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Abstract 

Devillers, R., Maximality preserving bisimulation, Theoretical Computer Science 102 (1992) 

165-183. 

A new bisimulation notion is introduced for the specification of concurrent systems, which resists 

to a large class of action refinements, even in the presence of invisible actions. The work is 

presented in the context of labelled P/T nets, but it may be transported to other popular frameworks 

like prime event structures, process graphs, etc. 

1. Introduction 

Bisimulation, which is also sometimes called bisimilarity, has been introduced in 

[9] as a concept which is essentially equivalent to observational equivalence [8]. 

Its great importance and usefulness for the comparison of different concurrent 

systems and for proofs of their correctness has been stressed in the literature. 

Usually, bisimulation is defined in terms of execution sequences, i.e. in terms of 

arbitrary interleaving. In this case, however, bisimulation cannot distinguish between 

a concurrent system and its sequential simulation. Moreover, it does not resist to 

the simplest action refinements for concurrent systems [ll]. 

In a previous work [2], the author, together with Best, Kiehn and Pomello, defined 

a fully concurrent bisimulation notion for systems represented by labelled P/T nets 

with a semantics expressed through the labelled partial orders corresponding to 

their processes. This relation essentially corresponds to other equivalence notions 

developed independently in other frameworks, like the BS-bisimulation [13] for 

behaviour structures and the history preserving bisimulation [5] for event structures. 

Some nice results have been obtained on action refinements, but some problems 
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remained in the presence of invisible actions. This problem has been solved for 

process graphs by [7] who defined a branching bisimulation, which resists to 

refinements, and may be transported to the labelled P/T net theory, but only for 

sequential systems. 

We will here introduce a strengthening of the fully concurrent bisimulation, which 

we called the maximality preserving bisimulation, which still captures the concurrent 

semantics of labelled systems and withstands a large class of refinements even in 

the presence of r-transitions. When applied to sequential systems, our notion proves 

to be weaker than the branching bisimulation. 

2. Basic definitions 

2.1. Unlabelled systems 

We briefly recall the definitions of some basic concepts, referring e.g. to [3, l] 

A net with arc weights is a triple N = (S, T, W) with S n T = (il and 

W:((Sx T)u(TxS))+N={O, 1,2,. .}. 

T is a set of transitions and S is a set of places. We assume all nets to be finite, 

i.e. [Su TIE N. A net N = (S, T, W) is ordinary iff for all (x, y) E 

((Sx T)u(TxS)): W(x,y)~l. I n an ordinary net, the weight function can 

(and will) be replaced by a flow relation F c_ ((S x T) u (T x S)), following the 

rule that (x,y) E Fe W(x, y) # 0. For XE Su T, the pre-set ‘x is defined 

‘x={y~Su T( W(y,x)#O} and the post-set x’ 

;;ESU T, W(x,y)zO). 

is defined as X’ = 

A marking of a net (S, T, W) is defined as a function M : S + N, giving the number 

of tokens contained in each place. The transition rule states that a transition t is 

enabled by M iff M(s) b W( s, t) for all s E S, and that an enabled transition t may 

occur, producing a successor marking M’ by the rule M’(s) = 

M(s) - W(s, t) + W( t, s) for all s E S. The occurrence of t is denoted by M[ t)M’. 

Two transitions f,, t2 (not necessarily distinct) are concurrently enabled by a 

marking M iff M(s) 3 W( s, t,) + W( s, tz) for all s E S. This may be extended to sets 

or bags of transitions. 

A system net (or a marked P/T net) (S, T, W, M,,) is a net (S, T, W) with an initial 

marking MC,. 

A sequence u = Mot, M,t,. . is an occurrence sequence iff M,_,[ t,)M, for 1 s i. 

A sequence t, t, . . . is a transition sequence (starting with M) iff there is an occurrence 

sequence Mt, M, t2. . If the finite sequence t, t,. . t, leads from M to M’ then we 

write M[t,t2. . t,)M’. The set of reachable markings of a marked net (S, T, W, M,,) 

is defined as [M,,) = {M I3t, t2. t,,: M,,[ t, t,. . t,,) M}. A marked net (S, T, W, M,,) 

is safe iff VM E[MJ, Vsr S: M(s)< 1. 
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An occurrence net N = (B, E, F) is an acyclic ordinary net without branched 

places, i.e., Vx, y E B u E: (x, y) E F++(y, x) P? F+ (acyclicity) and ‘db E B: I’bl s 1 A 

16’1s 1 (no branching of places). For an occurrence net (B, E, F), the pair (X, <) 

with X = B u E and < = F’ is a strict partial order. Often, elements of E are called 

events and elements of B are called conditions. 

A B-cut c G B of an occurrence net (B, E, F) is a maximal unordered set of 

B-elements (taking F+ as the ordering). Ic denotes the set of elements {XE Bu 

E 13~ E c: (x, y) E F*}, i.e., the set of elements below or on c. For two B-cuts c,, c2 

of N=(B, E, F), we define c,&c2 iff c,sJc,, and c, c c2 iff c, L c2 and c, f c2. 

In order to avoid minor but annoying technical difficulties, we will suppose from 

now on that all our nets are T-restricted, i.e., Vt E T: ‘t #B f t’. 

Min( N) and Mux( N) are the B-cuts defined by the sets {x E B u E ( ‘x = 0} and 

{x E B u E (x’ = 0}, respectively. 

A process n = (N, p) = (B, E, F, p) of a system I= (S, T W, MO) consists of an 

occurrence net N = (B, E, F) together with a labelling p : B u E -+ S u T which satisfy 

appropriate properties such that n can be interpreted as a concurrent run of 1, i.e., 

l p(B) G S, p(E) s T (B-elements are instances of place holdings, E-elements are 

occurrences of transitions); 

l Mm(N) is a B-cut which corresponds to the initial marking M,,, that is, VSE 

S: M,(s) = Ip-‘(s) n Min( N)]; 

l Vet E, Vs E S: W(s, p(e)) = [p-‘(s) n ‘e( and W(p(e), s) = (p-‘(s) n e’( (transi- 

tion environments are respected).’ 

The initial process of 2 is the one for which E = $3; it will generally be denoted as 
0 7r. 

If a marking M of 2 and a B-cut c of a process n of Z satisfy Vs E S: M(s) = 

[pm’(s) n cl then M is said to correspond to c. 

If c is a B-cut of a process n- = (B, E, F, p), then .& (rr, c) denotes the process 

(B n Jc, E n Jc, F n (Jc x &c), plL,), i.e., the prefix of r up to (and including) c. 

A process rr of a system 2 is an extension of another process 7~’ of the same 

system if there is a B-cut c of r such that T’= u(rr, c); rr’ is also called a prefix 

of ?r. 

The set Lin(s-), for a process n of 2, defines the set of all occurrence sequences 

of 2 which are linearizations (of the events and their separating B-cuts) of 7~. It is 

known that if 2 is finite then each finite process has a nonempty Lin-set. h(I) 

will denote the set of all the occurrence sequences of 1. 

For an occurrence sequence (T of 2, n(a) denotes the set of all processes of 2 

(up to isomorphism) such that u linearizes rr; 17 is thus the inverse of Lin. n(L) 

will denote the set of all the processes of 2 (up to isomorphism, again). 

A system 2 = (S, T, W, MO) is sequential iff VM E [M,,) no two transitions are 

concurrently enabled; that implies that for any process r of 1, (Lin(rr)( = 1 and n 

defines a total order on its events. 

I For infinite processes there needs to be an additional requirement, but we will not be interested in 

infinite processes here; the interested reader may find an extensive discussion on this subject in [I]. 



2.2. Labelled systems 

An alphabet A is a finite set of visible actions: we assume that T CZ A (T will denote 

the internal or silent action). 

A labelling of a net N = (S, r, W) is a function A : T + A u {T}. If h(t) E A then 

t is called visible; otherwise, t is called silent or invisible. 

1 = (S, T, W, MO, A) is a labelled system, or a labelled P/T net, iff (S, T, W, M,) 

is a system net and A is a labelling of (S, T, W). 

An action a E A in a labelled system 2 = (S, T, W, MC,, A) is said to be auto- 

concurrent at a marking M iff M concurrently enables two observable transitions 

I,, f2 (not necessarily distinct) such that A( t,) = A(tz) = a. .I is free of auto-concur- 

rency iff for all M E [ M,,) no observable action is auto-concurrent at M. Absence 

of auto-concurrency may be viewed as a kind of safeness, it has also been termed 

the disjoint labelling condition in [12, II]. 

An observable transition t of a labelled system .Z = (S, T, W, M,,, A) is said to be 

self-concurrent at a marking M iff M concurrently enables t twice. .E is free of 

self-concurrency iff for all M E [R/I,,) no observable transition is self-concurrent at M. 

Let 1 = (S, T, W, MO, A) be a labelled system. Let II = (B, E, F, p) be a process 

of it. Then the abstraction of v with respect to A is denoted by LI,( r) = (E’, <, A’) 

and is defined by 

E’={eE Elh(p(e))# 7}, 

A’=Ao(pjE,), i.e. VeE E’: A’(e)==A(p(e)). 

(E’, i) is a partially ordered set, and No (v) = (E’, i, A’) is thus a labelled poset 

(with labels in A). 

Let(y,,=(E:,i,,A;)anda,~= (E;, -=c~, A ‘2) be two abstractions as in the previous 

definition, both with labels in A. Then LYE, = ah, iff there is a bijection /3 : E \ --z Ei 

such that 

(i) VeE E’,: A’,(e)=A;@(e)), 

(ii) Ye,, e2E E;: e, K, ezeB(e,) iI P(e,), 

i.e. these abstractions are order-isomorphic. 

In the following, we will suppose that all our systems have their labels in the 

same alphabet A, and we will denote by A(I) the subset of A which is actually 

used by a system E, i.e. if 2 = (S, T, W, M,, A): A(I) = A( T)\{T}. 

3. Bisimulation and refinement 

Intuitively, two systems are bisimilar if there is a bisimulation between them, i.e. 

a relation between their evolutions such that for each evolution of one of the systems 
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there is a corresponding evolution of the other system such that the evolutions are 

observationally “equivalent” and lead to systems which are again bisimilar [lo]. 

If the semantics of labelled system nets is captured by the abstractions of their 

processes, various bisimulation notions may be introduced (see [2]); for instance 

the fully concurrent bisimulation (also called history preserving bisimulation or 

BS-bisimulation in other contexts) may be defined as follows. 

Definition 3.1 (Fully concurrent bisimulation). If 2, and & are two labelled systems, 

2, LIF,.RZ2iffthereisaset~3{(7T1,~TTZ,P)1 7r, E ZI(E,), rr2 E 17(E2), /? is a relation 

between the visible events of rr, and n2} with the following properties: 

(i) (~7, n;, @) E 93, where 7ry and 7~4 are the initial processes of 2, and E,, 

respectively. 

(ii) (r,, n2, /3) E C!i?+@ is an order-isomorphism between ~,l(rr,) and a*~( rr2) 

(iii) V( 7i-, , r2, ,B) E 93 (a) if n{ is an extension of 7~,, there is (7r{, T;, p’) E 93 
where V; is an extension of 7~~ and p E p’, (b) vice versa. 

2, and X2 are then said to be FC-bisimilar. 

A natural question about an equivalence relation concerns its resistance to some 

operation or transformation rule, i.e. its congruency. In our context, that means that 

if two systems are bisimilar and we transform them accordingly, will the transformed 

systems be again bisimilar? We shall here consider the refinement of all the transitions 

with a same visible label by some refinement system. As the various transitions to 

be replaced may have different surrounding shapes, one has first to carefully define 

how to connect each copy of the refinement system to the neighbourhood of the 

replaced transitions. This may be done through a multiplicative place interface, 

where the interconnection is implemented by a matrix of places whose rows corre- 

spond to the connection to and from the neighbourhood, whose columns correspond 

to the connection to and from the refinement system, and where the weights and 

initial markings are multiples of the original ones in order to homogenize the 

characteristics. However, this is rather difficult to define formally in the general case 

(it has been done for systems with arc weights 1 and no side conditions in [6]), but 

we will prefer here to impose conditions on the refinement systems rather than on 

the systems to be refined. Consequently, we will restrict ourselves here to simple 

refinement systems, where the interconnection is easy to define (it is a very simple 

form of the multiplicative interface) and leads nevertheless to interesting results. 

Definition 3.2 (Empty in/out system). A labelled system D = (SD, T”, WD, Mf , A “) 

will be called an empty in/out system iff 

(i) there is a unique (input) place s,,, without predecessor and a (different) 

unique (output) place s,,, without successor: Vt E TD: W”(t, sin) =0= WD(.s,,,,, t) 

and Sin f s,,,, 
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(ii) initially there is a unique token in xin and at the end there is a unique 

token in s,,,,: Mf(.s,,,) = 1 and Vs f s,,: M:(s) =O; VM E [Mf): M(s,,,,) > OJ 

[M(s,,,,) = 1 AVSf s,,,,: M(s) =O], 

(iii) s,, and s,,,,~ only have ordinary arcs, Vt E T”: WD(sin, t) s 1 Z= W”( t, s,,,,,). 

We called it an empty in/out system since at the beginning and at the end, there 

are no marked places between s,,, and s ,,,,,. 

Definition 3.3 (Empty rejinement). Let .E = (S, T, W, MCI, A) be a labelled system, 

let a E A(E) and let D= (S”, T”, W”, R/IF, A”) be an empty in/out system. The 

refinement ref(& a, D) is the labelled system obtained from .X by applying the 

following construction for each t E K’(a) 

W A accordingly). 

(ii) Create a copy of D without s,,, and s,,,,; the new nodes will be called (x, t) 

for x E S” u T”; W, M,, and A will be modified accordingly, i.e. 

Vx, y E S’l u T”: W((x, t), (y, t)) = W”(x, y), 

Vx E T”: A((x, t)) = A”(x) 

and 

vx E SD\{%,,, &>,,,I-: M”((X, t)) = 0. 

(iii) Connect the successors of s,,, to the predecessors of t and the predecessors 

of S,,UI to the successors of r: 

Vx E s;,,, vy E *t: W(y, (x, t)) = W(y, t), 

vx E ‘s,,,,,, Vy E 1’: W((x, t), y) = W( t, y). 

It may be noticed that, at the end, I’= ref‘(1, a, D) will be a labelled system with 

A(2’) = A(~)\(U) u A(D). Fig. 1 shows an example of this construction. 

Definitions 3.2 and 3.3 may seem rather restrictive but 

(i) 2 

Fig. I. 

(ii) U (iii) ryf‘(2, a, D) 

illustration of Definition 3.3. 
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they encompass classical subcases like simple splitting, simple choice, renaming 

(we will address them explicitely later); 

some authors use silent input and output interfaces to connect the refinement 

system copies, but if we incorporate them in the in/out system itself we are exactly 

in the conditions described in 3.2 and 3.3; 

the theory may be extended to in/out systems with an internal marking and a 

memoryless constraint, like in [14], but this renders the treatment still more 

intricate and we will not do it here; 

even so, rather awkward situations may occur, as exhibited in Fig. 2. 

A careful examination of the example in Fig. 2 shows that the problem originates 

from the presence of a silent transition immediately after an a-labelled one; this 

led in [2] to some congruence results on FC-bisimulation, under constraints exclud- 

ing the mentioned “bad” configurations. The problem may also be solved by 

strengthening the bisimulation definition in order to distinguish systems like the 

ones exhibited in Fig. 2. This has been done in [7] for sequential systems in the 

context of process graphs. 

For a sequential system, the labelled posets of the processes are labelled total 

orders and, translating [7] in our system net framework, we may define the branching 

bisimulation as follows. 

2 

(iii) D 

0 .o 
a,, .a, 

a,,b,, .a,b, 

a,,T,, .alT1 

a,,7,, .a2 

(ii) 

ref(Z,, a, D) (iv) rqfI&, a, D) 

Fig. 2. (i) Two FC-bisimilar labelled systems. (ii) The corresponding processes. (iii) An empty in/out 

system. (iv) The refinements of 1, and 1:. (v) A process of ref‘(E,, a, D) whose extensions are not the 
same as the ones for the only possible corresponding process of ref‘(Z,, a, D). 
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Definition 3.4 (Branching hisimulation). If C, and C> are two sequential labelled 

systems, 1, ehrH & iff there is a relation p G I7, x 112 such that 

(i) (6, n-T) up, where rry and rr: are the initial processes of C, and Z, 

respectively, 

(ii) (r,, TJ E p=+cyhl(r,) = N~Z( z-?) (they are order-isomorphic), 

(iii) V( r,, 7~,) E p (a) if x-; is an extension of xl with only one event more, there 

is (n-i, n-G) E p such that ni is an extension of rTT2 and any process ~2” strictly between 

rxI and rri (i.e. rrTT2 is a strict prefix of CJTTT~ and rrz is a strict prefix of rri) satisfies 

(TTTI 7 n-p) E p, (b) vice versa. 

2, and C, will then be said br-bisimilar. 

This equivalence notion presents a nice “sandwich” property besides the usual 

“extension” one. Moreover, the translation of the results of [7] in terms of labelled 

system nets shows that the branching bisimulation withstands empty refinements 

for sequential systems. For instance, the sequential systems C, and X2 in Fig. 2 are 

not br-bisimilar, as exhibited by the last (necessary) correspondence between their 

processes. 

4. Maximality preserving bisimulation 

We shall now address the problem to define a bisimulation notion for labelled 

concurrent systems, which withstands empty refinements, maybe under some reason- 

able constraints. Since we want to refine some visible action(s), we may introduce 

them explicitly in the notion. 

A careful examination of the difficulties encountered in [2] leads to the following 

definition. 

Definition 4.1 (Bisimulation preserving maximality for a visible action set). If E;, = 

(S, , T, , W, , A,) and 2, = ( S2, T,, W2, A,) are two labelled systems and ~2 c A is a 

set of visible actions, E, = ~f,$,,T,3 & iff there is a set 93 c_ {(v,, n2, p) / 7~, E II( 

n2 t II(Z), /? is a relation between the visible events of rr, and rTTz} with the following 

properties: 

(i) (n-Y, ~9, fl) E 93, where ny and ~4 are the initial processes of 2, and I;, , 

respectively, 

(ii) (rr,, T?, /3) E .33+p is an order-isomorphism between cy,,~(-rr,) and ~l~?(rr~), 

(iii) V( rr, , 7r2, /3) E 33, with T,=(B,, E,, F,, p,) and rrz=(B1, El, F,, p2) 

(a) if z-i = (B’,, E’,, F’,, pi) is an extension of rr, with only one event el, more, 

there is (ni, ~1, p’) E LB where n$ = (BL, EL, Fi, pi) is an extension of x2 and 

p c_ p’; moreover, 

l if h,(p{(e’,)) E & then P’(e’,) is a maximal event of ~5 

l for any e, E E,, if h,(p,(e,))~ ~4 and if e, and P(e,) are maximal events in n’, 
and rr2, respectively, then P(e,) is still a maximal event in n$, 

(b) vice versa. 



JZ, and & will then be said dMP-bisimilar. 

The intuitive meaning of this definition is that the corresponding processes have 

to be order-isomorphic, that the initial processes correspond to each other and that 

they present an “extension property” (any extension of a process corresponds to 

an extension of any corresponding process; in the definition one only considers 

extensions by a single event on one side, but one may iterate to get any extension); 

the last conditions essentially say that the maximality of &-labelled events may be 

preserved: if a new &-labelled event is added on one side (it is then maximal), it 

is possible to extend the other side in such a way that the corresponding event (with 

the same label) is also maximal, and if an &-labelled event is maximal on one side 

before and after the extension while on the other side the corresponding event is 

also maximal before the extension, then this event remains maximal after the 

extension too. 

It may be observed that Definition 4.1 is essentially the same as Definition 3.1 

up to the additional constraints on &-labelled events; more precisely, we have the 

following corollary. 

Corollary 4.2 FC-bisimulation is a maximality preserving bisimulation: 

Proof. Obvious. 0 

Definition 4.3 (Maximality Preserving Bisimulution). Two systems will be said MP- 

bisimilar if they are maximality preserving bisimilar for all visible actions, i.e. 
= _- 

MPB - -AMPH. 

If ~4 ={a}, we will simply write =UMPR instead of zfotMPH, and say that two 

systems are maximality preserving bisimilar with respect to a, instead of {a}. 

Corollary 4.4 (Strengthening property). If &‘c &G A, then =,_,M,TB is stronger than 

=.II.MPH; and in particular MP-bisimulation is stronger than FC-bisimulation. 

Proof. It is clear that z.~~,,,,~~ is stronger or identical to =,.,.MPR since the additional 

conditions concern more actions in &MP-bisimulation. The fact that the strengthen- 

ing is strict results from the observation that the two systems 2, and & in Fig. 2 

are not aMP-bisimilar (since the addition of a, to the initial process on the right 

size needs the addition of a, and r,, on the left size, where a,, is not maximal), while 

they are FC-bisimilar. The same example where a is replaced by any action in &\&‘I 

will thus exhibit the strict strengthening property. I? 

Corollary 4.5 (Widening property). t/Z,, 2,: 2, = ,dMPH Z‘,aE, =.;I.MPB LY‘, with 

d’= tiu [A\(A(.Z,) n A(&))]. 

Proof. Obvious; this simply means that we may always add to LZZ any event which 

never actually occurs in E, and Z; notice that, normally, if two labelled systems 
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are bisimilar they have the same alphabet, but it could happen that all the transitions 

corresponding to some action are dead; consequently, it may happen that A(1,) # 

A(&), but then only the actions in A(2,) n A(Z) may occur (and still not necessarily 

all of them); one could say that the actions in (A(X,)\A(Z)) u (A(I,)\A(Z,)) only 

occur syntactically in Z, and &, and not semantically. 0 

Even so, rather awkward situations may still occur, as exhibited in Fig. 3. A 

careful examination of the example in Fig. 3 shows that the problem here arises 

from the combination of the fact that a refined transition is self-concurrent and that 

in the refinement system there is a transition needing more than one token. 

There are thus two ways to overcome the difficulty: either by excluding self- 

concurrency or by excluding multiple needs. 

Before attacking these two points, let us first develop some preliminary remarks, 

which will ease the proof of congruence properties by giving a general framework 

for these proofs (and which also establishes links with other frameworks). 

First, we may define directly refinements on the processes. 

Definition 4.6 (Rejhement of‘ a process). Let ir = (B, E, F, p) be a process of a 

labelled system 1 = (S, T, W, M,), A); let a E A(X) be a visible action and let D be 

an empty in/out system; let i:p -‘(A-‘(a))- II(D) be a function such that if . . 
E a a 

(il 

b 

t 

x 

nx 

ref’(2,, a, D) (iii) ref‘(&, a, D) 

Fig. 3. MP-hisimulation does not always withstand refinements. ii) Two MP-bisimilar labelled systems. 

(ii) An empty in/out system. (iii) The relinements of 2, and 12, (iv) A process of wf’(&, a, D) which 

has no corresponding process in w/.(1,, a, D). 
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e E~~‘(A-‘(a)) is not a maximal event in V, then t(e) is a complete process of 0, 

i.e. with a (unique) maximal condition corresponding to s,,,; we will also suppose 

that l(e) is never the initial process of D. Then the refinement ref( r, a, C) is obtained 

from S- by applying the following construction for each eEP_‘(A-‘(a)) (the order 

does not matter): 

(i) Drop e (and modify F,p accordingly). 

(ii) If l(e) is a complete process of 0, create a copy of L(e), drop the Min and 

Max of it (corresponding to s,, and s,,,); replace the labelling pGCe’ of this copy by 

Pr :x+ W”‘bL p(e)>, and connect the (unique) minimal event of the copy to the 

predecessor conditions of e and the (unique) maximal event of the copy to the 

successor conditions of e. 

(iii) If l(e) is not complete, create a copy of l(e), drop the Min of it (correspond- 

ing to s,,) and the successor conditions of e; replace the labelling p5(‘) of this copy 

by P’ :x+ (P”“(X), p(e)>, and connect the (unique) minimal event of the copy to 

the predecessor conditions of e. 

Proposition 4.7. Refined processes areprocesses of the rejinedsystem. With the notations 

of the previous dejinition, ref( r, a, C) E Il(rej(2, a, D)). 

Proof. Trivial but slightly tedious. Notice however that the property is directly 

connected to the fact that there is no “internal marking” in an empty in/out system, 

as is exhibited by Fig. 4. 0 

The example in Fig. 3 shows that the reverse is not true in general: the process 

in (iv) is not a refinement of a process of &. But this suggests to define a class of 

refinements based on it. 

(i) 2 (ii) D 

L 

(iii) ref(X, a, D) (iv) 

Fig. 4. A nonempty refinement. (i) A labelled system. (ii) A nonempty in/out system. (iii) The refinement 

of 2. (iv) A refined process of Z which is not a process of ref(Z, a, D). 



Definition 4.8 (Refinements witlz refined processes). Let 2 be a labelled system, 

a E A(l) and let D be an empty in/out system. We will say that reJ‘(2, a, D) has 

refined processes iff VXE 1(,ref(E, a, D)), ~TTG II(Z), 31 such that 7j. = ref(r, a, 5) 

(up to isomorphism). 0 

Now, our central result is the following. 

Theorem 4.9 (Refinements with refined processes respect .dMP-bisimulation). !fE, 

and I‘, are two labelled systems, a E ~4 C_ A and D is an empty in/out system such 

that ref(I,, a, D) and ref(Z>, a, D) have rqfined processes, then 

with SC= A\[A(C,) n A(E,)]u SL 

Proof. Let 33 satisfy the conditions of Definition 4.1 for 2, and &, and let us define 

.% as the set of triples (6,) G2, 8) such that there is a triple (T, , nTT2, p) E %I and 

l, i’ with the following properties: 

(i) +, = rd(r,, a, b), E2= ref’trr2, 4 0, 
(ii) <‘= lo/3 ‘, i.e. {’ is the image of { through p, 

(iii) b is identical to p on the visible events common to 7;, and T, on one side 

and to G2 and rr2 on the other side, and it is the identity relation (restricted to visible 

events) for the corresponding identical copies (due to the definition of 5’) of the 

processes of D refining the corresponding a-labelled events of T, and n2. 

It should be clear that 

l (7Ty,7?;,$3)EG, if +Ty and 7;: are the initial processes of ref(E,, a, D) and 

rd(&, a, D), 
l if (7;, , 7j,, fi) E 6 then /$ is an order-isomorphism between the abstractions of 

7;, and “iT2, since it is constructed from /3 which is itself an order-isomorphism 

and from identity relations, 

l if (E, , 7;?, /?) t $8 and 5, is extended into 7;; by an event e’, , three cases are 

possible. 

(a) e{ extends a D-process refining some a-labelled event e, in rr, and the same 

prolongation may be applied to the identical process refining P(e,) in rr2; fi may 

be extended accordingly and it should be clear that we will obtain an extension 

triple which is still in :@3 and which preserves the maximality for all the visible actions. 

(b) e{ does not belong to any D-process refining some a-labelled event in TI-,; 

then e{ also extends ST, into rr; and 7;: = r<f(r;, a, [); from &MP-bisimulation, 

there are T; and p’ extending 7~~ and /3 such that ( QT:, ni, p’) E :8 and maximality 

of &J-labelled events is preserved. It should be clear that 7;; = rgf( r’, , a, i), 61= 

ref( rri, a, 6) and the p’ corresponding to /3’ will give a triple belonging to 93 with 

the good properties; indeed, the only possible problem is that an additional event 

in 7ri would have to be connected in 7;; to an incomplete refining process of D 

(which would be impossible), but then there is the same incomplete process in G{ 
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and they both correspond to maximal P-corresponding a-labelled events e’,’ and ei 

in rr\ and n; respectively; in ni, e, may not be connected to e’( (otherwise the 

corresponding D-process of the latter would be complete), thus e: remains maximal 

but then so must be eg, hence the contradiction. The only visible events the 

maximality of which could be destroyed are clearly the ones with that property in 

2, and &. 

(c) e; is the beginning of a new D-process refining some new a-labelled event 

i;, extending x, into rr{. By extending 6 into 6’ with the pair (e,, D-process 

corresponding to e{), we have 6; = ref(r{, a, 5’); from &MP-bisimulation, there 

are rri and /3’ extending rr2 and /3 such that (rr{ , ~5, p’) E d’ and maximality of 

&-labelled events is preserved; it should be clear that ref(n{ , a, <‘), ref(v;, a, 5’) 

and the p’ corresponding to p’ will give a triple belonging to 6 with the good 

properties; the same reasoning as in (b) may be resumed, with the additional remark 

that /3’(;,) being also maximal, there is no problem in refining it. 

and symmetrically for the vice versa part. Consequently the maximality is preser- 

ved for any visible action but the ones for which this is not the case in 2, and 

X2, hence the formula for AX!‘. 0 

Corollary 4.10 (Refinements with refined processes respect MP-bisimulation). ZfX, 

and 1, are two lubelled systems, a E A and D is an empty in/out system such that 

ref(_Z, , a, D) and ref(.Z,, a, D) have refined processes, then 

Proof. Immediate from Theorem 4.9. In this case ti = A = S’. El 

It may be observed that these results may be transported to other models of 

concurrency based on partial orders if the behaviours of a refined system look like 

the refinements of the behaviours, as it is the case for instance in the event 

structure-based theory developed in [5]. 

Now, we simply have to determine in what circumstances the refinements of a 

system net have refined processes. 

Following the ideas mentioned while analysing the example of Fig. 3, let us define 

the following. 

Definition 4.11 (SM-systems and SM-refinements). An SM-system is an empty in/out 

system D such that VtE TU: (‘tl = 1 = It’] and W”(‘t, t) = 1 = WD(t, t’), i.e. D is 

essentially a state machine net. 
An SM-refinement is a refinement through an SM-system. 

Proposition 4.12 (SM-refinements have refined processes). Let 2 = (S, T, W, M,,, A) 

be a Iubelled system, let D = (S”, T”, W”, Mf, A I’) be an SM-system and let a E 

A(E); then ref(I, a, D) has refined processes. 



Proof. The basic observation here is the fact that for any SM-system, all the processes 

are simple chains. Let G be any process of ref(E, a, D). Any node of 7j. whose label 

does not belong to Su T 

l has a label of the form (x, r) for some t E A ‘(a); 

l has a unique maximal predecessor e with a label of the form (y, f) where y is an 

immediate successor of s,,, in D; 

l belongs to the unique maximal chain y originating from e where all the labels 

are of the form (z, t), where zt T”u S”\{s,,, s,,,,,}. 

For any such chain y, the only connections with the rest of the process are 

l through the input condition(s) of e (always); 

l through the output condition(s) of the maximal event in the chain if it has a label 

(u, t) where u is an immediate predecessor of s,,,,, in D (i.e. if the chain does not 

stop on a maximal condition before). 

If we replace this chain y by an event ? with label t (plus adequate successor 

conditions if the chain ended on a condition) and if we resume the construction 

until all the nodes have their labels in SW r, it should be clear that the resulting 

object is a process n of 2, and that if [ is the function associating to each constructed 

Z the process of D corresponding to y (by adding an input condition corresponding 

to .%7, and an output condition corresponding to s,,,,, if the chain ended on an event), 

ref( n, a, 5) = 73. This terminates the proof. 0 

As immediate corollaries, we have the following. 

Corollary 4.13 (SM-refinements preserve MP-bisimulation). rf’Z, andEZ are labelled 

systems, a E .& c A and D is an SM-system, 

(a) x, =klPR &*4x,, 0, D) =.~g.r\qfR MT&, a, D) with 

.d’= A\[A(Z,) n A(Z)] u d, 

(b) 2, =,vm &*rr;f‘(~, , 0, Di = t,~,j ref’(&, a, D), 
(c) 2, =llMPM -&=SrtIf(~l, a, D) = fit R ref’(Z, 0, D). 

Proof. Immediate from 4.9, 4.10, 4.4 and 4.12. q 

Corollary 4.14 (Renaming, simple splitting and simple choice replacements). Mf- 
&simulation is preserved by renaming, simple splitting and simple choice replacements. 

Proof. This results from the fact that the three systems depicted in Fig. 5. are 

SM-refinement systems. It may be observed that it is not necessary that x and y are 

distinct, that they are different from other labels already in the bisimilar systems, 

or that they are visible. 0 

By attacking the other reason of the failure in Fig. 3, we obtain Proposition 4.15. 

Proposition 4.15 (Self-concurrency freeness and refined processes). Lef 2 = 

(S, T, W, M,,, A) be a labelled system, let D = (S”, T”, W”, M:f, A”) be an empty 
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Fig. 5 

in/out system and let a E A(2) be a label such that no a-labelled transition is 

self-concurrent in 2, then ref (2, a, D) has refined processes. 

Proof. Let ~7 be any process of ref(2, LID). Any node of ~7 whose label does not 

belong to Su T (if any) has a label of the form (x, t) for some t E A-‘(a) and has 

a predecessor with a label (y, t) where y is an immediate successor of Sin in D. 

Let e be a minimal node whose label does not belong to Su T (if there is no 

such label, the construction stops); e is an event with a label (y, t) where y E s,, and 

t E h-‘(a); moreover, there is no other event with the same property and the same 

t since the set of nodes without predecessors with a label out of Su T is a process 

of 2, ‘e is in the Max of this process and if there were two such e’s corresponding 

to the same t, from known properties on processes (see [l]), transition t would be 

self-concurrent in 25. Consequently, e is a predecessor for all the nodes with a label 

of the form (x, t). Let y be the maximal structure issued from e, where all the nodes 

have a label (z, t). e is the unique minimal element amongst them. 

Now, two cases are possible. 

(a) y does not contain any event with a label (u, t) where ME’S,,,,,. Then, up to 

the initial condition, y is a process of D. Indeed, the only problem would be that, 

at some point, an event in y has some of its input conditions out of y, but any of 

them has a label of the form (v, t), is a successor of e and there should be a path 

from e to that condtion, leaving y at some point. This could only be through an 

event with a label (w, t) where u’ E ‘s,,,,,, but we supposed there were no such events. 

Consequently, y is an (incomplete) process of D and it is completely isolated from 

its surrounding. We may then replace y by a new event e(y), with a label t, and 

the adequate output conditions. e(y) is then a maximal event and the construction 

may resume, with another (possibly the same) t. 

(b) y contains one or more events e’ with a label (u, t) where u E ‘s,,,. If y has 

no event with some input conditions out of y, then, up to the initial condition and 

the terminal ones corresponding to the various e”s, y is a process of D. But then, 

from the definition of an empty refinement, when u is reached there are no tokens 

left in D, so that e’ is unique and there are no “free” conditions (without outgoing 

arc) in y. Consequently, y is definitely isolated from its surrounding, its only 

connections, present and future, are through the unique input event e and the unique 

output event e’; we may then replace y by a new event e(y), with a label t, since 

the inputs and outputs of y correspond to those of t, and resume the construction 
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since again the adequate conditions are satisfied. Now, if there is an event in y with 

input conditions out of y, let c be a minimal condition of this type. c has a label 

(u, f) and is a successor of e. There is thus a path from e to c leaving y at some 

point. This may only be at some e’. Since c is minimal, no event between e and e’ 

may have inputs out of y but then, between e and e’, we have a complete process 

y’ of D and again as there are no tokens left at the end in D, y = y’ and we find a 

contradiction. 

Consequently, at the end, we will get a process r of 2, and if < is the function 

associating with each constructed e(y) the process of D corresponding to y (by 

adding an input condition corresponding to s,,, and in the second case an output 

condition corresponding to s,,,,,), uef’( 7~, a, i) = 6. 

This terminates the proof. 0 

Corollary 4.16 (MP-bisimulation is preserved for systems without self-concur- 

rency). Let a E d c A, let 2, and Z2 be two labelled systems such that no a-labelled 

transition is self-concurrent in them, and let D be an empty in/out system, then 

(a) 2, =.CIMPR &3ref(Z;, , a, D) = .,‘2,,J,3 r<f(C2, a, D) with 

~&=A\[A(I,)nA(Z2)]u.zf, 

Proof. Immediate from 4.9, 4.10, 4.4 and 4.15. 0 

Concerning the application domain of Corollary 4.16, let us notice that a l-safe 

system net is automatically self-concurrency free. 

5. Simultaneous refinements 

One may also define refinements simultaneously for a set of visible actions. 

Definition 5.1 (Empty simultaneous rqfinements). Let 2 = (S, T, W, MC,, A) be a label- 

led system, let % G A be a set of visible actions, and let D be a function: a E ;ir + D,, 

empty in/out system, associating an in/out system with each action in 3. The 

refinement ref(2, 3, D) is the labelled system obtained from Z by applying the 

construction 3.3(i) to (iii) for each a E %? and each t E h-‘(a). 

Clearly, rd(.Z, a, 0,) = ref(X, {a}, D), but ref(X, 8, D) may not always be 

obtained by an iterative use of single action refinements since, if g = {a, b, .}, it 

may happen that new b-labelled transitions are added in ref’(E, a, D,) through D,. 

However, the same result may be obtained by using successive single action 

refinements through empty in/out systems with disjoined actual alphabets, and then 
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by applying some renaming, since we have seen in Corollary 4.14 that renamings 

are a special case of SM-refinements for which there are no problems. Consequently 

we have the following. 

Corollary 5.2 (MP-bisimulation is preserved by simultaneous refinements). If )3, 

and E2 are two labelled systems, 9 G &G A and D is a function applying 5% to a family 

of empty in/out systems, then Iffor any a E $8. either D(a) is an SM-system or no 

a-labelled transition in 2, or & is self-concurrent 

(a) -% =.Cg.MpB &=3ref(Z,, %!, D) =.rrl’Mpn ref(&, 2, D) with 

&‘= A\[A(E,) n A(&)] u d 

(b) -r, =MPB &*ref(Z, 2, D) =MPBref(&, 3, D) 

(c) 2, =%MPB &=+ref(Z,% D) =Fc.~ref(&, % D). 

Proof. Immediate from the above remark and the previous results. 0 

6. Sequential systems 

A natural question now is how the MP-bisimulation compares, for sequential 

systems, to the branching bisimulation, which is also preserved by refinements in 

that case (let us notice that all sequential systems are trivially self-concurrency free). 

The answer is presented now. 

Proposition 6.1 (MP-bisimulation is weaker than branching bisimulation). Zf 2, and 

C, are sequential systems, 2, zhrR &*I, = MPH I2 but the reverse implication does 

not hold. 

Proof. Clearly, if 2, zbrB &, the relation p G 17, x II2 satisfying the criteria 3.4 for 

the branching bisimulation, together with the trivial isomorphism /3 between the 

equally ranked visible events, gives a triple set {( 7r,, rr2, /3)} satisfying the criteria 

for MP-bisimulation since the only difference is that in addition the intermediate 

processes correspond to the original process on the other side. 

To see that the reverse implication does not hold, one simply has to consider the 

counterexample shown in Fig. 6. 

One can check that E1 ;= MPR &, but the process rz of Zz, which is a one event 

extension of the initial process, may only correspond to the process T, of Zr, and 

the intermediate process with only t does not correspond to the initial process of 

7. Conclusion 

So far, we have shown that our MP-bisimulation, in the frame of labelled P/T 

nets, is preserved by SM-refinements, and by empty refinements if we exclude 
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(i) (ii) 

Fig. 6. Two MP-bisimilar systems which are not br-similar. (i) Two MP-bisimilar labelled systems. 
(ii) Two corresponding processes. 

self-concurrency. Our equivalence notion is weaker than branching bisimulation 

and it encompasses FC-bisimulation. Moreover, we have indicated how to export 

our results to other behavioural models for concurrency. 

And indeed, meanwhile but independently, various authors applied the very same 

idea to various contexts. For instance, Vogler defined in [15] various refinement 

congruences for prime event structures and it occurs that his hST-bisimulation 

essentially corresponds to our MP-bisimulation; moreover, he applied the same idea 

to interleaving bisimulations, and showed coarsest results. 

Similarly, Cherief and Schnoebelen showed in [4] that for process graphs, which 

may be used to model sequential systems, the A-bisimulation defined by a maximality 

preserving property is preserved by refinements, and is the largest congruence 

bisimulation. 
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