
Theoretical Computer Science 102 (1992) 165-183

Elsevier
165

Maximality preserving bisimulation

Raymond Devillers*
Laboratoire d’lnformatique Thdorique, UniuersitP Libre de Bruxelles, Boulevard du Triomphe,

B-1050 Bruxelles, Belgium

Communicated by M. Nivat

Received March 1990

Revised February 1991

Abstract

Devillers, R., Maximality preserving bisimulation, Theoretical Computer Science 102 (1992)

165-183.

A new bisimulation notion is introduced for the specification of concurrent systems, which resists

to a large class of action refinements, even in the presence of invisible actions. The work is

presented in the context of labelled P/T nets, but it may be transported to other popular frameworks

like prime event structures, process graphs, etc.

1. Introduction

Bisimulation, which is also sometimes called bisimilarity, has been introduced in

[9] as a concept which is essentially equivalent to observational equivalence [8].

Its great importance and usefulness for the comparison of different concurrent

systems and for proofs of their correctness has been stressed in the literature.

Usually, bisimulation is defined in terms of execution sequences, i.e. in terms of

arbitrary interleaving. In this case, however, bisimulation cannot distinguish between

a concurrent system and its sequential simulation. Moreover, it does not resist to

the simplest action refinements for concurrent systems [ll].

In a previous work [2], the author, together with Best, Kiehn and Pomello, defined

a fully concurrent bisimulation notion for systems represented by labelled P/T nets

with a semantics expressed through the labelled partial orders corresponding to

their processes. This relation essentially corresponds to other equivalence notions

developed independently in other frameworks, like the BS-bisimulation [13] for

behaviour structures and the history preserving bisimulation [5] for event structures.

Some nice results have been obtained on action refinements, but some problems

* Research supported by ESPRIT Basic Research Action, project 3148: DEMON.

0304.3975/92/$05.00 @ 1992-Elsevier Science Publishers B.V. All rights reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82020466?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

remained in the presence of invisible actions. This problem has been solved for

process graphs by [7] who defined a branching bisimulation, which resists to

refinements, and may be transported to the labelled P/T net theory, but only for

sequential systems.

We will here introduce a strengthening of the fully concurrent bisimulation, which

we called the maximality preserving bisimulation, which still captures the concurrent

semantics of labelled systems and withstands a large class of refinements even in

the presence of r-transitions. When applied to sequential systems, our notion proves

to be weaker than the branching bisimulation.

2. Basic definitions

2.1. Unlabelled systems

We briefly recall the definitions of some basic concepts, referring e.g. to [3, l]

A net with arc weights is a triple N = (S, T, W) with S n T = (il and

W:((Sx T)u(TxS))+N={O, 1,2,. .}.

T is a set of transitions and S is a set of places. We assume all nets to be finite,

i.e. [Su TIE N. A net N = (S, T, W) is ordinary iff for all (x, y) E

((Sx T)u(TxS)): W(x,y)~l. I n an ordinary net, the weight function can

(and will) be replaced by a flow relation F c_ ((S x T) u (T x S)), following the

rule that (x,y) E Fe W(x, y) # 0. For XE Su T, the pre-set ‘x is defined

‘x={y~Su T(W(y,x)#O} and the post-set x’

;;ESU T, W(x,y)zO).

is defined as X’ =

A marking of a net (S, T, W) is defined as a function M : S + N, giving the number

of tokens contained in each place. The transition rule states that a transition t is

enabled by M iff M(s) b W(s, t) for all s E S, and that an enabled transition t may

occur, producing a successor marking M’ by the rule M’(s) =

M(s) - W(s, t) + W(t, s) for all s E S. The occurrence of t is denoted by M[t)M’.

Two transitions f,, t2 (not necessarily distinct) are concurrently enabled by a

marking M iff M(s) 3 W(s, t,) + W(s, tz) for all s E S. This may be extended to sets

or bags of transitions.

A system net (or a marked P/T net) (S, T, W, M,,) is a net (S, T, W) with an initial

marking MC,.

A sequence u = Mot, M,t,. . is an occurrence sequence iff M,_,[t,)M, for 1 s i.

A sequence t, t, . . . is a transition sequence (starting with M) iff there is an occurrence

sequence Mt, M, t2. . If the finite sequence t, t,. . t, leads from M to M’ then we

write M[t,t2. . t,)M’. The set of reachable markings of a marked net (S, T, W, M,,)

is defined as [M,,) = {M I3t, t2. t,,: M,,[t, t,. . t,,) M}. A marked net (S, T, W, M,,)

is safe iff VM E[MJ, Vsr S: M(s)< 1.

h4aximalit.v preserving hisimulation 167

An occurrence net N = (B, E, F) is an acyclic ordinary net without branched

places, i.e., Vx, y E B u E: (x, y) E F++(y, x) P? F+ (acyclicity) and ‘db E B: I’bl s 1 A

16’1s 1 (no branching of places). For an occurrence net (B, E, F), the pair (X, <)

with X = B u E and < = F’ is a strict partial order. Often, elements of E are called

events and elements of B are called conditions.

A B-cut c G B of an occurrence net (B, E, F) is a maximal unordered set of

B-elements (taking F+ as the ordering). Ic denotes the set of elements {XE Bu

E 13~ E c: (x, y) E F*}, i.e., the set of elements below or on c. For two B-cuts c,, c2

of N=(B, E, F), we define c,&c2 iff c,sJc,, and c, c c2 iff c, L c2 and c, f c2.

In order to avoid minor but annoying technical difficulties, we will suppose from

now on that all our nets are T-restricted, i.e., Vt E T: ‘t #B f t’.

Min(N) and Mux(N) are the B-cuts defined by the sets {x E B u E (‘x = 0} and

{x E B u E (x’ = 0}, respectively.

A process n = (N, p) = (B, E, F, p) of a system I= (S, T W, MO) consists of an

occurrence net N = (B, E, F) together with a labelling p : B u E -+ S u T which satisfy

appropriate properties such that n can be interpreted as a concurrent run of 1, i.e.,

l p(B) G S, p(E) s T (B-elements are instances of place holdings, E-elements are

occurrences of transitions);

l Mm(N) is a B-cut which corresponds to the initial marking M,,, that is, VSE

S: M,(s) = Ip-‘(s) n Min(N)];

l Vet E, Vs E S: W(s, p(e)) = [p-‘(s) n ‘e(and W(p(e), s) = (p-‘(s) n e’((transi-

tion environments are respected).’

The initial process of 2 is the one for which E = $3; it will generally be denoted as
0 7r.

If a marking M of 2 and a B-cut c of a process n of Z satisfy Vs E S: M(s) =

[pm’(s) n cl then M is said to correspond to c.

If c is a B-cut of a process n- = (B, E, F, p), then .& (rr, c) denotes the process

(B n Jc, E n Jc, F n (Jc x &c), plL,), i.e., the prefix of r up to (and including) c.

A process rr of a system 2 is an extension of another process 7~’ of the same

system if there is a B-cut c of r such that T’= u(rr, c); rr’ is also called a prefix

of ?r.

The set Lin(s-), for a process n of 2, defines the set of all occurrence sequences

of 2 which are linearizations (of the events and their separating B-cuts) of 7~. It is

known that if 2 is finite then each finite process has a nonempty Lin-set. h(I)

will denote the set of all the occurrence sequences of 1.

For an occurrence sequence (T of 2, n(a) denotes the set of all processes of 2

(up to isomorphism) such that u linearizes rr; 17 is thus the inverse of Lin. n(L)

will denote the set of all the processes of 2 (up to isomorphism, again).

A system 2 = (S, T, W, MO) is sequential iff VM E [M,,) no two transitions are

concurrently enabled; that implies that for any process r of 1, (Lin(rr)(= 1 and n

defines a total order on its events.

I For infinite processes there needs to be an additional requirement, but we will not be interested in

infinite processes here; the interested reader may find an extensive discussion on this subject in [I].

2.2. Labelled systems

An alphabet A is a finite set of visible actions: we assume that T CZ A (T will denote

the internal or silent action).

A labelling of a net N = (S, r, W) is a function A : T + A u {T}. If h(t) E A then

t is called visible; otherwise, t is called silent or invisible.

1 = (S, T, W, MO, A) is a labelled system, or a labelled P/T net, iff (S, T, W, M,)

is a system net and A is a labelling of (S, T, W).

An action a E A in a labelled system 2 = (S, T, W, MC,, A) is said to be auto-

concurrent at a marking M iff M concurrently enables two observable transitions

I,, f2 (not necessarily distinct) such that A(t,) = A(tz) = a. .I is free of auto-concur-

rency iff for all M E [M,,) no observable action is auto-concurrent at M. Absence

of auto-concurrency may be viewed as a kind of safeness, it has also been termed

the disjoint labelling condition in [12, II].

An observable transition t of a labelled system .Z = (S, T, W, M,,, A) is said to be

self-concurrent at a marking M iff M concurrently enables t twice. .E is free of

self-concurrency iff for all M E [R/I,,) no observable transition is self-concurrent at M.

Let 1 = (S, T, W, MO, A) be a labelled system. Let II = (B, E, F, p) be a process

of it. Then the abstraction of v with respect to A is denoted by LI,(r) = (E’, <, A’)

and is defined by

E’={eE Elh(p(e))# 7},

A’=Ao(pjE,), i.e. VeE E’: A’(e)==A(p(e)).

(E’, i) is a partially ordered set, and No (v) = (E’, i, A’) is thus a labelled poset

(with labels in A).

Let(y,,=(E:,i,,A;)anda,~= (E;, -=c~, A ‘2) be two abstractions as in the previous

definition, both with labels in A. Then LYE, = ah, iff there is a bijection /3 : E \ --z Ei

such that

(i) VeE E’,: A’,(e)=A;@(e)),

(ii) Ye,, e2E E;: e, K, ezeB(e,) iI P(e,),

i.e. these abstractions are order-isomorphic.

In the following, we will suppose that all our systems have their labels in the

same alphabet A, and we will denote by A(I) the subset of A which is actually

used by a system E, i.e. if 2 = (S, T, W, M,, A): A(I) = A(T)\{T}.

3. Bisimulation and refinement

Intuitively, two systems are bisimilar if there is a bisimulation between them, i.e.

a relation between their evolutions such that for each evolution of one of the systems

Maximality presetwing bisimulation 169

there is a corresponding evolution of the other system such that the evolutions are

observationally “equivalent” and lead to systems which are again bisimilar [lo].

If the semantics of labelled system nets is captured by the abstractions of their

processes, various bisimulation notions may be introduced (see [2]); for instance

the fully concurrent bisimulation (also called history preserving bisimulation or

BS-bisimulation in other contexts) may be defined as follows.

Definition 3.1 (Fully concurrent bisimulation). If 2, and & are two labelled systems,

2, LIF,.RZ2iffthereisaset~3{(7T1,~TTZ,P)1 7r, E ZI(E,), rr2 E 17(E2), /? is a relation

between the visible events of rr, and n2} with the following properties:

(i) (~7, n;, @) E 93, where 7ry and 7~4 are the initial processes of 2, and E,,

respectively.

(ii) (r,, n2, /3) E C!i?+@ is an order-isomorphism between ~,l(rr,) and a*~(rr2)

(iii) V(7i-, , r2, ,B) E 93 (a) if n{ is an extension of 7~,, there is (7r{, T;, p’) E 93
where V; is an extension of 7~~ and p E p’, (b) vice versa.

2, and X2 are then said to be FC-bisimilar.

A natural question about an equivalence relation concerns its resistance to some

operation or transformation rule, i.e. its congruency. In our context, that means that

if two systems are bisimilar and we transform them accordingly, will the transformed

systems be again bisimilar? We shall here consider the refinement of all the transitions

with a same visible label by some refinement system. As the various transitions to

be replaced may have different surrounding shapes, one has first to carefully define

how to connect each copy of the refinement system to the neighbourhood of the

replaced transitions. This may be done through a multiplicative place interface,

where the interconnection is implemented by a matrix of places whose rows corre-

spond to the connection to and from the neighbourhood, whose columns correspond

to the connection to and from the refinement system, and where the weights and

initial markings are multiples of the original ones in order to homogenize the

characteristics. However, this is rather difficult to define formally in the general case

(it has been done for systems with arc weights 1 and no side conditions in [6]), but

we will prefer here to impose conditions on the refinement systems rather than on

the systems to be refined. Consequently, we will restrict ourselves here to simple

refinement systems, where the interconnection is easy to define (it is a very simple

form of the multiplicative interface) and leads nevertheless to interesting results.

Definition 3.2 (Empty in/out system). A labelled system D = (SD, T”, WD, Mf , A “)

will be called an empty in/out system iff

(i) there is a unique (input) place s,,, without predecessor and a (different)

unique (output) place s,,, without successor: Vt E TD: W”(t, sin) =0= WD(.s,,,,, t)

and Sin f s,,,,

170 R. Deuillers

(ii) initially there is a unique token in xin and at the end there is a unique

token in s,,,,: Mf(.s,,,) = 1 and Vs f s,,: M:(s) =O; VM E [Mf): M(s,,,,) > OJ

[M(s,,,,) = 1 AVSf s,,,,: M(s) =O],

(iii) s,, and s,,,,~ only have ordinary arcs, Vt E T”: WD(sin, t) s 1 Z= W”(t, s,,,,,).

We called it an empty in/out system since at the beginning and at the end, there

are no marked places between s,,, and s ,,,,,.

Definition 3.3 (Empty rejinement). Let .E = (S, T, W, MCI, A) be a labelled system,

let a E A(E) and let D= (S”, T”, W”, R/IF, A”) be an empty in/out system. The

refinement ref(& a, D) is the labelled system obtained from .X by applying the

following construction for each t E K’(a)

W A accordingly).

(ii) Create a copy of D without s,,, and s,,,,; the new nodes will be called (x, t)

for x E S” u T”; W, M,, and A will be modified accordingly, i.e.

Vx, y E S’l u T”: W((x, t), (y, t)) = W”(x, y),

Vx E T”: A((x, t)) = A”(x)

and

vx E SD\{%,,, &>,,,I-: M”((X, t)) = 0.

(iii) Connect the successors of s,,, to the predecessors of t and the predecessors

of S,,UI to the successors of r:

Vx E s;,,, vy E *t: W(y, (x, t)) = W(y, t),

vx E ‘s,,,,,, Vy E 1’: W((x, t), y) = W(t, y).

It may be noticed that, at the end, I’= ref‘(1, a, D) will be a labelled system with

A(2’) = A(~)\(U) u A(D). Fig. 1 shows an example of this construction.

Definitions 3.2 and 3.3 may seem rather restrictive but

(i) 2

Fig. I.

(ii) U (iii) ryf‘(2, a, D)

illustration of Definition 3.3.

Maximality preserving bisimulation 171

they encompass classical subcases like simple splitting, simple choice, renaming

(we will address them explicitely later);

some authors use silent input and output interfaces to connect the refinement

system copies, but if we incorporate them in the in/out system itself we are exactly

in the conditions described in 3.2 and 3.3;

the theory may be extended to in/out systems with an internal marking and a

memoryless constraint, like in [14], but this renders the treatment still more

intricate and we will not do it here;

even so, rather awkward situations may occur, as exhibited in Fig. 2.

A careful examination of the example in Fig. 2 shows that the problem originates

from the presence of a silent transition immediately after an a-labelled one; this

led in [2] to some congruence results on FC-bisimulation, under constraints exclud-

ing the mentioned “bad” configurations. The problem may also be solved by

strengthening the bisimulation definition in order to distinguish systems like the

ones exhibited in Fig. 2. This has been done in [7] for sequential systems in the

context of process graphs.

For a sequential system, the labelled posets of the processes are labelled total

orders and, translating [7] in our system net framework, we may define the branching

bisimulation as follows.

2

(iii) D

0 .o
a,, .a,

a,,b,, .a,b,

a,,T,, .alT1

a,,7,, .a2

(ii)

ref(Z,, a, D) (iv) rqfI&, a, D)

Fig. 2. (i) Two FC-bisimilar labelled systems. (ii) The corresponding processes. (iii) An empty in/out

system. (iv) The refinements of 1, and 1:. (v) A process of ref‘(E,, a, D) whose extensions are not the
same as the ones for the only possible corresponding process of ref‘(Z,, a, D).

172 R. De~G//erc-

Definition 3.4 (Branching hisimulation). If C, and C> are two sequential labelled

systems, 1, ehrH & iff there is a relation p G I7, x 112 such that

(i) (6, n-T) up, where rry and rr: are the initial processes of C, and Z,

respectively,

(ii) (r,, TJ E p=+cyhl(r,) = N~Z(z-?) (they are order-isomorphic),

(iii) V(r,, 7~,) E p (a) if x-; is an extension of xl with only one event more, there

is (n-i, n-G) E p such that ni is an extension of rTT2 and any process ~2” strictly between

rxI and rri (i.e. rrTT2 is a strict prefix of CJTTT~ and rrz is a strict prefix of rri) satisfies

(TTTI 7 n-p) E p, (b) vice versa.

2, and C, will then be said br-bisimilar.

This equivalence notion presents a nice “sandwich” property besides the usual

“extension” one. Moreover, the translation of the results of [7] in terms of labelled

system nets shows that the branching bisimulation withstands empty refinements

for sequential systems. For instance, the sequential systems C, and X2 in Fig. 2 are

not br-bisimilar, as exhibited by the last (necessary) correspondence between their

processes.

4. Maximality preserving bisimulation

We shall now address the problem to define a bisimulation notion for labelled

concurrent systems, which withstands empty refinements, maybe under some reason-

able constraints. Since we want to refine some visible action(s), we may introduce

them explicitly in the notion.

A careful examination of the difficulties encountered in [2] leads to the following

definition.

Definition 4.1 (Bisimulation preserving maximality for a visible action set). If E;, =

(S, , T, , W, , A,) and 2, = (S2, T,, W2, A,) are two labelled systems and ~2 c A is a

set of visible actions, E, = ~f,$,,T,3 & iff there is a set 93 c_ {(v,, n2, p) / 7~, E II(

n2 t II(Z), /? is a relation between the visible events of rr, and rTTz} with the following

properties:

(i) (n-Y, ~9, fl) E 93, where ny and ~4 are the initial processes of 2, and I;, ,

respectively,

(ii) (rr,, T?, /3) E .33+p is an order-isomorphism between cy,,~(-rr,) and ~l~?(rr~),

(iii) V(rr, , 7r2, /3) E 33, with T,=(B,, E,, F,, p,) and rrz=(B1, El, F,, p2)

(a) if z-i = (B’,, E’,, F’,, pi) is an extension of rr, with only one event el, more,

there is (ni, ~1, p’) E LB where n$ = (BL, EL, Fi, pi) is an extension of x2 and

p c_ p’; moreover,

l if h,(p{(e’,)) E & then P’(e’,) is a maximal event of ~5

l for any e, E E,, if h,(p,(e,))~ ~4 and if e, and P(e,) are maximal events in n’,
and rr2, respectively, then P(e,) is still a maximal event in n$,

(b) vice versa.

JZ, and & will then be said dMP-bisimilar.

The intuitive meaning of this definition is that the corresponding processes have

to be order-isomorphic, that the initial processes correspond to each other and that

they present an “extension property” (any extension of a process corresponds to

an extension of any corresponding process; in the definition one only considers

extensions by a single event on one side, but one may iterate to get any extension);

the last conditions essentially say that the maximality of &-labelled events may be

preserved: if a new &-labelled event is added on one side (it is then maximal), it

is possible to extend the other side in such a way that the corresponding event (with

the same label) is also maximal, and if an &-labelled event is maximal on one side

before and after the extension while on the other side the corresponding event is

also maximal before the extension, then this event remains maximal after the

extension too.

It may be observed that Definition 4.1 is essentially the same as Definition 3.1

up to the additional constraints on &-labelled events; more precisely, we have the

following corollary.

Corollary 4.2 FC-bisimulation is a maximality preserving bisimulation:

Proof. Obvious. 0

Definition 4.3 (Maximality Preserving Bisimulution). Two systems will be said MP-

bisimilar if they are maximality preserving bisimilar for all visible actions, i.e.
= _-

MPB - -AMPH.

If ~4 ={a}, we will simply write =UMPR instead of zfotMPH, and say that two

systems are maximality preserving bisimilar with respect to a, instead of {a}.

Corollary 4.4 (Strengthening property). If &‘c &G A, then =,_,M,TB is stronger than

=.II.MPH; and in particular MP-bisimulation is stronger than FC-bisimulation.

Proof. It is clear that z.~~,,,,~~ is stronger or identical to =,.,.MPR since the additional

conditions concern more actions in &MP-bisimulation. The fact that the strengthen-

ing is strict results from the observation that the two systems 2, and & in Fig. 2

are not aMP-bisimilar (since the addition of a, to the initial process on the right

size needs the addition of a, and r,, on the left size, where a,, is not maximal), while

they are FC-bisimilar. The same example where a is replaced by any action in &\&‘I

will thus exhibit the strict strengthening property. I?

Corollary 4.5 (Widening property). t/Z,, 2,: 2, = ,dMPH Z‘,aE, =.;I.MPB LY‘, with

d’= tiu [A\(A(.Z,) n A(&))].

Proof. Obvious; this simply means that we may always add to LZZ any event which

never actually occurs in E, and Z; notice that, normally, if two labelled systems

174 R. Devil/en

are bisimilar they have the same alphabet, but it could happen that all the transitions

corresponding to some action are dead; consequently, it may happen that A(1,) #

A(&), but then only the actions in A(2,) n A(Z) may occur (and still not necessarily

all of them); one could say that the actions in (A(X,)\A(Z)) u (A(I,)\A(Z,)) only

occur syntactically in Z, and &, and not semantically. 0

Even so, rather awkward situations may still occur, as exhibited in Fig. 3. A

careful examination of the example in Fig. 3 shows that the problem here arises

from the combination of the fact that a refined transition is self-concurrent and that

in the refinement system there is a transition needing more than one token.

There are thus two ways to overcome the difficulty: either by excluding self-

concurrency or by excluding multiple needs.

Before attacking these two points, let us first develop some preliminary remarks,

which will ease the proof of congruence properties by giving a general framework

for these proofs (and which also establishes links with other frameworks).

First, we may define directly refinements on the processes.

Definition 4.6 (Rejhement of‘ a process). Let ir = (B, E, F, p) be a process of a

labelled system 1 = (S, T, W, M,), A); let a E A(X) be a visible action and let D be

an empty in/out system; let i:p -‘(A-‘(a))- II(D) be a function such that if . .
E a a

(il

b

t

x

nx

ref’(2,, a, D) (iii) ref‘(&, a, D)

Fig. 3. MP-hisimulation does not always withstand refinements. ii) Two MP-bisimilar labelled systems.

(ii) An empty in/out system. (iii) The relinements of 2, and 12, (iv) A process of wf’(&, a, D) which

has no corresponding process in w/.(1,, a, D).

Maximality preserving bisimulation 17s

e E~~‘(A-‘(a)) is not a maximal event in V, then t(e) is a complete process of 0,

i.e. with a (unique) maximal condition corresponding to s,,,; we will also suppose

that l(e) is never the initial process of D. Then the refinement ref(r, a, C) is obtained

from S- by applying the following construction for each eEP_‘(A-‘(a)) (the order

does not matter):

(i) Drop e (and modify F,p accordingly).

(ii) If l(e) is a complete process of 0, create a copy of L(e), drop the Min and

Max of it (corresponding to s,, and s,,,); replace the labelling pGCe’ of this copy by

Pr :x+ W”‘bL p(e)>, and connect the (unique) minimal event of the copy to the

predecessor conditions of e and the (unique) maximal event of the copy to the

successor conditions of e.

(iii) If l(e) is not complete, create a copy of l(e), drop the Min of it (correspond-

ing to s,,) and the successor conditions of e; replace the labelling p5(‘) of this copy

by P’ :x+ (P”“(X), p(e)>, and connect the (unique) minimal event of the copy to

the predecessor conditions of e.

Proposition 4.7. Refined processes areprocesses of the rejinedsystem. With the notations

of the previous dejinition, ref(r, a, C) E Il(rej(2, a, D)).

Proof. Trivial but slightly tedious. Notice however that the property is directly

connected to the fact that there is no “internal marking” in an empty in/out system,

as is exhibited by Fig. 4. 0

The example in Fig. 3 shows that the reverse is not true in general: the process

in (iv) is not a refinement of a process of &. But this suggests to define a class of

refinements based on it.

(i) 2 (ii) D

L

(iii) ref(X, a, D) (iv)

Fig. 4. A nonempty refinement. (i) A labelled system. (ii) A nonempty in/out system. (iii) The refinement

of 2. (iv) A refined process of Z which is not a process of ref(Z, a, D).

Definition 4.8 (Refinements witlz refined processes). Let 2 be a labelled system,

a E A(l) and let D be an empty in/out system. We will say that reJ‘(2, a, D) has

refined processes iff VXE 1(,ref(E, a, D)), ~TTG II(Z), 31 such that 7j. = ref(r, a, 5)

(up to isomorphism). 0

Now, our central result is the following.

Theorem 4.9 (Refinements with refined processes respect .dMP-bisimulation). !fE,

and I‘, are two labelled systems, a E ~4 C_ A and D is an empty in/out system such

that ref(I,, a, D) and ref(Z>, a, D) have rqfined processes, then

with SC= A\[A(C,) n A(E,)]u SL

Proof. Let 33 satisfy the conditions of Definition 4.1 for 2, and &, and let us define

.% as the set of triples (6,) G2, 8) such that there is a triple (T, , nTT2, p) E %I and

l, i’ with the following properties:

(i) +, = rd(r,, a, b), E2= ref’trr2, 4 0,
(ii) <‘= lo/3 ‘, i.e. {’ is the image of { through p,

(iii) b is identical to p on the visible events common to 7;, and T, on one side

and to G2 and rr2 on the other side, and it is the identity relation (restricted to visible

events) for the corresponding identical copies (due to the definition of 5’) of the

processes of D refining the corresponding a-labelled events of T, and n2.

It should be clear that

l (7Ty,7?;,$3)EG, if +Ty and 7;: are the initial processes of ref(E,, a, D) and

rd(&, a, D),
l if (7;, , 7j,, fi) E 6 then /$ is an order-isomorphism between the abstractions of

7;, and “iT2, since it is constructed from /3 which is itself an order-isomorphism

and from identity relations,

l if (E, , 7;?, /?) t $8 and 5, is extended into 7;; by an event e’, , three cases are

possible.

(a) e{ extends a D-process refining some a-labelled event e, in rr, and the same

prolongation may be applied to the identical process refining P(e,) in rr2; fi may

be extended accordingly and it should be clear that we will obtain an extension

triple which is still in :@3 and which preserves the maximality for all the visible actions.

(b) e{ does not belong to any D-process refining some a-labelled event in TI-,;

then e{ also extends ST, into rr; and 7;: = r<f(r;, a, [); from &MP-bisimulation,

there are T; and p’ extending 7~~ and /3 such that (QT:, ni, p’) E :8 and maximality

of &J-labelled events is preserved. It should be clear that 7;; = rgf(r’, , a, i), 61=

ref(rri, a, 6) and the p’ corresponding to /3’ will give a triple belonging to 93 with

the good properties; indeed, the only possible problem is that an additional event

in 7ri would have to be connected in 7;; to an incomplete refining process of D

(which would be impossible), but then there is the same incomplete process in G{

Maximality preserving bisimulation 177

and they both correspond to maximal P-corresponding a-labelled events e’,’ and ei

in rr\ and n; respectively; in ni, e, may not be connected to e’((otherwise the

corresponding D-process of the latter would be complete), thus e: remains maximal

but then so must be eg, hence the contradiction. The only visible events the

maximality of which could be destroyed are clearly the ones with that property in

2, and &.

(c) e; is the beginning of a new D-process refining some new a-labelled event

i;, extending x, into rr{. By extending 6 into 6’ with the pair (e,, D-process

corresponding to e{), we have 6; = ref(r{, a, 5’); from &MP-bisimulation, there

are rri and /3’ extending rr2 and /3 such that (rr{ , ~5, p’) E d’ and maximality of

&-labelled events is preserved; it should be clear that ref(n{ , a, <‘), ref(v;, a, 5’)

and the p’ corresponding to p’ will give a triple belonging to 6 with the good

properties; the same reasoning as in (b) may be resumed, with the additional remark

that /3’(;,) being also maximal, there is no problem in refining it.

and symmetrically for the vice versa part. Consequently the maximality is preser-

ved for any visible action but the ones for which this is not the case in 2, and

X2, hence the formula for AX!‘. 0

Corollary 4.10 (Refinements with refined processes respect MP-bisimulation). ZfX,

and 1, are two lubelled systems, a E A and D is an empty in/out system such that

ref(_Z, , a, D) and ref(.Z,, a, D) have refined processes, then

Proof. Immediate from Theorem 4.9. In this case ti = A = S’. El

It may be observed that these results may be transported to other models of

concurrency based on partial orders if the behaviours of a refined system look like

the refinements of the behaviours, as it is the case for instance in the event

structure-based theory developed in [5].

Now, we simply have to determine in what circumstances the refinements of a

system net have refined processes.

Following the ideas mentioned while analysing the example of Fig. 3, let us define

the following.

Definition 4.11 (SM-systems and SM-refinements). An SM-system is an empty in/out

system D such that VtE TU: (‘tl = 1 = It’] and W”(‘t, t) = 1 = WD(t, t’), i.e. D is

essentially a state machine net.
An SM-refinement is a refinement through an SM-system.

Proposition 4.12 (SM-refinements have refined processes). Let 2 = (S, T, W, M,,, A)

be a Iubelled system, let D = (S”, T”, W”, Mf, A I’) be an SM-system and let a E

A(E); then ref(I, a, D) has refined processes.

Proof. The basic observation here is the fact that for any SM-system, all the processes

are simple chains. Let G be any process of ref(E, a, D). Any node of 7j. whose label

does not belong to Su T

l has a label of the form (x, r) for some t E A ‘(a);

l has a unique maximal predecessor e with a label of the form (y, f) where y is an

immediate successor of s,,, in D;

l belongs to the unique maximal chain y originating from e where all the labels

are of the form (z, t), where zt T”u S”\{s,,, s,,,,,}.

For any such chain y, the only connections with the rest of the process are

l through the input condition(s) of e (always);

l through the output condition(s) of the maximal event in the chain if it has a label

(u, t) where u is an immediate predecessor of s,,,,, in D (i.e. if the chain does not

stop on a maximal condition before).

If we replace this chain y by an event ? with label t (plus adequate successor

conditions if the chain ended on a condition) and if we resume the construction

until all the nodes have their labels in SW r, it should be clear that the resulting

object is a process n of 2, and that if [is the function associating to each constructed

Z the process of D corresponding to y (by adding an input condition corresponding

to .%7, and an output condition corresponding to s,,,,, if the chain ended on an event),

ref(n, a, 5) = 73. This terminates the proof. 0

As immediate corollaries, we have the following.

Corollary 4.13 (SM-refinements preserve MP-bisimulation). rf’Z, andEZ are labelled

systems, a E .& c A and D is an SM-system,

(a) x, =klPR &*4x,, 0, D) =.~g.r\qfR MT&, a, D) with

.d’= A\[A(Z,) n A(Z)] u d,

(b) 2, =,vm &*rr;f‘(~, , 0, Di = t,~,j ref’(&, a, D),
(c) 2, =llMPM -&=SrtIf(~l, a, D) = fit R ref’(Z, 0, D).

Proof. Immediate from 4.9, 4.10, 4.4 and 4.12. q

Corollary 4.14 (Renaming, simple splitting and simple choice replacements). Mf-
&simulation is preserved by renaming, simple splitting and simple choice replacements.

Proof. This results from the fact that the three systems depicted in Fig. 5. are

SM-refinement systems. It may be observed that it is not necessary that x and y are

distinct, that they are different from other labels already in the bisimilar systems,

or that they are visible. 0

By attacking the other reason of the failure in Fig. 3, we obtain Proposition 4.15.

Proposition 4.15 (Self-concurrency freeness and refined processes). Lef 2 =

(S, T, W, M,,, A) be a labelled system, let D = (S”, T”, W”, M:f, A”) be an empty

Maximality preserving bisimulation 179

Fig. 5

in/out system and let a E A(2) be a label such that no a-labelled transition is

self-concurrent in 2, then ref (2, a, D) has refined processes.

Proof. Let ~7 be any process of ref(2, LID). Any node of ~7 whose label does not

belong to Su T (if any) has a label of the form (x, t) for some t E A-‘(a) and has

a predecessor with a label (y, t) where y is an immediate successor of Sin in D.

Let e be a minimal node whose label does not belong to Su T (if there is no

such label, the construction stops); e is an event with a label (y, t) where y E s,, and

t E h-‘(a); moreover, there is no other event with the same property and the same

t since the set of nodes without predecessors with a label out of Su T is a process

of 2, ‘e is in the Max of this process and if there were two such e’s corresponding

to the same t, from known properties on processes (see [l]), transition t would be

self-concurrent in 25. Consequently, e is a predecessor for all the nodes with a label

of the form (x, t). Let y be the maximal structure issued from e, where all the nodes

have a label (z, t). e is the unique minimal element amongst them.

Now, two cases are possible.

(a) y does not contain any event with a label (u, t) where ME’S,,,,,. Then, up to

the initial condition, y is a process of D. Indeed, the only problem would be that,

at some point, an event in y has some of its input conditions out of y, but any of

them has a label of the form (v, t), is a successor of e and there should be a path

from e to that condtion, leaving y at some point. This could only be through an

event with a label (w, t) where u’ E ‘s,,,,,, but we supposed there were no such events.

Consequently, y is an (incomplete) process of D and it is completely isolated from

its surrounding. We may then replace y by a new event e(y), with a label t, and

the adequate output conditions. e(y) is then a maximal event and the construction

may resume, with another (possibly the same) t.

(b) y contains one or more events e’ with a label (u, t) where u E ‘s,,,. If y has

no event with some input conditions out of y, then, up to the initial condition and

the terminal ones corresponding to the various e”s, y is a process of D. But then,

from the definition of an empty refinement, when u is reached there are no tokens

left in D, so that e’ is unique and there are no “free” conditions (without outgoing

arc) in y. Consequently, y is definitely isolated from its surrounding, its only

connections, present and future, are through the unique input event e and the unique

output event e’; we may then replace y by a new event e(y), with a label t, since

the inputs and outputs of y correspond to those of t, and resume the construction

180 R. Deuillers

since again the adequate conditions are satisfied. Now, if there is an event in y with

input conditions out of y, let c be a minimal condition of this type. c has a label

(u, f) and is a successor of e. There is thus a path from e to c leaving y at some

point. This may only be at some e’. Since c is minimal, no event between e and e’

may have inputs out of y but then, between e and e’, we have a complete process

y’ of D and again as there are no tokens left at the end in D, y = y’ and we find a

contradiction.

Consequently, at the end, we will get a process r of 2, and if < is the function

associating with each constructed e(y) the process of D corresponding to y (by

adding an input condition corresponding to s,,, and in the second case an output

condition corresponding to s,,,,,), uef’(7~, a, i) = 6.

This terminates the proof. 0

Corollary 4.16 (MP-bisimulation is preserved for systems without self-concur-

rency). Let a E d c A, let 2, and Z2 be two labelled systems such that no a-labelled

transition is self-concurrent in them, and let D be an empty in/out system, then

(a) 2, =.CIMPR &3ref(Z;, , a, D) = .,‘2,,J,3 r<f(C2, a, D) with

~&=A\[A(I,)nA(Z2)]u.zf,

Proof. Immediate from 4.9, 4.10, 4.4 and 4.15. 0

Concerning the application domain of Corollary 4.16, let us notice that a l-safe

system net is automatically self-concurrency free.

5. Simultaneous refinements

One may also define refinements simultaneously for a set of visible actions.

Definition 5.1 (Empty simultaneous rqfinements). Let 2 = (S, T, W, MC,, A) be a label-

led system, let % G A be a set of visible actions, and let D be a function: a E ;ir + D,,

empty in/out system, associating an in/out system with each action in 3. The

refinement ref(2, 3, D) is the labelled system obtained from Z by applying the

construction 3.3(i) to (iii) for each a E %? and each t E h-‘(a).

Clearly, rd(.Z, a, 0,) = ref(X, {a}, D), but ref(X, 8, D) may not always be

obtained by an iterative use of single action refinements since, if g = {a, b, .}, it

may happen that new b-labelled transitions are added in ref’(E, a, D,) through D,.

However, the same result may be obtained by using successive single action

refinements through empty in/out systems with disjoined actual alphabets, and then

Maximality preserving bisimulation 181

by applying some renaming, since we have seen in Corollary 4.14 that renamings

are a special case of SM-refinements for which there are no problems. Consequently

we have the following.

Corollary 5.2 (MP-bisimulation is preserved by simultaneous refinements). If)3,

and E2 are two labelled systems, 9 G &G A and D is a function applying 5% to a family

of empty in/out systems, then Iffor any a E $8. either D(a) is an SM-system or no

a-labelled transition in 2, or & is self-concurrent

(a) -% =.Cg.MpB &=3ref(Z,, %!, D) =.rrl’Mpn ref(&, 2, D) with

&‘= A\[A(E,) n A(&)] u d

(b) -r, =MPB &*ref(Z, 2, D) =MPBref(&, 3, D)

(c) 2, =%MPB &=+ref(Z,% D) =Fc.~ref(&, % D).

Proof. Immediate from the above remark and the previous results. 0

6. Sequential systems

A natural question now is how the MP-bisimulation compares, for sequential

systems, to the branching bisimulation, which is also preserved by refinements in

that case (let us notice that all sequential systems are trivially self-concurrency free).

The answer is presented now.

Proposition 6.1 (MP-bisimulation is weaker than branching bisimulation). Zf 2, and

C, are sequential systems, 2, zhrR &*I, = MPH I2 but the reverse implication does

not hold.

Proof. Clearly, if 2, zbrB &, the relation p G 17, x II2 satisfying the criteria 3.4 for

the branching bisimulation, together with the trivial isomorphism /3 between the

equally ranked visible events, gives a triple set {(7r,, rr2, /3)} satisfying the criteria

for MP-bisimulation since the only difference is that in addition the intermediate

processes correspond to the original process on the other side.

To see that the reverse implication does not hold, one simply has to consider the

counterexample shown in Fig. 6.

One can check that E1 ;= MPR &, but the process rz of Zz, which is a one event

extension of the initial process, may only correspond to the process T, of Zr, and

the intermediate process with only t does not correspond to the initial process of

7. Conclusion

So far, we have shown that our MP-bisimulation, in the frame of labelled P/T

nets, is preserved by SM-refinements, and by empty refinements if we exclude

182

(i) (ii)

Fig. 6. Two MP-bisimilar systems which are not br-similar. (i) Two MP-bisimilar labelled systems.
(ii) Two corresponding processes.

self-concurrency. Our equivalence notion is weaker than branching bisimulation

and it encompasses FC-bisimulation. Moreover, we have indicated how to export

our results to other behavioural models for concurrency.

And indeed, meanwhile but independently, various authors applied the very same

idea to various contexts. For instance, Vogler defined in [15] various refinement

congruences for prime event structures and it occurs that his hST-bisimulation

essentially corresponds to our MP-bisimulation; moreover, he applied the same idea

to interleaving bisimulations, and showed coarsest results.

Similarly, Cherief and Schnoebelen showed in [4] that for process graphs, which

may be used to model sequential systems, the A-bisimulation defined by a maximality

preserving property is preserved by refinements, and is the largest congruence

bisimulation.

References

[11 E. Best and R. Devillers, Sequential and concurrent behaviour in Petri net theory, 7heoret. Compur.

Sci. 55 (1) (1988).

[2] E. Best, R. Devillers, A. Kiehn and L. Pomello, Concurrent bisimulations in Petri Nets, Acta Inform.
28 (1991) 231-264.

[3] E. Best and C. Fernandez, Notation and terminology on Petri net theory, Arbeirspapiere GMD 195
(1987).

[4] F. Cherief and P. Schnoebelen, r-Bisimulations and full abstraction for refinement of actions,
Technical Report LIFIA-Imag (Grenoble, France).

[5] R. van Glabbeek and U. Goltz, Equivalence notions for concurrent systems and: refinement of

actions, Arbeitpapiere GMD 366 (1989).‘Eitended abstract in: Proc. MFCS.89, Lecture Notes in

Computer Science, Vol. 379 (Springer, Berlin, 1989) 237-248.
[6] R. van Glabbeek and U. Goltz, Refinement of actions in causality based models, Arbeifspapiere

GMD 428 (1990), also in: Proc. REX Workshop on Srepwise R~$nemenr of Uirfributed Svsfems:

Models, Formalism, Correctness Lecture Notes in Computer Science, Vol 430 (Springer, Berlin,

1990) 267-300.
[7] R. van Glabbeek and W. Weijland, Refinement in branching time semantics, in: Proc. Inrernat.

Conf: on Algebraic Mefhodo/og_y and Sqfrware Technology, Iowa City, USA (1989).
[S] R. Milner, A ~alcu/us of Communicaling Sysfem.s, Lecture Notes in Computer Science, Vol. 92

(Springer, Berlin, 1980).

Maximality preserving bisimulation 183

[9] D. Park, Concurrency and automata on infinite sequences, in: P. Deussen, ed., Proc. 5th GI Coqf:
on Theoretical Computer Science, Lecture Notes in Computer Science, Vol. 104 (Springer, Berlin,

1981) 167-183.

[IO] L. Pomello, Some equivalence notions for concurrent systems, an overview, in: G. Rozenberg, ed.,

Aduances in Petri Nets 1985, Lecture Notes in Computer Science, Vol. 222 (Springer, Berlin, 1986)

381-400.
[ll] L. Pomello, Observing net behaviour, in: K. Voss et al., eds., Concurrcnc~ and Nets (Springer,

Berlin, 1987) 403-421.

[12] G. Rozenberg and R. Verraedt, Subset languages of Petri nets, Theoret. Comput. Sci. 26 (1983)

301-323.
[13] B.A. Trakhtenbrot and A. Rabinovitch, Behavior structures and nets, Fund. InJi,rm. XI (1988)

357-404.

[141 W. Vogler, Failures semantics based on interval semiwords is a congruence for refinement, Technical

Report TUM-18905, Technische Universitit Munchen, 1989. Extended abstract in: Proc. STACS’90,

Lecture Notes in Computer Science, Vol. 415, (Springer, Berlin, 1990) 285-297.

[15] W. Vogler, Bisimulation and action refinement. Technical Report SFB-Bericht 342/10/90A, Tech-

nische UnivJersitat Miinchen, May 1990.

