj )−λ
�
(

n∑
j=1

a2
j

bj

)−λ
,

we have

Sλ(a|b) �

(∑n
j=1

a2
j

bj

)−λ − 1

λ
. �

3. Tsallis relative operator entropy

A bounded linear operator T on a Hilbert space H is said to be positive (denoted
by T � 0) if (T x, x) � 0 for all x ∈ H and also an operator T is said to be strictly
positive (denoted by T > 0) if T is invertible and positive. We define Tsallis relative
operator entropy in the following.

Definition 2. For A > 0, B > 0 and 0 < λ � 1,

Tλ(A|B) = A1/2(A−1/2BA−1/2)λA1/2 − A

λ

is called Tsallis relative operator entropy between A and B.

In this section we give the Shannon type operator inequality and its reverse one
satisfied by Tsallis relative operator entropy.

Theorem 1. Let {A1, A2, . . . , An} and {B1, B2, . . . , Bn} be two sequences of strictly
positive operators on a Hilbert space H . If

∑n
j=1 Aj = ∑n

j=1 Bj = I,

then
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0 �
n∑

j=1

Tλ(Aj |Bj ) �
(∑n

j=1 AjB
−1
j Aj

)−λ − I

λ
.

We need a lemma before we prove the main theorem.

Lemma 1. For fixed t > 0, an inequality of λ (0 < λ � 1) holds.

tλ − 1

λ
� t − 1.

Proof. If t = 1, then it is clear. If t /= 1, then we put F(λ) = λ(t − 1)− tλ + 1.
Then we have F ′(λ) = t − 1 − tλ log t and F ′′(λ) = −tλ(log t)2 < 0. Hence F(λ)
is concave. Since F(0) = F(1) = 0, we have the result. �

Proof of Theorem 1. It follows from Lemma 1 that

A1/2(A−1/2BA−1/2)λA1/2 − A

λ
= A1/2 (A

−1/2BA−1/2)λ − I

λ
A1/2

� A1/2(A−1/2BA−1/2 − I )A1/2

= B − A,

where A > 0, B > 0 and 0 < λ � 1. Then we have

n∑
j=1

Tλ(Aj |Bj )=
n∑

j=1

A
1/2
j

(
A

−1/2
j BjA

−1/2
j

)λ
A

1/2
j − Aj

λ

�
n∑

j=1

(Bj − Aj) = 0.

We also prove another inequality. We apply Proposition 3.1 of Furuta [4] by putt-
ing f (x) = −x−λ, Cj = A

1/2
j and Xj = A

1/2
j B−1

j A
1/2
j . Then

−
(

n∑
j=1

A
1/2
j

(
A1/2B−1

j A
1/2
j

)
A

1/2
j

)−λ
� −

n∑
j=1

A
1/2
j

(
A

1/2
j B−1

j A
1/2
j

)−λ
A

1/2
j .

Hence(
n∑

j=1

AjB
−1
j Aj

)−λ
�

n∑
j=1

A
1/2
j

(
A

−1/2
j BjA

−1/2
j

)λ
A

1/2
j .

Then we complete the proof. �
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We also obtain the operator version of the Shannon inequality and reverse one
given by Furuta [4] as a corollary of Theorem 1 in the following.

Corollary 1 (Furuta [4]). Let {A1, A2, . . . , An} and {B1, B2, . . . , Bn} be two
sequences of strictly positive operators on a Hilbert space H . If

∑n
j=1 Aj =∑n

j=1 Bj = I, then

0 �
n∑

j=1

A
1/2
j

(
logA−1/2

j BjA
−1/2
j

)
A

1/2
j � − log

[
n∑

j=1

AjB
−1
j Aj

]
.

We need the following lemma to prove it.

Lemma 2. For 0 < λ < 1, 0 < α < β, we have the following (1) and (2).

(1) lim
λ→+0

tλ − 1

λ
= log t uniformly on [α, β].

(2) lim
λ→+0

t−λ − 1

λ
= − log t uniformly on [α, β].

Proof. We prove it by using Dini’s theorem. �

Proof of Corollary 1. By (1) of Lemma 2,

lim
λ→+0

(A−1/2BA−1/2)λ − I

λ
= logA−1/2BA−1/2,

where the limit is taken in operator norm. Then

lim
λ→+0

n∑
j=1

Tλ(Aj |Bj )= lim
λ→+0

n∑
j=1

A
1/2
j

(
A

−1/2
j BjA

−1/2
j

)λ
A

1/2
j − Aj

λ

=
n∑

j=1

A
1/2
j

(
logA−1/2

j BjA
−1/2
j

)
A

1/2
j .

On the other hand, by (2) of Lemma 2, we have

lim
λ→+0

(∑n
j=1 AjB

−1
j Aj

)−λ − I

λ
= − log

[
n∑

j=1

AjB
−1
j Aj

]

Therefore Theorem 1 ensures

0 �
n∑

j=1

A
1/2
j

(
logA−1/2

j BjA
−1/2
j

)
A

1/2
j � − log

[
n∑

j=1

AjB
−1
j Aj

]
. �



K. Yanagi et al. / Linear Algebra and its Applications 394 (2005) 109–118 115

Actually the above Corollary 1 is a part of the Corollary 2.4 in [4]. We will gen-
eralize our Tsallis relative operator entropy and derive some generalized operator
inequalities by the different way from [4] in the following section.

4. Generalized Tsallis relative operator entropy

We remind of the relative operator entropy and its related operator entropy.

Definition 3. For A > 0, B > 0

S(A|B) = A1/2(logA−1/2BA−1/2)A1/2

is called relative operator entropy between A and B. It was defined by Fujii and
Kamei [3] originally. For A > 0, B > 0 and λ ∈ R, the generalized relative operator
entropy was defined by Furuta [4]

Sλ(A|B) = A1/2(A−1/2BA−1/2)λ(logA−1/2BA−1/2)A1/2

and

A!λB = A1/2(A−1/2BA−1/2)λA1/2.

In particular we remark that S0(A|B) = S(A|B), A!0B = A and A!1B = B.

We generalize the definition of the Tsallis relative operator entropy.

Definition 4. For A > 0, B > 0, λ,µ ∈ R, λ /= 0 and k ∈ Z,

T̃µ,k,λ(A|B) = A!µ+kλB − A!µ+(k−1)λB

λ

is called generalized Tsallis relative operator entropy. In particular we remark that
for λ /= 0

T̃0,1,λ(A|B)= A!λB − A!0B

λ
= A1/2(A−1/2BA−1/2)λA1/2 − A

λ
= Tλ(A|B).

We state the relationship among Sµ±kλ(A|B), Sµ±(k+1)λ(A|B) and T̃µ,k+1,±λ
(A|B).

Proposition 3. If λ > 0, µ ∈ R and k = 0, 1, 2, . . . , then

(1) Sµ−(k+1)λ(A|B) � T̃µ,k+1,−λ(A|B) � Sµ−kλ(A|B).
(2) Sµ+kλ(A|B) � T̃µ,k+1,λ(A|B) � Sµ+(k+1)λ(A|B).

Proof. If λ > 0, µ ∈ R and k = 0, 1, 2, . . ., then it is easy to give the following
inequalities for any t > 0:
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tµ−(k+1)λ log t � tµ−(k+1)λ − tµ−kλ

−λ � tµ−kλ log t,

tµ+kλ log t � tµ+(k+1)λ − tµ+kλ

λ
� tµ+(k+1)λ log t.

Then replace t by A−1/2BA−1/2 and multiply A1/2 on both sides so we get the
desired results. �

By putting k = 0 or 1, we get the following.

Corollary 2. For A > 0, B > 0, µ ∈ R and λ > 0,

Sµ−2λ(A|B)� T̃µ,2,−λ(A|B) � Sµ−λ(A|B)
� T̃µ,1,−λ(A|B) � Sµ(A|B) � T̃µ,1,λ(A|B)
� Sµ+λ(A|B) � T̃µ,2,λ(A|B) � Sµ+2λ(A|B).

In particular by putting µ = 0, λ = 1, we get the following.

Corollary 3. For A > 0, B > 0,

S−2(A|B)� T̃0,2,−1(A|B) � S−1(A|B)
� T̃0,1,−1(A|B) � S0(A|B) � T̃0,1,1(A|B)
� S1(A|B) � T̃0,2,1(A|B) � S2(A|B).

We rewrite the following:

S−2(A|B)� AB−1A− AB−1AB−1A � S−1(A|B)
� A− AB−1A � S(A|B) � B − A

� S1(A|B) � BA−1B − B � S2(A|B).

Similarly we state the relationship among
∑n

j=1 Sµ±kλ(Aj |Bj ),∑n
j=1 Sµ±(k+1)λ(Aj |Bj ) and

∑n
j=1 T̃µ,k+1,±λ(Aj |Bj ), where Aj > 0, Bj > 0 sat-

isfying
∑n

j=1 Aj = ∑n
j=1 Bj = I . If λ > 0, µ ∈ R and k = 0, 1, 2, . . ., then we

have the following:

n∑
j=1

Sµ−(k+1)λ(Aj |Bj ) �
n∑

j=1

T̃µ,k+1,−λ(Aj |Bj ) �
n∑

j=1

Sµ−kλ(Aj |Bj ),

n∑
j=1

Sµ+kλ(Aj |Bj ) �
n∑

j=1

T̃µ,k+1,λ(Aj |Bj ) �
n∑

j=1

Sµ+(k+1)λ(Aj |Bj ).
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By putting k = 0 or 1, we get the following.

Corollary 4. For A > 0, B > 0, µ ∈ R and λ > 0,

n∑
j=1

Sµ−2λ(Aj |Bj )�
n∑

j=1

T̃µ,2,−λ(Aj |Bj ) �
n∑

j=1

Sµ−λ(Aj |Bj )

�
n∑

j=1

T̃µ,1,−λ(Aj |Bj ) �
n∑

j=1

Sµ(Aj |Bj )

�
n∑

j=1

T̃µ,1,λ(Aj |Bj ) �
n∑

j=1

Sµ+λ(Aj |Bj )

�
n∑

j=1

T̃µ,2,λ(Aj |Bj ) �
n∑

j=1

Sµ+2λ(Aj |Bj ).

In particular by putting µ = 0, λ = 1, we get the following result which is some-
what different type from Corollary in [4].

Corollary 5. For Aj > 0, Bj > 0 satisfying
∑n

j=1 Aj = ∑n
j=1 Bj = I,

n∑
j=1

S−2(Aj |Bj )�
n∑

j=1

AjB
−1
j Aj −

n∑
j=1

AjB
−1
j AjB

−1
j Aj �

n∑
j=1

S−1(Aj |Bj )

� I −
n∑

j=1

AjB
−1
j Aj �

n∑
j=1

S(Aj |Bj ) � 0

�
n∑

j=1

S1(Aj |Bj ) �
n∑

j=1

BjA
−1
j Bj − I �

n∑
j=1

S2(Aj |Bj ).
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